DAMASK_EICMD/code/constitutive.f90

1099 lines
56 KiB
Fortran
Raw Normal View History

! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------------------------
!* $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!! Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief elasticity, plasticity, internal microstructure state
!--------------------------------------------------------------------------------------------------
2009-03-06 15:32:36 +05:30
module constitutive
2009-03-06 15:32:36 +05:30
use prec, only: pInt, p_vec
2009-03-06 15:32:36 +05:30
implicit none
!private
type(p_vec), dimension(:,:,:), allocatable :: &
constitutive_state0, & !< pointer array to microstructure at start of FE inc
constitutive_partionedState0, & !< pointer array to microstructure at start of homogenization inc
constitutive_subState0, & !< pointer array to microstructure at start of crystallite inc
constitutive_state, & !< pointer array to current microstructure (end of converged time step)
constitutive_state_backup, & !< pointer array to backed up microstructure (end of converged time step)
constitutive_dotState, & !< pointer array to evolution of current microstructure
constitutive_deltaState, & !< pointer array to incremental change of current microstructure
constitutive_previousDotState,& !< pointer array to previous evolution of current microstructure
constitutive_previousDotState2,& !< pointer array to 2nd previous evolution of current microstructure
constitutive_dotState_backup, & !< pointer array to backed up evolution of current microstructure
constitutive_RK4dotState, & !< pointer array to evolution of microstructure defined by classical Runge-Kutta method
constitutive_aTolState !< pointer array to absolute state tolerance
type(p_vec), dimension(:,:,:,:), allocatable :: &
constitutive_RKCK45dotState !< pointer array to evolution of microstructure used by Cash-Karp Runge-Kutta method
integer(pInt), dimension(:,:,:), allocatable :: &
constitutive_sizeDotState, & !< size of dotState array
constitutive_sizeState, & !< size of state array per grain
constitutive_sizePostResults !< size of postResults array per grain
integer(pInt) :: &
constitutive_maxSizeDotState, &
constitutive_maxSizeState, &
constitutive_maxSizePostResults
character (len=*), parameter, public :: constitutive_hooke_label = 'hooke'
public :: &
constitutive_init, &
constitutive_homogenizedC, &
constitutive_averageBurgers, &
constitutive_microstructure, &
constitutive_LpAndItsTangent, &
constitutive_TandItsTangent, &
constitutive_collectDotState, &
constitutive_collectDeltaState, &
constitutive_postResults
private :: &
constitutive_hooke_TandItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates arrays pointing to array of the various constitutive modules
!--------------------------------------------------------------------------------------------------
subroutine constitutive_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic
use numerics, only: numerics_integrator
use IO, only: IO_error, &
IO_open_file, &
IO_open_jobFile_stat, &
IO_write_jobFile, &
IO_write_jobBinaryIntFile
use mesh, only: mesh_maxNips, &
mesh_NcpElems, &
mesh_element, &
mesh_ipNeighborhood, &
mesh_maxNipNeighbors, &
FE_Nips, &
FE_NipNeighbors, &
FE_geomtype
use material, only: material_phase, &
material_Nphase, &
material_localFileExt, &
material_configFile, &
phase_name, &
phase_elasticity, &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput, &
homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive_none
use constitutive_j2
use constitutive_phenopowerlaw
use constitutive_titanmod
use constitutive_dislotwin
use constitutive_nonlocal
2009-03-06 15:32:36 +05:30
implicit none
integer(pInt), parameter :: fileunit = 200_pInt
integer(pInt) g, & ! grain number
i, & ! integration point number
e, & ! element number
gMax, & ! maximum number of grains
iMax, & ! maximum number of integration points
eMax, & ! maximum number of elements
n, &
p, &
s, &
myInstance,&
myNgrains
integer(pInt), dimension(:,:), pointer :: thisSize
character(len=64), dimension(:,:), pointer :: thisOutput
logical :: knownPlasticity
2009-03-05 20:06:01 +05:30
2009-03-06 15:32:36 +05:30
! --- PARSE PLASTICITIES FROM CONFIG FILE ---
if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present...
call IO_open_file(fileunit,material_configFile) ! ... open material.config file
endif
call constitutive_none_init(fileunit)
call constitutive_j2_init(fileunit)
call constitutive_phenopowerlaw_init(fileunit)
call constitutive_titanmod_init(fileunit)
call constitutive_dislotwin_init(fileunit)
call constitutive_nonlocal_init(fileunit)
close(fileunit)
write(6,*)
write(6,*) '<<<+- constitutive init -+>>>'
write(6,*) '$Id$'
#include "compilation_info.f90"
! --- WRITE DESCRIPTION FILE FOR CONSTITUTIVE PHASE OUTPUT ---
call IO_write_jobFile(fileunit,'outputConstitutive')
do p = 1_pInt,material_Nphase
i = phase_plasticityInstance(p) ! which instance of a plasticity is present phase
knownPlasticity = .true. ! assume valid
select case(phase_plasticity(p)) ! split per constitiution
case (constitutive_none_label)
thisOutput => NULL() ! constitutive_none_output
thisSize => NULL() ! constitutive_none_sizePostResult
case (constitutive_j2_label)
thisOutput => constitutive_j2_output
thisSize => constitutive_j2_sizePostResult
case (constitutive_phenopowerlaw_label)
thisOutput => constitutive_phenopowerlaw_output
thisSize => constitutive_phenopowerlaw_sizePostResult
case (constitutive_titanmod_label)
thisOutput => constitutive_titanmod_output
thisSize => constitutive_titanmod_sizePostResult
case (constitutive_dislotwin_label)
thisOutput => constitutive_dislotwin_output
thisSize => constitutive_dislotwin_sizePostResult
case (constitutive_nonlocal_label)
thisOutput => constitutive_nonlocal_output
thisSize => constitutive_nonlocal_sizePostResult
case default
knownPlasticity = .false.
