DAMASK_EICMD/python/tests/test_seeds.py

37 lines
1.5 KiB
Python
Raw Normal View History

2020-09-25 00:36:26 +05:30
import pytest
import numpy as np
from scipy.spatial import cKDTree
from damask import seeds
2020-09-25 01:13:04 +05:30
from damask import Geom
2020-09-25 00:36:26 +05:30
class TestSeeds:
@pytest.mark.parametrize('grid',[None,np.ones(3,dtype='i')*10])
def test_from_random(self,grid):
N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid)
assert (0<=coords).all() and (coords<size).all()
2020-09-25 00:56:16 +05:30
@pytest.mark.parametrize('periodic',[True,False])
def test_from_Poisson_disc(self,periodic):
2020-09-25 00:36:26 +05:30
N_seeds = np.random.randint(30,300)
N_candidates = N_seeds//15
distance = np.random.random()
size = np.ones(3)*distance*N_seeds
2020-09-25 00:56:16 +05:30
coords = seeds.from_Poisson_disc(size,N_seeds,N_candidates,distance,periodic=periodic)
min_dists, _ = cKDTree(coords,boxsize=size).query(coords, 2) if periodic else \
cKDTree(coords).query(coords, 2)
2020-09-25 00:36:26 +05:30
assert (0<= coords).all() and (coords<size).all() and np.min(min_dists[:,1])>=distance
2020-09-25 01:13:04 +05:30
def test_from_geom(self):
grid = np.random.randint(10,20,3)
N_seeds = np.random.randint(30,300)
size = np.ones(3) + np.random.random(3)
coords = seeds.from_random(size,N_seeds,grid)
geom_1 = Geom.from_Voronoi_tessellation(grid,size,coords)
coords,material = seeds.from_geom(geom_1)
geom_2 = Geom.from_Voronoi_tessellation(grid,size,coords,material)
assert (geom_2.material==geom_1.material).all()