DAMASK_EICMD/code/mpie_spectral.f90

523 lines
24 KiB
Fortran
Raw Normal View History

!* $Id$
2010-06-08 15:38:15 +05:30
!********************************************************************
! Material subroutine for BVP solution using spectral method
!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts
! D.D. Tjahjanto
! C. Kords
! M. Diehl
! R. Lebensohn
!
! MPI fuer Eisenforschung, Duesseldorf
!
!********************************************************************
! Usage:
! - start program with mpie_spectral PathToMeshFile/NameOfMesh.mesh
! PathToLoadFile/NameOfLoadFile.load
! - PathToLoadFile will be the working directory
! - make sure the file "material.config" exists in the working
! directory
!********************************************************************
2010-06-08 15:38:15 +05:30
program mpie_spectral
!********************************************************************
2010-06-08 15:38:15 +05:30
use mpie_interface
use prec, only: pInt, pReal
use IO
use math
use CPFEM, only: CPFEM_general
2010-06-08 15:38:15 +05:30
implicit none
include 'fftw3.f' !header file for fftw3 (declaring variables). Library file is also needed
! variables to read from loadcase and mesh file
real(pReal), dimension(9) :: valuevector ! stores information temporarily from loadcase file
integer(pInt), parameter :: maxNchunksInput = 24 ! 4 identifiers, 18 values for the matrices and 2 scalars
integer(pInt), dimension (1+maxNchunksInput*2) :: posInput
integer(pInt), parameter :: maxNchunksMesh = 7 ! 4 identifiers, 3 values
integer(pInt), dimension (1+2*maxNchunksMesh) :: posMesh
integer(pInt) unit, N_l, N_s, N_t, N_n ! numbers of identifiers
character(len=1024) path, line
logical gotResolution,gotDimension,gotHomogenization
logical, dimension(9) :: bc_maskvector
! variables storing information from loadcase file
real(pReal) timeinc
real(pReal), dimension (:,:,:), allocatable :: bc_velocityGrad, &
bc_stress ! velocity gradient and stress BC
real(pReal), dimension(:), allocatable :: bc_timeIncrement ! length of increment
integer(pInt) N_Loadcases, steps
integer(pInt), dimension(:), allocatable :: bc_steps ! number of steps
logical, dimension(:,:,:,:), allocatable :: bc_mask ! mask of boundary conditions
! variables storing information from mesh file
real(pReal) wgt
real(pReal), dimension(3) :: meshdimension
integer(pInt) homog, prodnn
integer(pInt), dimension(3) :: resolution
! stress etc.
real(pReal), dimension(3,3) :: pstress, defgradmacro, pstress_av, defgrad_av, temp33_Real
real(pReal), dimension(3,3,3,3) :: dPdF, c0, s0
real(pReal), dimension(6) :: cstress ! cauchy stress in Mandel notation (not needed)
real(pReal), dimension(6,6) :: dsde
real(pReal), dimension(9,9) :: s099
real(pReal), dimension(:,:,:), allocatable :: ddefgrad
real(pReal), dimension(:,:,:,:,:), allocatable :: pstress_field, defgrad, defgradold
! variables storing information for spectral method
complex(pReal), dimension(:,:,:,:,:), allocatable :: workfft
complex(pReal), dimension(3,3) :: temp33_Complex
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat
real(pReal), dimension(:,:,:,:,:), allocatable :: xinormdyad
real(pReal), dimension(:,:,:,:), allocatable :: xi
integer(pInt), dimension(3) :: k_s
integer*8, dimension(2,3,3) :: plan_fft
! convergency etc.
real(pReal) error, err_div, sigma0
integer(pInt) itmax, ierr
logical errmatinv
! loop variables etc.