end select
write(fileunit,*)
write(fileunit,'(a)') '['//trim(phase_name(p))//']'
write(fileunit,*)
if (knownPlasticity) then
write(fileunit,'(a)') '(plasticity)'//char(9)//trim(phase_plasticity(p))
do e = 1_pInt,phase_Noutput(p)
write(fileunit,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
enddo
close(fileunit)
! --- ALLOCATION OF STATES ---
gMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
allocate(constitutive_state0(gMax,iMax,eMax))
allocate(constitutive_partionedState0(gMax,iMax,eMax))
allocate(constitutive_subState0(gMax,iMax,eMax))
allocate(constitutive_state(gMax,iMax,eMax))
allocate(constitutive_state_backup(gMax,iMax,eMax))
allocate(constitutive_dotState(gMax,iMax,eMax))
allocate(constitutive_deltaState(gMax,iMax,eMax))
allocate(constitutive_dotState_backup(gMax,iMax,eMax))
allocate(constitutive_aTolState(gMax,iMax,eMax))
allocate(constitutive_sizeDotState(gMax,iMax,eMax)) ; constitutive_sizeDotState = 0_pInt
allocate(constitutive_sizeState(gMax,iMax,eMax)) ; constitutive_sizeState = 0_pInt
allocate(constitutive_sizePostResults(gMax,iMax,eMax)); constitutive_sizePostResults = 0_pInt
if (any(numerics_integrator == 1_pInt)) then
allocate(constitutive_previousDotState(gMax,iMax,eMax))
allocate(constitutive_previousDotState2(gMax,iMax,eMax))
endif
if (any(numerics_integrator == 4_pInt)) then
allocate(constitutive_RK4dotState(gMax,iMax,eMax))
endif
if (any(numerics_integrator == 5_pInt)) then
allocate(constitutive_RKCK45dotState(6,gMax,iMax,eMax))
endif
do e = 1_pInt,mesh_NcpElems ! loop over elements
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e))) ! loop over IPs
do g = 1_pInt,myNgrains ! loop over grains
select case(phase_elasticity(material_phase(g,i,e)))
case (constitutive_hooke_label)
! valid elasticity but nothing to do
case default
call IO_error(200_pInt,ext_msg=trim(phase_elasticity(material_phase(g,i,e)))) ! unknown elasticity
end select
myInstance = phase_plasticityInstance(material_phase(g,i,e))
select case(phase_plasticity(material_phase(g,i,e)))
case (constitutive_none_label)
allocate(constitutive_state0(g,i,e)%p(constitutive_none_sizeState(myInstance)))
allocate(constitutive_partionedState0(g,i,e)%p(constitutive_none_sizeState(myInstance)))
allocate(constitutive_subState0(g,i,e)%p(constitutive_none_sizeState(myInstance)))
allocate(constitutive_state(g,i,e)%p(constitutive_none_sizeState(myInstance)))
allocate(constitutive_state_backup(g,i,e)%p(constitutive_none_sizeState(myInstance)))
allocate(constitutive_aTolState(g,i,e)%p(constitutive_none_sizeState(myInstance)))
allocate(constitutive_dotState(g,i,e)%p(constitutive_none_sizeDotState(myInstance)))
allocate(constitutive_deltaState(g,i,e)%p(constitutive_none_sizeDotState(myInstance)))
allocate(constitutive_dotState_backup(g,i,e)%p(constitutive_none_sizeDotState(myInstance)))
if (any(numerics_integrator == 1_pInt)) then
allocate(constitutive_previousDotState(g,i,e)%p(constitutive_none_sizeDotState(myInstance)))
allocate(constitutive_previousDotState2(g,i,e)%p(constitutive_none_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 4_pInt)) then
allocate(constitutive_RK4dotState(g,i,e)%p(constitutive_none_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 5_pInt)) then
do s = 1_pInt,6_pInt
allocate(constitutive_RKCK45dotState(s,g,i,e)%p(constitutive_none_sizeDotState(myInstance)))
enddo
endif
constitutive_state0(g,i,e)%p = constitutive_none_stateInit(myInstance)
constitutive_aTolState(g,i,e)%p = constitutive_none_aTolState(myInstance)
constitutive_sizeState(g,i,e) = constitutive_none_sizeState(myInstance)
constitutive_sizeDotState(g,i,e) = constitutive_none_sizeDotState(myInstance)
constitutive_sizePostResults(g,i,e) = constitutive_none_sizePostResults(myInstance)
case (constitutive_j2_label)
allocate(constitutive_state0(g,i,e)%p(constitutive_j2_sizeState(myInstance)))
allocate(constitutive_partionedState0(g,i,e)%p(constitutive_j2_sizeState(myInstance)))
allocate(constitutive_subState0(g,i,e)%p(constitutive_j2_sizeState(myInstance)))
allocate(constitutive_state(g,i,e)%p(constitutive_j2_sizeState(myInstance)))
allocate(constitutive_state_backup(g,i,e)%p(constitutive_j2_sizeState(myInstance)))
allocate(constitutive_aTolState(g,i,e)%p(constitutive_j2_sizeState(myInstance)))
allocate(constitutive_dotState(g,i,e)%p(constitutive_j2_sizeDotState(myInstance)))
allocate(constitutive_deltaState(g,i,e)%p(constitutive_j2_sizeDotState(myInstance)))
allocate(constitutive_dotState_backup(g,i,e)%p(constitutive_j2_sizeDotState(myInstance)))
if (any(numerics_integrator == 1_pInt)) then
allocate(constitutive_previousDotState(g,i,e)%p(constitutive_j2_sizeDotState(myInstance)))
allocate(constitutive_previousDotState2(g,i,e)%p(constitutive_j2_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 4_pInt)) then
allocate(constitutive_RK4dotState(g,i,e)%p(constitutive_j2_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 5_pInt)) then
do s = 1_pInt,6_pInt
