DAMASK_EICMD/trunk/material.f90

629 lines
29 KiB
Fortran
Raw Normal View History

!************************************
!* Module: MATERIAL *
!************************************
!* contains: *
!* - parsing of material.config *
!************************************
MODULE material
!*** Include other modules ***
use prec, only: pReal,pInt
implicit none
character(len=64), parameter :: material_configFile = 'material.config'
character(len=32), parameter :: material_partHomogenization = 'homogenization'
character(len=32), parameter :: material_partMicrostructure = 'microstructure'
character(len=32), parameter :: material_partPhase = 'phase'
character(len=32), parameter :: material_partTexture = 'texture'
!*************************************
!* Definition of material properties *
!*************************************
!* Number of materials
integer(pInt) material_Nhomogenization, & ! number of homogenizations
material_Nmicrostructure, & ! number of microstructures
material_Nphase, & ! number of phases
material_Ntexture, & ! number of textures
microstructure_maxNconstituents, & ! max number of constituents in any phase
homogenization_maxNgrains, & ! max number of grains in any homogenization
texture_maxNgauss, & ! max number of Gauss components in any texture
texture_maxNfiber ! max number of Fiber components in any texture
character(len=64), dimension(:), allocatable :: homogenization_name, & ! name of each homogenization
homogenization_type, & ! type of each homogenization
microstructure_name, & ! name of each microstructure
phase_name, & ! name of each phase
phase_constitution, & ! constitution of each phase
texture_name ! name of each texture
character(len=256),dimension(:), allocatable :: texture_ODFfile ! name of each ODF file
integer(pInt), dimension(:), allocatable :: homogenization_Ngrains, & ! number of grains in each homogenization
homogenization_typeInstance, & ! instance of particular type of each homogenization
homogenization_Noutput, & ! number of '(output)' items per homogenization
microstructure_Nconstituents, & ! number of constituents in each microstructure
phase_constitutionInstance, & ! instance of particular constitution of each phase
phase_Noutput, & ! number of '(output)' items per phase
phase_localConstitution, & ! flag phases with local constitutive law
texture_symmetry, & ! number of symmetric orientations per texture
texture_Ngauss, & ! number of Gauss components per texture
texture_Nfiber ! number of Fiber components per texture
integer(pInt), dimension(:,:), allocatable :: microstructure_phase, & ! phase IDs of each microstructure
microstructure_texture ! texture IDs of each microstructure
real(pReal), dimension(:,:), allocatable :: microstructure_fraction ! vol fraction of each constituent in microstructure
integer(pInt), dimension(:,:,:), allocatable :: material_volFrac, & ! vol fraction of grain within phase (?)
material_phase ! phase of each grain,IP,element
real(pReal), dimension(:,:,:,:), allocatable :: material_EulerAngles ! initial orientation of each grain,IP,element
real(pReal), dimension(:,:,:), allocatable :: texture_Gauss, & ! data of each Gauss component
texture_Fiber ! data of each Fiber component
CONTAINS
!*********************************************************************
subroutine material_init()
!*********************************************************************
!* Module initialization *
!**************************************
use prec, only: pReal,pInt
use IO, only: IO_error, IO_open_file
implicit none
!* Definition of variables
integer(pInt), parameter :: fileunit = 200
integer(pInt) i
if(.not. IO_open_file(fileunit,material_configFile)) call IO_error (100) ! corrupt config file
write(6,*) 'parsing homogenization...'
call material_parseHomogenization(fileunit,material_partHomogenization)
write(6,*) 'parsing microstrcuture...'
call material_parseMicrostructure(fileunit,material_partMicrostructure)
write(6,*) 'parsing texture...'
call material_parseTexture(fileunit,material_partTexture)
write(6,*) 'parsing phase...'