real(pReal) guessmode ! flip-flop to guess defgrad fluctuation field evolution
integer(pInt) i, j, k, l, m, n, p
integer(pInt) loadcase, ielem, iter, calcmode
real(pReal) temperature ! not used, but needed
!gmsh output
character(len=1024) :: nriter
character(len=1024) :: nrstep
real(pReal), dimension(:,:,:,:), allocatable :: displacement
!gmsh output
!Initializing
bc_maskvector = ''
unit = 234_pInt
N_l = 0_pInt
N_s = 0_pInt
N_t = 0_pInt
N_n = 0_pInt
resolution = 1_pInt; meshdimension = 0.0_pReal
xi = 0.0_pReal
error = 1.0e-5_pReal
itmax = 100_pInt
temperature = 300.0_pReal
gotResolution =.false.; gotDimension =.false.; gotHomogenization = .false.
if (IargC() /= 2) call IO_error(102) ! check for correct number of given arguments
! Reading the loadcase file and assign variables
path = getLoadcaseName()
print*,'Loadcase: ',trim(path)
print*,'Workingdir: ',trim(getSolverWorkingDirectoryName())
if (.not. IO_open_file(unit,path)) call IO_error(45,ext_msg = path)
rewind(unit)
do
read(unit,'(a1024)',END = 101) line
if (IO_isBlank(line)) cycle ! skip empty lines
posInput = IO_stringPos(line,maxNchunksInput)
do i = 1, maxNchunksInput, 1
select case (IO_lc(IO_stringValue(line,posInput,i)))
case('l','velocitygrad')
N_l = N_l+1
case('s','stress')
N_s = N_s+1
case('t','time','delta')
N_t = N_t+1
case('n','incs','increments','steps')
N_n = N_n+1
end select
enddo ! count all identifiers to allocate memory and do sanity check
if ((N_l /= N_s).or.(N_s /= N_t).or.(N_t /= N_n)) & ! sanity check
call IO_error(46,ext_msg = path) ! error message for incomplete input file
enddo
! allocate memory depending on lines in input file
101 N_Loadcases = N_l
allocate (bc_velocityGrad(3,3,N_Loadcases)); bc_velocityGrad = 0.0_pReal
allocate (bc_stress(3,3,N_Loadcases)); bc_stress = 0.0_pReal
allocate (bc_mask(3,3,2,N_Loadcases)); bc_mask = .false.
allocate (bc_timeIncrement(N_Loadcases)); bc_timeIncrement = 0.0_pReal
allocate (bc_steps(N_Loadcases)); bc_steps = 0_pInt
rewind(unit)
i = 0_pInt
do
read(unit,'(a1024)',END = 200) line
if (IO_isBlank(line)) cycle ! skip empty lines
i = i + 1
posInput = IO_stringPos(line,maxNchunksInput)
do j = 1,maxNchunksInput,2
select case (IO_lc(IO_stringValue(line,posInput,j)))
case('l','velocitygrad')
valuevector = 0.0_pReal
forall (k = 1:9) bc_maskvector(k) = IO_stringValue(line,posInput,j+k) /= '#'
do k = 1,9
if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line,posInput,j+k) ! assign values for the velocity gradient matrix
enddo
bc_mask(:,:,1,i) = reshape(bc_maskvector,(/3,3/))
bc_velocityGrad(:,:,i) = reshape(valuevector,(/3,3/))
case('s','stress')
valuevector = 0.0_pReal
forall (k = 1:9) bc_maskvector(k) = IO_stringValue(line,posInput,j+k) /= '#'
do k = 1,9
if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line,posInput,j+k) ! assign values for the bc_stress matrix
enddo
bc_mask(:,:,2,i) = reshape(bc_maskvector,(/3,3/))
bc_stress(:,:,i) = reshape(valuevector,(/3,3/))
case('t','time','delta') ! increment time
bc_timeIncrement(i) = IO_floatValue(line,posInput,j+1)
case('n','incs','increments','steps') ! bc_steps
bc_steps(i) = IO_intValue(line,posInput,j+1)
end select
enddo; enddo
200 close(unit)
do i = 1, N_Loadcases
if (any(bc_mask(:,:,1,i) == bc_mask(:,:,2,i))) call IO_error(47,i) ! bc_mask consistency
print '(a,/,3(3(f12.6,x)/))','L',bc_velocityGrad(:,:,i)
print '(a,/,3(3(f12.6,x)/))','bc_stress',bc_stress(:,:,i)
print '(a,/,3(3(l,x)/))','bc_mask for velocitygrad',bc_mask(:,:,1,i)
print '(a,/,3(3(l,x)/))','bc_mask for stress',bc_mask(:,:,2,i)
print *,'time',bc_timeIncrement(i)
print *,'incs',bc_steps(i)
print *, ''
enddo
!read header of mesh file to get the information needed before the complete mesh file is intepretated by mesh.f90
path = getSolverJobName()
print*,'JobName: ',trim(path)
if (.not. IO_open_file(unit,trim(path)//InputFileExtension)) call IO_error(101,ext_msg = path)
rewind(unit)
do
read(unit,'(a1024)',END = 100) line
if (IO_isBlank(line)) cycle ! skip empty lines
posMesh = IO_stringPos(line,maxNchunksMesh)
select case ( IO_lc(IO_StringValue(line,posMesh,1)) )
case ('dimension')
gotDimension = .true.