allocate(constitutive_RKCK45dotState(s,g,i,e)%p(constitutive_j2_sizeDotState(myInstance)))
enddo
endif
constitutive_state0(g,i,e)%p = constitutive_j2_stateInit(myInstance)
constitutive_aTolState(g,i,e)%p = constitutive_j2_aTolState(myInstance)
constitutive_sizeState(g,i,e) = constitutive_j2_sizeState(myInstance)
constitutive_sizeDotState(g,i,e) = constitutive_j2_sizeDotState(myInstance)
constitutive_sizePostResults(g,i,e) = constitutive_j2_sizePostResults(myInstance)
case (constitutive_phenopowerlaw_label)
allocate(constitutive_state0(g,i,e)%p(constitutive_phenopowerlaw_sizeState(myInstance)))
allocate(constitutive_partionedState0(g,i,e)%p(constitutive_phenopowerlaw_sizeState(myInstance)))
allocate(constitutive_subState0(g,i,e)%p(constitutive_phenopowerlaw_sizeState(myInstance)))
allocate(constitutive_state(g,i,e)%p(constitutive_phenopowerlaw_sizeState(myInstance)))
allocate(constitutive_state_backup(g,i,e)%p(constitutive_phenopowerlaw_sizeState(myInstance)))
allocate(constitutive_aTolState(g,i,e)%p(constitutive_phenopowerlaw_sizeState(myInstance)))
allocate(constitutive_dotState(g,i,e)%p(constitutive_phenopowerlaw_sizeDotState(myInstance)))
allocate(constitutive_deltaState(g,i,e)%p(constitutive_phenopowerlaw_sizeDotState(myInstance)))
allocate(constitutive_dotState_backup(g,i,e)%p(constitutive_phenopowerlaw_sizeDotState(myInstance)))
if (any(numerics_integrator == 1_pInt)) then
allocate(constitutive_previousDotState(g,i,e)%p(constitutive_phenopowerlaw_sizeDotState(myInstance)))
allocate(constitutive_previousDotState2(g,i,e)%p(constitutive_phenopowerlaw_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 4_pInt)) then
allocate(constitutive_RK4dotState(g,i,e)%p(constitutive_phenopowerlaw_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 5_pInt)) then
do s = 1_pInt,6_pInt
allocate(constitutive_RKCK45dotState(s,g,i,e)%p(constitutive_phenopowerlaw_sizeDotState(myInstance)))
enddo
endif
constitutive_state0(g,i,e)%p = constitutive_phenopowerlaw_stateInit(myInstance)
constitutive_aTolState(g,i,e)%p = constitutive_phenopowerlaw_aTolState(myInstance)
constitutive_sizeState(g,i,e) = constitutive_phenopowerlaw_sizeState(myInstance)
constitutive_sizeDotState(g,i,e) = constitutive_phenopowerlaw_sizeDotState(myInstance)
constitutive_sizePostResults(g,i,e) = constitutive_phenopowerlaw_sizePostResults(myInstance)
case (constitutive_titanmod_label)
allocate(constitutive_state0(g,i,e)%p(constitutive_titanmod_sizeState(myInstance)))
allocate(constitutive_partionedState0(g,i,e)%p(constitutive_titanmod_sizeState(myInstance)))
allocate(constitutive_subState0(g,i,e)%p(constitutive_titanmod_sizeState(myInstance)))
allocate(constitutive_state(g,i,e)%p(constitutive_titanmod_sizeState(myInstance)))
allocate(constitutive_state_backup(g,i,e)%p(constitutive_titanmod_sizeState(myInstance)))
allocate(constitutive_aTolState(g,i,e)%p(constitutive_titanmod_sizeState(myInstance)))
allocate(constitutive_dotState(g,i,e)%p(constitutive_titanmod_sizeDotState(myInstance)))
allocate(constitutive_deltaState(g,i,e)%p(constitutive_titanmod_sizeDotState(myInstance)))
allocate(constitutive_dotState_backup(g,i,e)%p(constitutive_titanmod_sizeDotState(myInstance)))
if (any(numerics_integrator == 1_pInt)) then
allocate(constitutive_previousDotState(g,i,e)%p(constitutive_titanmod_sizeDotState(myInstance)))
allocate(constitutive_previousDotState2(g,i,e)%p(constitutive_titanmod_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 4_pInt)) then
allocate(constitutive_RK4dotState(g,i,e)%p(constitutive_titanmod_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 5_pInt)) then
do s = 1_pInt,6_pInt
allocate(constitutive_RKCK45dotState(s,g,i,e)%p(constitutive_titanmod_sizeDotState(myInstance)))
enddo
endif
constitutive_state0(g,i,e)%p = constitutive_titanmod_stateInit(myInstance)
constitutive_aTolState(g,i,e)%p = constitutive_titanmod_aTolState(myInstance)
constitutive_sizeState(g,i,e) = constitutive_titanmod_sizeState(myInstance)
constitutive_sizeDotState(g,i,e) = constitutive_titanmod_sizeDotState(myInstance)
constitutive_sizePostResults(g,i,e) = constitutive_titanmod_sizePostResults(myInstance)
case (constitutive_dislotwin_label)
allocate(constitutive_state0(g,i,e)%p(constitutive_dislotwin_sizeState(myInstance)))
allocate(constitutive_partionedState0(g,i,e)%p(constitutive_dislotwin_sizeState(myInstance)))
allocate(constitutive_subState0(g,i,e)%p(constitutive_dislotwin_sizeState(myInstance)))
allocate(constitutive_state(g,i,e)%p(constitutive_dislotwin_sizeState(myInstance)))
allocate(constitutive_state_backup(g,i,e)%p(constitutive_dislotwin_sizeState(myInstance)))
allocate(constitutive_aTolState(g,i,e)%p(constitutive_dislotwin_sizeState(myInstance)))
allocate(constitutive_dotState(g,i,e)%p(constitutive_dislotwin_sizeDotState(myInstance)))
allocate(constitutive_deltaState(g,i,e)%p(constitutive_dislotwin_sizeDotState(myInstance)))
allocate(constitutive_dotState_backup(g,i,e)%p(constitutive_dislotwin_sizeDotState(myInstance)))