call material_parsePhase(fileunit,material_partPhase)
close(fileunit)
do i = 1,material_Nmicrostructure
if (minval(microstructure_phase(1:microstructure_Nconstituents(i),i)) < 1 .or. &
maxval(microstructure_phase(1:microstructure_Nconstituents(i),i)) > material_Nphase) call IO_error(150,i)
if (minval(microstructure_texture(1:microstructure_Nconstituents(i),i)) < 1 .or. &
2009-03-31 14:39:24 +05:30
maxval(microstructure_texture(1:microstructure_Nconstituents(i),i)) > material_Ntexture) call IO_error(160,i)
if (sum(microstructure_fraction(:,i)) /= 1.0_pReal) call IO_error(170,i)
enddo
write (6,*)
write (6,*) 'MATERIAL configuration'
write (6,*)
write (6,*) 'Homogenization'
do i = 1,material_Nhomogenization
write (6,'(a32,x,a16,x,i4)') homogenization_name(i),homogenization_type(i),homogenization_Ngrains(i)
enddo
write (6,*)
write (6,*) 'Microstructure'
do i = 1,material_Nmicrostructure
write (6,'(a32,x,i4)') microstructure_name(i),microstructure_Nconstituents(i)
enddo
write(6,*) 'populating grains...'
call material_populateGrains()
write(6,*) 'populating grains finished...'
end subroutine
!*********************************************************************
subroutine material_parseHomogenization(file,myPart)
!*********************************************************************
use prec, only: pInt
use IO
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: file
integer(pInt), parameter :: maxNchunks = 2
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) Nsections, section, s
character(len=64) tag
character(len=1024) line
Nsections= IO_countSections(file,myPart)
material_Nhomogenization = Nsections
allocate(homogenization_name(Nsections)); homogenization_name = ''
allocate(homogenization_type(Nsections)); homogenization_type = ''
allocate(homogenization_typeInstance(Nsections)); homogenization_typeInstance = 0_pInt
allocate(homogenization_Ngrains(Nsections)); homogenization_Ngrains = 0_pInt
homogenization_Noutput = IO_countTagInPart(file,myPart,'(output)',Nsections)
rewind(file)
line = ''
section = 0
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(file,'(a1024)',END=100) line
enddo
do
read(file,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1
homogenization_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
select case(tag)
case ('type')
homogenization_type(section) = IO_stringValue(line,positions,2)
do s = 1,section
if (homogenization_type(s) == homogenization_type(section)) &
homogenization_typeInstance(section) = homogenization_typeInstance(section) + 1 ! count instances
enddo
case ('ngrains')
homogenization_Ngrains(section) = IO_intValue(line,positions,2)
end select
endif
enddo
100 homogenization_maxNgrains = maxval(homogenization_Ngrains)
return
end subroutine
!*********************************************************************
subroutine material_parseMicrostructure(file,myPart)
!*********************************************************************
use prec, only: pInt
use IO
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: file
integer(pInt), parameter :: maxNchunks = 7
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) Nsections, section, constituent, i
character(len=64) tag
character(len=1024) line
Nsections = IO_countSections(file,myPart)
material_Nmicrostructure = Nsections
allocate(microstructure_name(Nsections)); microstructure_name = ''
allocate(microstructure_Nconstituents(Nsections))
microstructure_Nconstituents = IO_countTagInPart(file,myPart,'(constituent)',Nsections)
microstructure_maxNconstituents = maxval(microstructure_Nconstituents)
allocate(microstructure_phase (microstructure_maxNconstituents,Nsections)); microstructure_phase = 0_pInt
allocate(microstructure_texture (microstructure_maxNconstituents,Nsections)); microstructure_texture = 0_pInt
allocate(microstructure_fraction(microstructure_maxNconstituents,Nsections)); microstructure_fraction = 0.0_pReal
rewind(file)
line = ''
section = 0