do i = 2,6,2
select case (IO_lc(IO_stringValue(line,posMesh,i)))
case('x')
meshdimension(1) = IO_floatValue(line,posMesh,i+1)
case('y')
meshdimension(2) = IO_floatValue(line,posMesh,i+1)
case('z')
meshdimension(3) = IO_floatValue(line,posMesh,i+1)
end select
enddo
case ('homogenization')
gotHomogenization = .true.
homog = IO_intValue(line,posMesh,2)
case ('resolution')
gotResolution = .true.
do i = 2,6,2
select case (IO_lc(IO_stringValue(line,posMesh,i)))
case('a')
resolution(1) = 2**IO_intValue(line,posMesh,i+1)
case('b')
resolution(2) = 2**IO_intValue(line,posMesh,i+1)
case('c')
resolution(3) = 2**IO_intValue(line,posMesh,i+1)
end select
enddo
end select
if (gotDimension .and. gotHomogenization .and. gotResolution) exit
enddo
100 close(unit)
print '(a,/,i3,i3,i3)','resolution a b c', resolution
print '(a,/,f6.2,f6.2,f6.2)','dimension x y z', meshdimension
print *,'homogenization',homog
print *, ''
2010-06-08 15:38:15 +05:30
allocate (workfft(resolution(1)/2+1,resolution(2),resolution(3),3,3)); workfft = 0.0_pReal
allocate (gamma_hat(resolution(1)/2+1,resolution(2),resolution(3),3,3,3,3)); gamma_hat = 0.0_pReal
allocate (xinormdyad(resolution(1)/2+1,resolution(2),resolution(3),3,3)); xinormdyad = 0.0_pReal
allocate (xi(resolution(1)/2+1,resolution(2),resolution(3),3)); xi = 0.0_pReal
allocate (pstress_field(resolution(1),resolution(2),resolution(3),3,3)); pstress_field = 0.0_pReal
allocate (displacement(resolution(1),resolution(2),resolution(3),3)); displacement = 0.0_pReal
allocate (defgrad(resolution(1),resolution(2),resolution(3),3,3)); defgrad = 0.0_pReal
allocate (defgradold(resolution(1),resolution(2),resolution(3),3,3)); defgradold = 0.0_pReal
allocate (ddefgrad(resolution(1),resolution(2),resolution(3))); ddefgrad = 0.0_pReal
! Initialization of fftw (see manual on fftw.org for more details)
call dfftw_init_threads(ierr)
call dfftw_plan_with_nthreads(4)
do m = 1,3; do n = 1,3
call dfftw_plan_dft_r2c_3d(plan_fft(1,m,n),resolution(1),resolution(2),resolution(3),&
pstress_field(:,:,:,m,n), workfft(:,:,:,m,n), FFTW_PATIENT)
call dfftw_plan_dft_c2r_3d(plan_fft(2,m,n),resolution(1),resolution(2),resolution(3),&
workfft(:,:,:,m,n), ddefgrad(:,:,:), FFTW_PATIENT)
enddo; enddo
prodnn = resolution(1)*resolution(2)*resolution(3)
wgt = 1_pReal/real(prodnn, pReal)
defgradmacro = math_I3
! Initialization of CPFEM_general (= constitutive law) and of deformation gradient field
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
defgradold(i,j,k,:,:) = math_I3 !no deformation at the beginning
defgrad(i,j,k,:,:) = math_I3
ielem = ielem +1
call CPFEM_general(2,math_I3,math_I3,temperature,0.0_pReal,ielem,1_pInt,cstress,dsde,pstress,dPdF)
enddo; enddo; enddo
!calculation of xinormdyad (needed to calculate gamma_hat) and xi (waves, needed for proof of equilibrium)
do k = 1, resolution(3)
k_s(3) = k-1
if(k > resolution(3)/2+1) k_s(3) = k_s(3)-resolution(3)
do j = 1, resolution(2)
k_s(2) = j-1
if(j > resolution(2)/2+1) k_s(2) = k_s(2)-resolution(2)