if (any(numerics_integrator == 1_pInt)) then
allocate(constitutive_previousDotState(g,i,e)%p(constitutive_dislotwin_sizeDotState(myInstance)))
allocate(constitutive_previousDotState2(g,i,e)%p(constitutive_dislotwin_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 4_pInt)) then
allocate(constitutive_RK4dotState(g,i,e)%p(constitutive_dislotwin_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 5_pInt)) then
do s = 1_pInt,6_pInt
allocate(constitutive_RKCK45dotState(s,g,i,e)%p(constitutive_dislotwin_sizeDotState(myInstance)))
enddo
endif
constitutive_state0(g,i,e)%p = constitutive_dislotwin_stateInit(myInstance)
constitutive_aTolState(g,i,e)%p = constitutive_dislotwin_aTolState(myInstance)
constitutive_sizeState(g,i,e) = constitutive_dislotwin_sizeState(myInstance)
constitutive_sizeDotState(g,i,e) = constitutive_dislotwin_sizeDotState(myInstance)
constitutive_sizePostResults(g,i,e) = constitutive_dislotwin_sizePostResults(myInstance)
case (constitutive_nonlocal_label)
select case(FE_geomtype(mesh_element(2,e)))
case (7_pInt,8_pInt,9_pInt,10_pInt)
! all fine
case default
call IO_error(253_pInt,e,i,g)
end select
allocate(constitutive_state0(g,i,e)%p(constitutive_nonlocal_sizeState(myInstance)))
allocate(constitutive_partionedState0(g,i,e)%p(constitutive_nonlocal_sizeState(myInstance)))
allocate(constitutive_subState0(g,i,e)%p(constitutive_nonlocal_sizeState(myInstance)))
allocate(constitutive_state(g,i,e)%p(constitutive_nonlocal_sizeState(myInstance)))
allocate(constitutive_state_backup(g,i,e)%p(constitutive_nonlocal_sizeState(myInstance)))
allocate(constitutive_aTolState(g,i,e)%p(constitutive_nonlocal_sizeState(myInstance)))
allocate(constitutive_dotState(g,i,e)%p(constitutive_nonlocal_sizeDotState(myInstance)))
allocate(constitutive_deltaState(g,i,e)%p(constitutive_nonlocal_sizeDotState(myInstance)))
allocate(constitutive_dotState_backup(g,i,e)%p(constitutive_nonlocal_sizeDotState(myInstance)))
if (any(numerics_integrator == 1_pInt)) then
allocate(constitutive_previousDotState(g,i,e)%p(constitutive_nonlocal_sizeDotState(myInstance)))
allocate(constitutive_previousDotState2(g,i,e)%p(constitutive_nonlocal_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 4_pInt)) then
allocate(constitutive_RK4dotState(g,i,e)%p(constitutive_nonlocal_sizeDotState(myInstance)))
endif
if (any(numerics_integrator == 5_pInt)) then
do s = 1_pInt,6_pInt
allocate(constitutive_RKCK45dotState(s,g,i,e)%p(constitutive_nonlocal_sizeDotState(myInstance)))
enddo
endif
constitutive_aTolState(g,i,e)%p = constitutive_nonlocal_aTolState(myInstance)
constitutive_sizeState(g,i,e) = constitutive_nonlocal_sizeState(myInstance)
constitutive_sizeDotState(g,i,e) = constitutive_nonlocal_sizeDotState(myInstance)
constitutive_sizePostResults(g,i,e) = constitutive_nonlocal_sizePostResults(myInstance)
case default
call IO_error(201_pInt,ext_msg=trim(phase_plasticity(material_phase(g,i,e)))) ! unknown plasticity
end select
enddo
enddo
enddo
call constitutive_nonlocal_stateInit(constitutive_state0(1,1:iMax,1:eMax))
do e = 1_pInt,mesh_NcpElems ! loop over elements
myNgrains = homogenization_Ngrains(mesh_element(3,e))
forall(i = 1_pInt:FE_Nips(FE_geomtype(mesh_element(2,e))), g = 1_pInt:myNgrains)
constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p
constitutive_state(g,i,e)%p = constitutive_state0(g,i,e)%p ! need to be defined for first call of constitutive_microstructure in crystallite_init
endforall
enddo
!----- write out state size file----------------
call IO_write_jobBinaryIntFile(777,'sizeStateConst', size(constitutive_sizeState))
write (777,rec=1) constitutive_sizeState
close(777)
!-----------------------------------------------
constitutive_maxSizeState = maxval(constitutive_sizeState)
constitutive_maxSizeDotState = maxval(constitutive_sizeDotState)
constitutive_maxSizePostResults = maxval(constitutive_sizePostResults)
2009-03-06 15:32:36 +05:30
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) then
write(6,'(a32,1x,7(i8,1x))') 'constitutive_state0: ', shape(constitutive_state0)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_partionedState0: ', shape(constitutive_partionedState0)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_subState0: ', shape(constitutive_subState0)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_state: ', shape(constitutive_state)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_aTolState: ', shape(constitutive_aTolState)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_dotState: ', shape(constitutive_dotState)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_deltaState: ', shape(constitutive_deltaState)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_sizeState: ', shape(constitutive_sizeState)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_sizeDotState: ', shape(constitutive_sizeDotState)
write(6,'(a32,1x,7(i8,1x))') 'constitutive_sizePostResults: ', shape(constitutive_sizePostResults)