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(file,'(a1024)',END=100) line
enddo
do
read(file,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1
constituent = 0
microstructure_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
select case(tag)
case ('(constituent)')
constituent = constituent + 1
do i=2,6,2
tag = IO_lc(IO_stringValue(line,positions,i))
select case (tag)
case('phase')
microstructure_phase(constituent,section) = IO_intValue(line,positions,i+1)
case('texture')
microstructure_texture(constituent,section) = IO_intValue(line,positions,i+1)
case('fraction')
microstructure_fraction(constituent,section) = IO_floatValue(line,positions,i+1)
end select
enddo
end select
endif
enddo
100 return
end subroutine
!*********************************************************************
subroutine material_parsePhase(file,myPart)
!*********************************************************************
use prec, only: pInt
use IO
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: file
integer(pInt), parameter :: maxNchunks = 2
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) Nsections, section, s
character(len=64) tag
character(len=1024) line
Nsections = IO_countSections(file,myPart)
material_Nphase = Nsections
allocate(phase_name(Nsections)); phase_name = ''
allocate(phase_constitution(Nsections)); phase_constitution = ''
allocate(phase_constitutionInstance(Nsections)); phase_constitutionInstance = 0_pInt
allocate(phase_Noutput(Nsections))
allocate(phase_localConstitution(Nsections))
phase_Noutput = IO_countTagInPart(file,myPart,'(output)',Nsections)
phase_localConstitution = .not. IO_spotTagInPart(file,myPart,'/nonlocal/',Nsections)
rewind(file)
line = ''
section = 0
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(file,'(a1024)',END=100) line
enddo
do
read(file,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1
phase_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
select case(tag)
case ('constitution')
phase_constitution(section) = IO_lc(IO_stringValue(line,positions,2))
do s = 1,section
if (phase_constitution(s) == phase_constitution(section)) &
phase_constitutionInstance(section) = phase_constitutionInstance(section) + 1 ! count instances
enddo
end select
endif
enddo
100 return
end subroutine
!*********************************************************************
subroutine material_parseTexture(file,myPart)
!*********************************************************************
use prec, only: pInt, pReal
use IO
use math, only: inRad
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: file
integer(pInt), parameter :: maxNchunks = 13
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) Nsections, section, gauss, fiber, i
character(len=64) tag
character(len=1024) line
Nsections = IO_countSections(file,myPart)
material_Ntexture = Nsections
allocate(texture_name(Nsections)); texture_name = ''
allocate(texture_ODFfile(Nsections)); texture_ODFfile = ''
allocate(texture_symmetry(Nsections)); texture_symmetry = 1_pInt
allocate(texture_Ngauss(Nsections)); texture_Ngauss = 0_pInt
allocate(texture_Nfiber(Nsections)); texture_Nfiber = 0_pInt
texture_Ngauss = IO_countTagInPart(file,myPart,'(gauss)',Nsections)
texture_Nfiber = IO_countTagInPart(file,myPart,'(fiber)',Nsections)
texture_maxNgauss = maxval(texture_Ngauss)
texture_maxNfiber = maxval(texture_Nfiber)
allocate(texture_Gauss (5,texture_maxNgauss,Nsections)); texture_Gauss = 0.0_pReal
allocate(texture_Fiber (6,texture_maxNfiber,Nsections)); texture_Fiber = 0.0_pReal
rewind(file)
line = ''
section = 0
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(file,'(a1024)',END=100) line
enddo
do
read(file,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1
gauss = 0
fiber = 0
texture_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
select case(tag)
case ('hybridia')
texture_ODFfile(section) = IO_stringValue(line,positions,2)
case ('symmetry')
tag = IO_lc(IO_stringValue(line,positions,2))