do i = 1, resolution(1)/2+1
k_s(1) = i-1
xi(i,j,k,3) = 0.0_pReal
if(resolution(3) > 1) xi(i,j,k,3) = real(k_s(3), pReal)/meshdimension(3)
xi(i,j,k,2) = real(k_s(2), pReal)/meshdimension(2)
xi(i,j,k,1) = real(k_s(1), pReal)/meshdimension(1)
if (any(xi(i,j,k,:) /= 0.0_pReal)) then
do l = 1,3; do m = 1,3
xinormdyad(i,j,k, l,m) = xi(i,j,k, l)*xi(i,j,k, m)/sum(xi(i,j,k,:)**2)
enddo; enddo
endif
enddo; enddo; enddo
open(539,file='stress-strain.out')
! Initialization done
!*************************************************************
!Loop over loadcases defined in the loadcase file
do loadcase = 1, N_Loadcases
!*************************************************************
timeinc = bc_timeIncrement(loadcase)/bc_steps(loadcase)
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first step
!*************************************************************
! loop oper steps defined in input file for current loadcase
do steps = 1, bc_steps(loadcase)
!*************************************************************
defgradmacro = defgradmacro& ! update macroscopic displacement gradient (BC of defgrad)
+ math_mul33x33(bc_velocityGrad(:,:,loadcase), defgradmacro)*timeinc
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
temp33_Real = defgrad(i,j,k,:,:)
defgrad(i,j,k,:,:) = defgrad(i,j,k,:,:)& ! old fluctuations as guess for new step, no fluctuations for new loadcase
+ guessmode * (defgrad(i,j,k,:,:) - defgradold(i,j,k,:,:))&
+ (1.0_pReal-guessmode) * math_mul33x33(bc_velocityGrad(:,:,loadcase),defgradold(i,j,k,:,:))*timeinc
defgradold(i,j,k,:,:) = temp33_Real
enddo; enddo; enddo
guessmode = 1_pReal ! keep guessing along former trajectory during same loadcase
calcmode = 1_pInt
iter = 0_pInt
err_div= 2_pInt * error
!*************************************************************
! convergency loop
do while((iter <= itmax).and.(err_div > error))
iter = iter + 1
print '(A,I5.5,tr2,A,I5.5)', ' Step = ',steps,'Iteration = ',iter
!*************************************************************
err_div = 0.0_pReal; sigma0 = 0.0_pReal
pstress_av = 0.0_pReal; defgrad_av = 0.0_pReal
! Calculate stress field for current deformation gradient using CPFEM_general
print *, 'Update Stress Field'
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(3, defgradold(i,j,k,:,:), defgrad(i,j,k,:,:),&
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
enddo; enddo; enddo
c0 = 0.0_pReal
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(calcmode,& ! first element in first iteration retains calcMode 1, others get 2 (saves winding forward effort)
defgradold(i,j,k,:,:), defgrad(i,j,k,:,:),&
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
calcmode = 2
c0 = c0 + dPdF
pstress_field(i,j,k,:,:) = pstress
pstress_av = pstress_av + pstress ! average stress
enddo; enddo; enddo
pstress_av = pstress_av*wgt ! do the weighting of average stress
! Update gamma_hat with new reference stiffness and calculate new average compliance (for stress BC)
if(iter==1) then