write(6,*)
write(6,'(a32,1x,7(i8,1x))') 'maxSizeState: ', constitutive_maxSizeState
write(6,'(a32,1x,7(i8,1x))') 'maxSizeDotState: ', constitutive_maxSizeDotState
write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', constitutive_maxSizePostResults
endif
call flush(6)
2009-03-06 15:32:36 +05:30
end subroutine constitutive_init
2009-03-06 15:32:36 +05:30
!*********************************************************************
!* This function returns the homogenized elacticity matrix *
!* INPUT: *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
pure function constitutive_homogenizedC(ipc,ip,el)
use prec, only: pReal
use material, only: phase_plasticity,material_phase
use constitutive_none
2009-03-06 15:32:36 +05:30
use constitutive_j2
use constitutive_phenopowerlaw
use constitutive_titanmod
use constitutive_dislotwin
use constitutive_nonlocal
implicit none
integer(pInt), intent(in) :: ipc,ip,el
real(pReal), dimension(6,6) :: constitutive_homogenizedC
2009-03-06 15:32:36 +05:30
select case (phase_plasticity(material_phase(ipc,ip,el)))
case (constitutive_none_label)
constitutive_homogenizedC = constitutive_none_homogenizedC(constitutive_state,ipc,ip,el)
2009-03-05 20:06:01 +05:30
case (constitutive_j2_label)
constitutive_homogenizedC = constitutive_j2_homogenizedC(constitutive_state,ipc,ip,el)
case (constitutive_phenopowerlaw_label)
constitutive_homogenizedC = constitutive_phenopowerlaw_homogenizedC(constitutive_state,ipc,ip,el)
case (constitutive_titanmod_label)
constitutive_homogenizedC = constitutive_titanmod_homogenizedC(constitutive_state,ipc,ip,el)
case (constitutive_dislotwin_label)
constitutive_homogenizedC = constitutive_dislotwin_homogenizedC(constitutive_state,ipc,ip,el)
case (constitutive_nonlocal_label)
constitutive_homogenizedC = constitutive_nonlocal_homogenizedC(constitutive_state,ipc,ip,el)
end select
2009-03-06 15:32:36 +05:30
end function constitutive_homogenizedC
2009-03-06 15:32:36 +05:30
!*********************************************************************
!* This function returns the average length of Burgers vector *
!* INPUT: *
!* - state : state variables *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
function constitutive_averageBurgers(ipc,ip,el)
use prec, only: pReal
use material, only: phase_plasticity,material_phase
use constitutive_none
use constitutive_j2
use constitutive_phenopowerlaw
use constitutive_titanmod
use constitutive_dislotwin
use constitutive_nonlocal
implicit none
integer(pInt) :: ipc,ip,el
real(pReal) :: constitutive_averageBurgers
select case (phase_plasticity(material_phase(ipc,ip,el)))
case (constitutive_none_label)
constitutive_averageBurgers = 2.5e-10_pReal !constitutive_none_averageBurgers(constitutive_state,ipc,ip,el)
case (constitutive_j2_label)
constitutive_averageBurgers = 2.5e-10_pReal !constitutive_j2_averageBurgers(constitutive_state,ipc,ip,el)
case (constitutive_phenopowerlaw_label)
constitutive_averageBurgers = 2.5e-10_pReal !constitutive_phenopowerlaw_averageBurgers(constitutive_state,ipc,ip,el)
case (constitutive_titanmod_label)
constitutive_averageBurgers = 2.5e-10_pReal !constitutive_titanmod_averageBurgers(constitutive_state,ipc,ip,el)
case (constitutive_dislotwin_label)
constitutive_averageBurgers = 2.5e-10_pReal !constitutive_dislotwin_averageBurgers(constitutive_state,ipc,ip,el)
case (constitutive_nonlocal_label)
constitutive_averageBurgers = 2.5e-10_pReal !constitutive_nonlocal_averageBurgers(constitutive_state,ipc,ip,el)
end select
end function constitutive_averageBurgers
2009-03-06 15:32:36 +05:30
!*********************************************************************
!* This function calculates from state needed variables *
!*********************************************************************
subroutine constitutive_microstructure(Temperature, Fe, Fp, ipc, ip, el)
use prec, only: pReal
use material, only: phase_plasticity, &
material_phase
use constitutive_none, only: constitutive_none_label, &
constitutive_none_microstructure
use constitutive_j2, only: constitutive_j2_label, &
constitutive_j2_microstructure
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, &
constitutive_phenopowerlaw_microstructure
use constitutive_titanmod, only: constitutive_titanmod_label, &
constitutive_titanmod_microstructure
use constitutive_dislotwin, only: constitutive_dislotwin_label, &
constitutive_dislotwin_microstructure
use constitutive_nonlocal, only: constitutive_nonlocal_label, &
constitutive_nonlocal_microstructure
2009-03-06 15:32:36 +05:30
implicit none
!*** input variables ***!
integer(pInt), intent(in):: ipc, & ! component-ID of current integration point
ip, & ! current integration point
el ! current element
real(pReal), intent(in) :: Temperature
real(pReal), dimension(3,3), intent(in) :: Fe, & ! elastic deformation gradient
Fp ! plastic deformation gradient
2009-03-06 15:32:36 +05:30
!*** output variables ***!