select case (tag)
case('orthotropic')
texture_symmetry(section) = 4
case('monoclinic')
texture_symmetry(section) = 2
case default
texture_symmetry(section) = 1
end select
case ('(gauss)')
gauss = gauss + 1
do i = 2,10,2
tag = IO_lc(IO_stringValue(line,positions,i))
select case (tag)
case('phi1')
texture_Gauss(1,gauss,section) = IO_floatValue(line,positions,i+1)*inRad
case('phi')
texture_Gauss(2,gauss,section) = IO_floatValue(line,positions,i+1)*inRad
case('phi2')
texture_Gauss(3,gauss,section) = IO_floatValue(line,positions,i+1)*inRad
case('scatter')
texture_Gauss(4,gauss,section) = IO_floatValue(line,positions,i+1)*inRad
case('fraction')
texture_Gauss(5,gauss,section) = IO_floatValue(line,positions,i+1)
end select
enddo
case ('(fiber)')
fiber = fiber + 1
do i = 2,12,2
tag = IO_lc(IO_stringValue(line,positions,i))
select case (tag)
case('aplha1')
texture_Fiber(1,fiber,section) = IO_floatValue(line,positions,i+1)*inRad
case('alpha2')
texture_Fiber(2,fiber,section) = IO_floatValue(line,positions,i+1)*inRad
case('beta1')
texture_Fiber(3,fiber,section) = IO_floatValue(line,positions,i+1)*inRad
case('beta2')
texture_Fiber(4,fiber,section) = IO_floatValue(line,positions,i+1)*inRad
case('scatter')
texture_Fiber(5,fiber,section) = IO_floatValue(line,positions,i+1)*inRad
case('fraction')
texture_Fiber(6,fiber,section) = IO_floatValue(line,positions,i+1)
end select
enddo
end select
endif
enddo
100 return
end subroutine
!*********************************************************************
subroutine material_populateGrains()
!*********************************************************************
use prec, only: pInt, pReal
use math, only: math_sampleRandomOri, math_sampleGaussOri, math_sampleFiberOri, math_symmetricEulers
use mesh, only: mesh_element, mesh_maxNips, mesh_NcpElems, mesh_ipVolume, FE_Nips
use IO, only: IO_error, IO_hybridIA
implicit none
integer(pInt), dimension (:,:), allocatable :: Ngrains
integer(pInt), dimension (microstructure_maxNconstituents) :: NgrainsOfConstituent
real(pReal), dimension (:,:), allocatable :: volume
real(pReal), dimension (:), allocatable :: volFracOfGrain, phaseOfGrain
real(pReal), dimension (:,:), allocatable :: orientationOfGrain
real(pReal), dimension (3) :: orientation
real(pReal), dimension (3,3) :: symOrientation
integer(pInt) t,e,i,g,j,m,homog,micro,sgn
integer(pInt) phaseID,textureID,dGrains,myNgrains,myNorientations, &
grain,constituentGrain,symExtension
real(pReal) extreme,rnd
allocate(material_volFrac(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_volFrac = 0.0_pReal
allocate(material_phase(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_phase = 0_pInt
allocate(material_EulerAngles(3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_EulerAngles = 0.0_pReal
allocate(Ngrains(material_Nhomogenization,material_Nmicrostructure)); Ngrains = 0_pInt
allocate(volume(material_Nhomogenization,material_Nmicrostructure)); volume = 0.0_pReal
! count grains and total volume per homog/micro pair
do e = 1,mesh_NcpElems
homog = mesh_element(3,e)
micro = mesh_element(4,e)
if (homog < 1 .or. homog > material_Nhomogenization) & ! out of bounds
call IO_error(130,e,0,0)
if (micro < 1 .or. micro > material_Nmicrostructure) & ! out of bounds
call IO_error(140,e,0,0)
Ngrains(homog,micro) = Ngrains(homog,micro) + homogenization_Ngrains(homog) * FE_Nips(mesh_element(2,e))
volume(homog,micro) = volume(homog,micro) + sum(mesh_ipVolume(:,e))
enddo
allocate(volFracOfGrain(maxval(Ngrains))) ! reserve memory for maximum case
allocate(phaseOfGrain(maxval(Ngrains))) ! reserve memory for maximum case
allocate(orientationOfGrain(3,maxval(Ngrains))) ! reserve memory for maximum case
write (6,*)
write (6,*) 'MATERIAL grain population'
do homog = 1,material_Nhomogenization ! loop over homogenizations
dGrains = homogenization_Ngrains(homog) ! grain number per material point
do micro = 1,material_Nmicrostructure ! all pairs of homog and micro