call math_invert(9, math_plain3333to99(c0),s099,i, errmatinv)
if(errmatinv) call IO_error(45,ext_msg = "problem in c0 inversion") ! todo: change number and add message to io.f90 (and remove No. 48)
s0 = math_plain99to3333(s099) * real(prodnn, pReal)
c0 = c0 * wgt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1
temp33_Real = 0.0_pReal
do l = 1,3; do m = 1,3; do n = 1,3; do p = 1,3
temp33_Real(l,m) = temp33_Real(l,m) + c0(l,n,m,p) * xinormdyad(i,j,k, n,p)
enddo; enddo; enddo; enddo
temp33_Real = math_inv3x3(temp33_Real)
do l=1,3; do m=1,3; do n=1,3; do p=1,3
gamma_hat(i,j,k, l,m,n,p) = - temp33_Real(l,n) * xinormdyad(i,j,k, m,p)
enddo; enddo; enddo; enddo
enddo; enddo; enddo
endif
! Using the spectral method to calculate the change of deformation gradient, check divergence of stress field in fourier space
print *, 'Update Deformation Gradient Field'
do m = 1,3; do n = 1,3
call dfftw_execute_dft_r2c(plan_fft(1,m,n), pstress_field(:,:,:,m,n),workfft(:,:,:,m,n))
if(n == 3) sigma0 = max(sigma0, sum(abs(real(workfft(1,1,1,m,:))))) ! L infinity Norm of stress tensor
enddo; enddo
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1
err_div = err_div + (maxval(abs(math_mul33x3_complex(workfft(i,j,k,:,:),xi(i,j,k,:))))) ! L infinity Norm of div(stress)
temp33_Complex = .0_pReal
do m = 1,3; do n = 1,3
temp33_Complex(m,n) = sum(gamma_hat(i,j,k,m,n,:,:) * workfft(i,j,k,:,:))
enddo; enddo
workfft(i,j,k,:,:) = temp33_Complex(:,:)
enddo; enddo; enddo
err_div = err_div/(real(prodnn/resolution(1)*(resolution(1)/2+1)))/sigma0 !weighting of error
do m = 1,3; do n = 1,3
call dfftw_execute_dft_c2r(plan_fft(2,m,n), workfft(:,:,:,m,n),ddefgrad(:,:,:))
ddefgrad = ddefgrad * wgt
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + ddefgrad
enddo; enddo
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
defgrad_av= defgrad_av + defgrad(i,j,k,:,:)
enddo; enddo; enddo
defgrad_av = defgrad_av * wgt ! weight by number of FP
do m = 1,3; do n = 1,3
if(bc_mask(m,n,1,loadcase)) then ! adjust defgrad to fulfill displacement BC (defgradmacro)
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + (defgradmacro(m,n)-defgrad_av(m,n))
else ! adjust defgrad to fulfill stress BC
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + sum( s0(m,n,:,:)*(bc_stress(:,:,loadcase)-pstress_av(:,:)), &
mask = bc_mask(:,:,2,loadcase) )
endif
enddo; enddo
print '(2(a,E8.2))', ' Error = ',err_div,' Criteria = ', error
print '(A)', '---------------------------------------'
enddo ! end looping when convergency is achieved
write(539,'(E12.6,a,E12.6)'),defgrad_av(3,3)-1,' ',pstress_av(3,3)
print '(A,3(E10.4,tr2))', ' ', defgrad_av(1,:)
print '(A,3(E10.4,tr2))', ' Deformation Gradient: ', defgrad_av(2,:)
print '(A,3(E10.4,tr2))', ' ', defgrad_av(3,:)
print *, ''
print '(A,3(E10.4,tr2))', ' ', pstress_av(1,:)
print '(A,3(E10.4,tr2))', ' Piola-Kirchhoff Stress: ', pstress_av(2,:)
print '(A,3(E10.4,tr2))', ' ', pstress_av(3,:)
print '(A)', '************************************************************'