!*** local variables ***!
select case (phase_plasticity(material_phase(ipc,ip,el)))
case (constitutive_none_label)
call constitutive_none_microstructure(Temperature,constitutive_state,ipc,ip,el)
case (constitutive_j2_label)
call constitutive_j2_microstructure(Temperature,constitutive_state,ipc,ip,el)
case (constitutive_phenopowerlaw_label)
call constitutive_phenopowerlaw_microstructure(Temperature,constitutive_state,ipc,ip,el)
case (constitutive_titanmod_label)
call constitutive_titanmod_microstructure(Temperature,constitutive_state,ipc,ip,el)
case (constitutive_dislotwin_label)
call constitutive_dislotwin_microstructure(Temperature,constitutive_state,ipc,ip,el)
case (constitutive_nonlocal_label)
call constitutive_nonlocal_microstructure(constitutive_state, Temperature, Fe, Fp, ipc, ip, el)
end select
2009-03-06 15:32:36 +05:30
endsubroutine
2009-03-06 15:32:36 +05:30
!*********************************************************************
!* This subroutine contains the constitutive equation for *
!* calculating the velocity gradient *
!*********************************************************************
subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar, Tstar_v, Temperature, ipc, ip, el)
2009-03-06 15:32:36 +05:30
use prec, only: pReal
use material, only: phase_plasticity, &
material_phase
use constitutive_none, only: constitutive_none_label, &
constitutive_none_LpAndItsTangent
use constitutive_j2, only: constitutive_j2_label, &
constitutive_j2_LpAndItsTangent
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, &
constitutive_phenopowerlaw_LpAndItsTangent
use constitutive_titanmod, only: constitutive_titanmod_label, &
constitutive_titanmod_LpAndItsTangent
use constitutive_dislotwin, only: constitutive_dislotwin_label, &
constitutive_dislotwin_LpAndItsTangent
use constitutive_nonlocal, only: constitutive_nonlocal_label, &
constitutive_nonlocal_LpAndItsTangent
implicit none
!*** input variables ***!
integer(pInt), intent(in):: ipc, & ! component-ID of current integration point
ip, & ! current integration point
el ! current element
real(pReal), intent(in) :: Temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola-Kirchhoff stress
!*** output variables ***!
real(pReal), dimension(3,3), intent(out) :: Lp ! plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar ! derivative of Lp with respect to Tstar (4th-order tensor)
!*** local variables ***!
select case (phase_plasticity(material_phase(ipc,ip,el)))
case (constitutive_none_label)
call constitutive_none_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_j2_label)
call constitutive_j2_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_phenopowerlaw_label)
call constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_titanmod_label)
call constitutive_titanmod_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_dislotwin_label)
call constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_nonlocal_label)
call constitutive_nonlocal_LpAndItsTangent(Lp, dLp_dTstar, Tstar_v, Temperature, constitutive_state(ipc,ip,el), ipc, ip, el)
end select
2009-03-06 15:32:36 +05:30
end subroutine constitutive_LpAndItsTangent
2009-03-06 15:32:36 +05:30
!************************************************************************
!* This subroutine returns the 2nd Piola-Kirchhoff stress tensor and *
!* its tangent with respect to the elastic deformation gradient *
!* OUTPUT: *
!* - T : 2nd Piola-Kirchhoff stress tensor *
!* - dT_dFe : derivative of 2nd Piola-Kirchhoff stress tensor *
!* with respect to the elastic deformation gradient *
!* INPUT: *
!* - Fe : elastic deformation gradient *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!************************************************************************
pure subroutine constitutive_TandItsTangent(T, dT_dFe, Fe, ipc, ip, el)
use prec, only: pReal
use material, only: phase_elasticity,material_phase
implicit none
integer(pInt), intent(in) :: ipc,ip,el
real(pReal), dimension(3,3), intent(in) :: Fe
real(pReal), dimension(3,3), intent(out) :: T
real(pReal), dimension(3,3,3,3), intent(out) :: dT_dFe
select case (phase_elasticity(material_phase(ipc,ip,el)))
case (constitutive_hooke_label)
call constitutive_hooke_TandItsTangent(T, dT_dFe, Fe, ipc, ip, el)
end select
end subroutine constitutive_TandItsTangent
!************************************************************************
!* This subroutine returns the 2nd Piola-Kirchhoff stress tensor and *
!* its tangent with respect to the elastic deformation gradient *
!* OUTPUT: *
!* - T : 2nd Piola-Kirchhoff stress tensor *
!* - dT_dFe : derivative of 2nd Piola-Kirchhoff stress tensor *
!* with respect to the elastic deformation gradient *
!* INPUT: *
!* - Fe : elastic deformation gradient *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!************************************************************************
pure subroutine constitutive_hooke_TandItsTangent(T, dT_dFe, Fe, g, i, e)
use prec, only: &
pReal
use math, only : &
math_mul33x33, &
math_mul3333xx33, &
math_Mandel66to3333, &
math_transpose33, &
math_I3
implicit none
!* Definition of variables
integer(pInt), intent(in) :: g, i, e
real(pReal), dimension(3,3), intent(in) :: Fe
integer(pInt) :: p, o
real(pReal), dimension(3,3), intent(out) :: T
real(pReal), dimension(3,3,3,3), intent(out) :: dT_dFe
real(pReal), dimension(3,3) :: FeT
real(pReal), dimension(3,3,3,3) :: C
!* get elasticity tensor
C = math_Mandel66to3333(constitutive_homogenizedC(g,i,e))
FeT = math_transpose33(Fe)
T = 0.5_pReal*math_mul3333xx33(C,math_mul33x33(FeT,Fe)-math_I3)
forall (o=1_pInt:3_pInt, p=1_pInt:3_pInt) dT_dFe(o,p,1:3,1:3) = math_mul33x33(C(o,p,1:3,1:3), FeT) ! dT*_ij/dFe_kl
end subroutine constitutive_hooke_TandItsTangent
!*********************************************************************
!* This subroutine contains the constitutive equation for *
!* calculating the rate of change of microstructure *
!*********************************************************************
2012-11-30 00:14:00 +05:30
subroutine constitutive_collectDotState(Tstar_v, Fe, Fp, Temperature, subdt, subfrac, ipc, ip, el)
use prec, only: pReal, pLongInt
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
use debug, only: debug_cumDotStateCalls, &
debug_cumDotStateTicks, &
debug_level, &
debug_constitutive, &
debug_levelBasic
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use material, only: phase_plasticity, &
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
material_phase, &
homogenization_maxNgrains
use constitutive_none, only: constitutive_none_dotState, &
constitutive_none_label
use constitutive_j2, only: constitutive_j2_dotState, &
constitutive_j2_label
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_dotState, &
constitutive_phenopowerlaw_label
use constitutive_titanmod, only: constitutive_titanmod_dotState, &
constitutive_titanmod_label
use constitutive_dislotwin, only: constitutive_dislotwin_dotState, &
constitutive_dislotwin_label
use constitutive_nonlocal, only: constitutive_nonlocal_dotState, &
constitutive_nonlocal_label
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & ! component-ID of current integration point