if (Ngrains(homog,micro) > 0) then ! an active pair of homog and micro
myNgrains = Ngrains(homog,micro) ! assign short name
write (6,*)
write (6,'(a32,x,a32,x,i6)') homogenization_name(homog),microstructure_name(micro),myNgrains
! ----------------------------------------------------------------------------
volFracOfGrain = 0.0_pReal
grain = 0_pInt ! microstructure grain index
do e = 1,mesh_NcpElems ! check each element
if (mesh_element(3,e) == homog .and. mesh_element(4,e) == micro) then ! my combination of homog and micro
forall (i = 1:FE_Nips(mesh_element(2,e))) & ! loop over IPs
volFracOfGrain(grain+(i-1)*dGrains+1:grain+i*dGrains) = &
mesh_ipVolume(i,e)/volume(homog,micro)/dGrains ! assign IPvolfrac/Ngrains to grains
grain = grain + FE_Nips(mesh_element(2,e)) * dGrains ! wind forward by Nips*NgrainsPerIP
endif
enddo
write (6,*) 'now at grain count',grain
! ----------------------------------------------------------------------------
NgrainsOfConstituent = 0_pInt
forall (i = 1:microstructure_Nconstituents(micro)) &
NgrainsOfConstituent(i) = nint(microstructure_fraction(i,micro) * myNgrains, pInt)
write (6,*) 'NgrainsOfConstituent',NgrainsOfConstituent
do while (sum(NgrainsOfConstituent) /= myNgrains) ! total grain count over constituents wrong?
sgn = sign(1_pInt, myNgrains - sum(NgrainsOfConstituent)) ! direction of required change
extreme = 0.0_pReal
t = 0_pInt
do i = 1,microstructure_Nconstituents(micro) ! find largest deviator
if (sgn*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro)) > extreme) then
extreme = sgn*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro))
t = i
endif
enddo
NgrainsOfConstituent(t) = NgrainsOfConstituent(t) + sgn ! change that by one
end do
write (6,*) 'fixed NgrainsOfConstituent',NgrainsOfConstituent
! ----------------------------------------------------------------------------
phaseOfGrain = 0_pInt
orientationOfGrain = 0.0_pReal
grain = 0_pInt ! reset microstructure grain index
do i = 1,microstructure_Nconstituents(micro) ! loop over constituents
phaseID = microstructure_phase(i,micro)
textureID = microstructure_texture(i,micro)
phaseOfGrain(grain+1:grain+NgrainsOfConstituent(i)) = phaseID ! assign resp. phase
myNorientations = ceiling(float(NgrainsOfConstituent(i))/texture_symmetry(textureID)) ! max number of unique orientations (excl. symmetry)
write (6,'(a32,x,i6,x,f5.3,x,i6)') &
phase_name(phaseID),NgrainsOfConstituent(i),real(NgrainsOfConstituent(i)/myNgrains),myNorientations
constituentGrain = 0_pInt ! constituent grain index
! ---------
if (texture_ODFfile(textureID) == '') then ! dealing with texture components
! ---------
do t = 1,texture_Ngauss(textureID) ! loop over Gauss components
write (6,*) 'gauss',t,int(myNorientations*texture_Gauss(5,t,textureID))
do g = 1,int(myNorientations*texture_Gauss(5,t,textureID)) ! loop over required grain count
orientationOfGrain(:,grain+constituentGrain+g) = &
math_sampleGaussOri(texture_Gauss(1:3,t,textureID),&
texture_Gauss( 4,t,textureID))
enddo
constituentGrain = constituentGrain + int(myNorientations*texture_Gauss(5,t,textureID))
write (6,*) 'now at constituent grain',constituentGrain
enddo
do t = 1,texture_Nfiber(textureID) ! loop over fiber components
write (6,*) 'fiber',t,int(myNorientations*texture_Fiber(6,t,textureID))
do g = 1,int(myNorientations*texture_Fiber(6,t,textureID)) ! loop over required grain count
orientationOfGrain(:,grain+constituentGrain+g) = &
math_sampleFiberOri(texture_Fiber(1:2,t,textureID),&
texture_Fiber(3:4,t,textureID),&
texture_Fiber( 5,t,textureID))
enddo
constituentGrain = constituentGrain + int(myNorientations*texture_fiber(6,t,textureID))
write (6,*) 'now at constituent grain',constituentGrain
enddo
write (6,*) 'looping',constituentGrain+1,myNorientations
do j = constituentGrain+1,myNorientations ! fill remainder with random
orientationOfGrain(:,grain+j) = math_sampleRandomOri()
enddo
write (6,*) 'done...'