! Postprocessing (gsmh output)
temp33_Real(1,:) = 0.0_pReal; temp33_Real(1,3) = -(real(resolution(3))/meshdimension(3)) ! start just below origin
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
if((j==1).and.(i==1)) then
temp33_Real(1,:) = temp33_Real(1,:) + math_mul33x3(defgrad(i,j,k,:,:),(/0.0_pReal,0.0_pReal,(real(resolution(3))/meshdimension(3))/))
temp33_Real(2,:) = temp33_Real(1,:)
temp33_Real(3,:) = temp33_Real(1,:)
displacement(i,j,k,:) = temp33_Real(1,:)
else
if(i==1) then
temp33_Real(2,:) = temp33_Real(2,:) + math_mul33x3(defgrad(i,j,k,:,:),(/0.0_pReal,(real(resolution(2))/meshdimension(2)),0.0_pReal/))
temp33_Real(3,:) = temp33_Real(2,:)
displacement(i,j,k,:) = temp33_Real(2,:)
else
temp33_Real(3,:) = temp33_Real(3,:) + math_mul33x3(defgrad(i,j,k,:,:),(/(real(resolution(1))/meshdimension(1)),0.0_pReal,0.0_pReal/))
displacement(i,j,k,:) = temp33_Real(3,:)
endif
endif
enddo; enddo; enddo
write(nriter, *) iter; write(nrstep, *) steps
open(589,file = 'stress' //trim(adjustl(nrstep))//'-'//trim(adjustl(nriter))//'_cpfem.msh')
open(588,file = 'disgrad'//trim(adjustl(nrstep))//'-'//trim(adjustl(nriter))//'_cpfem.msh')
write(589, '(4(A, /), I10)'), '$MeshFormat', '2.1 0 8', '$EndMeshFormat', '$Nodes', prodnn
write(588, '(4(A, /), I10)'), '$MeshFormat', '2.1 0 8', '$EndMeshFormat', '$Nodes', prodnn
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
write(589, '(I10, 3(tr2, E12.6))'), ielem, displacement(i,j,k,:)
write(588, '(I10, 3(tr2, E12.6))'), ielem, displacement(i,j,k,:)
enddo; enddo; enddo
write(589, '(2(A, /), I10)'), '$EndNodes', '$Elements', prodnn
write(588, '(2(A, /), I10)'), '$EndNodes', '$Elements', prodnn
do i = 1, prodnn
write(589, '(I10, A, I10)'), i, ' 15 2 1 2', i
write(588, '(I10, A, I10)'), i, ' 15 2 1 2', i
enddo
write(589, '(A)'), '$EndElements'
write(588, '(A)'), '$EndElements'
write(589, '(8(A, /), I10)'), '$NodeData', '1','"'//trim(adjustl('stress'//trim(adjustl(nrstep))//&
'-'//trim(adjustl(nriter))//'_cpfem.msh'))//'"','1','0.0', '3', '0', '9', prodnn
write(588, '(8(A, /), I10)'), '$NodeData', '1','"'//trim(adjustl('disgrad'//trim(adjustl(nrstep))//&
'-'//trim(adjustl(nriter))//'_cpfem.msh'))//'"','1','0.0', '3', '0', '9', prodnn
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
write(589, '(i10, 9(tr2, E12.6))'), ielem, pstress_field(i,j,k,:,:)
write(588, '(i10, 9(tr2, E12.6))'), ielem, defgrad(i,j,k,:,:) - math_I3
enddo; enddo; enddo
write(589, *), '$EndNodeData'
write(588, *), '$EndNodeData'
close(589); close(588)
enddo ! end looping over steps in current loadcase
enddo ! end looping over loadcases
close(539)
do i=1,2; do m = 1,3; do n = 1,3
call dfftw_destroy_plan(plan_fft(i,m,n))
enddo; enddo; enddo
end program mpie_spectral
!********************************************************************
! quit subroutine to satisfy IO_error
!
!********************************************************************
2010-06-08 15:38:15 +05:30
subroutine quit(id)
use prec
implicit none
integer(pInt) id
stop
end subroutine