ip, & ! current integration point
el ! current element
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
real(pReal), intent(in) :: Temperature, &
subdt ! timestep
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
subfrac ! subfraction of timestep
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe, & ! elastic deformation gradient
Fp ! plastic deformation gradient
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
real(pReal), dimension(6), intent(in) :: &
Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!*** local variables
integer(pLongInt) tick, tock, &
tickrate, &
maxticks
if (iand(debug_level(debug_constitutive), debug_levelBasic) /= 0_pInt) then
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
endif
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
select case (phase_plasticity(material_phase(ipc,ip,el)))
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
case (constitutive_none_label)
constitutive_dotState(ipc,ip,el)%p = constitutive_none_dotState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
case (constitutive_j2_label)
constitutive_dotState(ipc,ip,el)%p = constitutive_j2_dotState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_phenopowerlaw_label)
constitutive_dotState(ipc,ip,el)%p = constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_titanmod_label)
constitutive_dotState(ipc,ip,el)%p = constitutive_titanmod_dotState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
case (constitutive_dislotwin_label)
constitutive_dotState(ipc,ip,el)%p = constitutive_dislotwin_dotState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_nonlocal_label)
constitutive_dotState(ipc,ip,el)%p = constitutive_nonlocal_dotState(Tstar_v, Fe, Fp, Temperature, constitutive_state, &
2012-11-30 00:14:00 +05:30
constitutive_state0, subdt, subfrac, ipc, ip, el)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
end select
2009-03-06 15:32:36 +05:30
if (iand(debug_level(debug_constitutive), debug_levelBasic) /= 0_pInt) then
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
!$OMP CRITICAL (debugTimingDotState)
debug_cumDotStateCalls = debug_cumDotStateCalls + 1_pInt
debug_cumDotStateTicks = debug_cumDotStateTicks + tock-tick
!$OMP FLUSH (debug_cumDotStateTicks)
if (tock < tick) debug_cumDotStateTicks = debug_cumDotStateTicks + maxticks
!$OMP END CRITICAL (debugTimingDotState)
endif
2009-03-06 15:32:36 +05:30
end subroutine constitutive_collectDotState
2009-03-06 15:32:36 +05:30
!*********************************************************************
!* This subroutine contains the constitutive equation for *
!* calculating the incremental change of microstructure based on the *
!* current stress and state *
!*********************************************************************
subroutine constitutive_collectDeltaState(Tstar_v, Temperature, ipc, ip, el)
use prec, only: pReal, pLongInt
use debug, only: debug_cumDeltaStateCalls, &
debug_cumDeltaStateTicks, &
debug_level, &
debug_constitutive, &
debug_levelBasic
use mesh, only: mesh_NcpElems, &
mesh_maxNips
use material, only: phase_plasticity, &
material_phase, &
homogenization_maxNgrains
use constitutive_none, only: constitutive_none_deltaState, &
constitutive_none_label
use constitutive_j2, only: constitutive_j2_deltaState, &
constitutive_j2_label
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_deltaState, &
constitutive_phenopowerlaw_label
use constitutive_titanmod, only: constitutive_titanmod_deltaState, &
constitutive_titanmod_label
use constitutive_dislotwin, only: constitutive_dislotwin_deltaState, &
constitutive_dislotwin_label
use constitutive_nonlocal, only: constitutive_nonlocal_deltaState, &
constitutive_nonlocal_label
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & ! component-ID of current integration point
ip, & ! current integration point
el ! current element
real(pReal), intent(in) :: Temperature
real(pReal), dimension(6), intent(in) :: &
Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
!*** local variables
integer(pLongInt) tick, tock, &
tickrate, &
maxticks
if (iand(debug_level(debug_constitutive), debug_levelBasic) /= 0_pInt) then
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
endif
select case (phase_plasticity(material_phase(ipc,ip,el)))
case (constitutive_none_label)
constitutive_deltaState(ipc,ip,el)%p = constitutive_none_deltaState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_j2_label)
constitutive_deltaState(ipc,ip,el)%p = constitutive_j2_deltaState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_phenopowerlaw_label)
constitutive_deltaState(ipc,ip,el)%p = constitutive_phenopowerlaw_deltaState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_titanmod_label)
constitutive_deltaState(ipc,ip,el)%p = constitutive_titanmod_deltaState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_dislotwin_label)
constitutive_deltaState(ipc,ip,el)%p = constitutive_dislotwin_deltaState(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_nonlocal_label)
call constitutive_nonlocal_deltaState(constitutive_deltaState(ipc,ip,el),constitutive_state, Tstar_v,Temperature,ipc,ip,el)
end select
if (iand(debug_level(debug_constitutive), debug_levelBasic) /= 0_pInt) then
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
!$OMP CRITICAL (debugTimingDeltaState)
debug_cumDeltaStateCalls = debug_cumDeltaStateCalls + 1_pInt
debug_cumDeltaStateTicks = debug_cumDeltaStateTicks + tock-tick
!$OMP FLUSH (debug_cumDeltaStateTicks)
if (tock < tick) debug_cumDeltaStateTicks = debug_cumDeltaStateTicks + maxticks
!$OMP END CRITICAL (debugTimingDeltaState)
endif
end subroutine constitutive_collectDeltaState
!*********************************************************************
!* This subroutine contains the constitutive equation for *
!* calculating the rate of change of microstructure *
!*********************************************************************
function constitutive_dotTemperature(Tstar_v,Temperature,ipc,ip,el)
use prec, only: pReal, pLongInt
use debug, only: debug_cumDotTemperatureCalls, &
debug_cumDotTemperatureTicks, &
debug_level, &
debug_constitutive, &
debug_levelBasic
use material, only: phase_plasticity, &
material_phase
use constitutive_none, only: constitutive_none_dotTemperature, &
constitutive_none_label
use constitutive_j2, only: constitutive_j2_dotTemperature, &
constitutive_j2_label
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_dotTemperature, &
constitutive_phenopowerlaw_label
use constitutive_titanmod, only: constitutive_titanmod_dotTemperature, &
constitutive_titanmod_label
use constitutive_dislotwin, only: constitutive_dislotwin_dotTemperature, &
constitutive_dislotwin_label
use constitutive_nonlocal, only: constitutive_nonlocal_dotTemperature, &
constitutive_nonlocal_label
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & ! component-ID of current integration point
ip, & ! current integration point
el ! current element
real(pReal), intent(in) :: Temperature
real(pReal), dimension(6), intent(in) :: &
Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
!*** output variables ***!