! ---------
else ! hybrid IA
! ---------
orientationOfGrain(:,grain+1:grain+myNorientations) = IO_hybridIA(myNorientations,texture_ODFfile(textureID))
if (all(orientationOfGrain(:,grain+1) == -1.0_pReal)) call IO_error(105)
constituentGrain = constituentGrain + myNorientations
endif
! ----------------------------------------------------------------------------
symExtension = texture_symmetry(textureID) - 1_pInt
if (symExtension > 0_pInt) then ! sample symmetry
constituentGrain = NgrainsOfConstituent(i)-myNorientations ! calc remainder of array
do j = 1,myNorientations ! loop over each "real" orientation
symOrientation = math_symmetricEulers(texture_symmetry(textureID),orientationOfGrain(:,j)) ! get symmetric equivalents
e = min(symExtension,constituentGrain) ! are we at end of constituent grain array?
if (e > 0_pInt) then
orientationOfGrain(:,grain+myNorientations+1+(j-1)*symExtension:&
grain+myNorientations+e+(j-1)*symExtension) = &
symOrientation(:,1:e)
constituentGrain = constituentGrain - e ! remainder shrinks by e
endif
enddo
endif
grain = grain + NgrainsOfConstituent(i) ! advance microstructure grain index
end do ! constituent
! ----------------------------------------------------------------------------
do i=1,myNgrains-1 ! walk thru grains
call random_number(rnd)
t = nint(rnd*(myNgrains-i)+i+0.5_pReal,pInt) ! select a grain in remaining list
m = phaseOfGrain(t) ! exchange current with random
phaseOfGrain(t) = phaseOfGrain(i)
phaseOfGrain(i) = m
orientation = orientationOfGrain(:,t)
orientationOfGrain(:,t) = orientationOfGrain(:,i)
orientationOfGrain(:,i) = orientation
end do
!calc fraction after weighing with volumePerGrain
!exchange in MC steps to improve result...
! ----------------------------------------------------------------------------
grain = 0_pInt ! microstructure grain index
do e = 1,mesh_NcpElems ! check each element
if (mesh_element(3,e) == homog .and. mesh_element(4,e) == micro) then ! my combination of homog and micro
forall (i = 1:FE_Nips(mesh_element(2,e)), g = 1:dGrains) ! loop over IPs and grains
material_volFrac(g,i,e) = volFracOfGrain(grain+(i-1)*dGrains+g)
material_phase(g,i,e) = phaseOfGrain(grain+(i-1)*dGrains+g)
material_EulerAngles(:,g,i,e) = orientationOfGrain(:,grain+(i-1)*dGrains+g)
end forall
write (6,*) e
write (6,*) material_phase(:,:,e)
write (6,*) material_EulerAngles(:,:,:,e)
grain = grain + FE_Nips(mesh_element(2,e)) * dGrains ! wind forward by Nips*NgrainsPerIP
endif
enddo
endif ! active homog,micro pair
enddo
enddo
deallocate(volFracOfGrain)
deallocate(phaseOfGrain)
deallocate(orientationOfGrain)
return
end subroutine
END MODULE