real(pReal) constitutive_dotTemperature ! evolution of temperature
!*** local variables
integer(pLongInt) tick, tock, &
tickrate, &
maxticks
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) then
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
endif
select case (phase_plasticity(material_phase(ipc,ip,el)))
case (constitutive_none_label)
constitutive_dotTemperature = constitutive_none_dotTemperature(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_j2_label)
constitutive_dotTemperature = constitutive_j2_dotTemperature(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_phenopowerlaw_label)
constitutive_dotTemperature = constitutive_phenopowerlaw_dotTemperature(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_titanmod_label)
constitutive_dotTemperature = constitutive_titanmod_dotTemperature(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_dislotwin_label)
constitutive_dotTemperature = constitutive_dislotwin_dotTemperature(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
case (constitutive_nonlocal_label)
constitutive_dotTemperature = constitutive_nonlocal_dotTemperature(Tstar_v,Temperature,constitutive_state,ipc,ip,el)
end select
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) then
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
!$OMP CRITICAL (debugTimingDotTemperature)
debug_cumDotTemperatureCalls = debug_cumDotTemperatureCalls + 1_pInt
debug_cumDotTemperatureTicks = debug_cumDotTemperatureTicks + tock-tick
!$OMP FLUSH (debug_cumDotTemperatureTicks)
if (tock < tick) debug_cumDotTemperatureTicks = debug_cumDotTemperatureTicks + maxticks
!$OMP END CRITICAL (debugTimingDotTemperature)
endif
end function constitutive_dotTemperature
!*********************************************************************
!* return array of constitutive results *
!* INPUT: *
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
!* - dt : current time increment *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
function constitutive_postResults(Tstar_v, Fe, Temperature, dt, ipc, ip, el)
use prec, only: pReal
use mesh, only: mesh_NcpElems, &
mesh_maxNips
use material, only: phase_plasticity, &
material_phase, &
homogenization_maxNgrains
use constitutive_none, only: constitutive_none_postResults, &
constitutive_none_label
use constitutive_j2, only: constitutive_j2_postResults, &
constitutive_j2_label
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_postResults, &
constitutive_phenopowerlaw_label
use constitutive_titanmod, only: constitutive_titanmod_postResults, &
constitutive_titanmod_label
use constitutive_dislotwin, only: constitutive_dislotwin_postResults, &
constitutive_dislotwin_label
use constitutive_nonlocal, only: constitutive_nonlocal_postResults, &
constitutive_nonlocal_label
2009-03-06 15:32:36 +05:30
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & ! component-ID of current integration point
ip, & ! current integration point
el ! current element
real(pReal), intent(in) :: Temperature, &
dt ! timestep
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe ! elastic deformation gradient
real(pReal), dimension(6), intent(in) :: &
Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
2009-03-06 15:32:36 +05:30
!*** output variables ***!
real(pReal), dimension(constitutive_sizePostResults(ipc,ip,el)) :: constitutive_postResults
!*** local variables
2009-03-06 15:32:36 +05:30
constitutive_postResults = 0.0_pReal
select case (phase_plasticity(material_phase(ipc,ip,el)))
case (constitutive_none_label)
constitutive_postResults = constitutive_none_postResults(Tstar_v,Temperature,dt,constitutive_state,ipc,ip,el)
case (constitutive_j2_label)
constitutive_postResults = constitutive_j2_postResults(Tstar_v,Temperature,dt,constitutive_state,ipc,ip,el)
case (constitutive_phenopowerlaw_label)
constitutive_postResults = constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,constitutive_state,ipc,ip,el)
case (constitutive_titanmod_label)
constitutive_postResults = constitutive_titanmod_postResults(Tstar_v,Temperature,dt,constitutive_state,ipc,ip,el)
case (constitutive_dislotwin_label)
constitutive_postResults = constitutive_dislotwin_postResults(Tstar_v,Temperature,dt,constitutive_state,ipc,ip,el)
case (constitutive_nonlocal_label)
constitutive_postResults = constitutive_nonlocal_postResults(Tstar_v, Fe, Temperature, dt, constitutive_state, &
constitutive_dotstate(ipc,ip,el), ipc, ip, el)
end select
end function constitutive_postResults
2009-03-06 15:32:36 +05:30
end module constitutive