2017-05-29 14:02:22 +05:30
|
|
|
#!/usr/bin/env python2.7
|
|
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
|
|
|
|
import os,sys
|
|
|
|
import numpy as np
|
|
|
|
from optparse import OptionParser
|
|
|
|
from scipy import ndimage
|
|
|
|
import damask
|
|
|
|
|
|
|
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|
|
|
scriptID = ' '.join([scriptName,damask.version])
|
|
|
|
|
|
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
# MAIN
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [ASCIItable(s)]', description = """
|
2017-06-01 13:30:21 +05:30
|
|
|
Add column(s) containing Gaussian filtered values of requested column(s).
|
|
|
|
Operates on periodic and non-periodic ordered three-dimensional data sets.
|
|
|
|
For Details see scipy.ndimage documentation.
|
2017-05-29 14:02:22 +05:30
|
|
|
|
|
|
|
""", version = scriptID)
|
|
|
|
|
|
|
|
parser.add_option('-p','--pos','--periodiccellcenter',
|
|
|
|
dest = 'pos',
|
|
|
|
type = 'string', metavar = 'string',
|
|
|
|
help = 'label of coordinates [%default]')
|
|
|
|
parser.add_option('-s','--scalar',
|
|
|
|
dest = 'scalar',
|
|
|
|
action = 'extend', metavar = '<string LIST>',
|
|
|
|
help = 'label(s) of scalar field values')
|
|
|
|
parser.add_option('-o','--order',
|
|
|
|
dest = 'order',
|
|
|
|
type = int,
|
|
|
|
metavar = 'int',
|
|
|
|
help = 'order of the filter')
|
|
|
|
parser.add_option('--sigma',
|
|
|
|
dest = 'sigma',
|
|
|
|
type = float,
|
|
|
|
metavar = 'float',
|
|
|
|
help = 'standard deviation')
|
|
|
|
parser.add_option('--periodic',
|
|
|
|
dest = 'periodic',
|
|
|
|
action = 'store_true',
|
|
|
|
help = 'assume periodic grain structure'
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser.set_defaults(pos = 'pos',
|
|
|
|
order = 0,
|
|
|
|
sigma = 1,
|
|
|
|
periodic = False
|
|
|
|
)
|
|
|
|
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
|
|
|
|
if options.scalar is None:
|
|
|
|
parser.error('no data column specified.')
|
|
|
|
|
|
|
|
# --- loop over input files ------------------------------------------------------------------------
|
|
|
|
|
|
|
|
if filenames == []: filenames = [None]
|
|
|
|
|
|
|
|
for name in filenames:
|
|
|
|
try: table = damask.ASCIItable(name = name,buffered = False)
|
|
|
|
except: continue
|
|
|
|
damask.util.report(scriptName,name)
|
|
|
|
|
|
|
|
# ------------------------------------------ read header ------------------------------------------
|
|
|
|
|
|
|
|
table.head_read()
|
|
|
|
|
|
|
|
# ------------------------------------------ sanity checks ----------------------------------------
|
|
|
|
|
|
|
|
items = {
|
|
|
|
'scalar': {'dim': 1, 'shape': [1], 'labels':options.scalar, 'active':[], 'column': []},
|
|
|
|
}
|
|
|
|
errors = []
|
|
|
|
remarks = []
|
|
|
|
column = {}
|
|
|
|
|
|
|
|
if table.label_dimension(options.pos) != 3: errors.append('coordinates {} are not a vector.'.format(options.pos))
|
|
|
|
else: colCoord = table.label_index(options.pos)
|
|
|
|
|
|
|
|
for type, data in items.iteritems():
|
|
|
|
for what in (data['labels'] if data['labels'] is not None else []):
|
|
|
|
dim = table.label_dimension(what)
|
|
|
|
if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type))
|
|
|
|
else:
|
|
|
|
items[type]['active'].append(what)
|
|
|
|
items[type]['column'].append(table.label_index(what))
|
|
|
|
|
|
|
|
if remarks != []: damask.util.croak(remarks)
|
|
|
|
if errors != []:
|
|
|
|
damask.util.croak(errors)
|
|
|
|
table.close(dismiss = True)
|
|
|
|
continue
|
|
|
|
|
|
|
|
# ------------------------------------------ assemble header --------------------------------------
|
|
|
|
|
|
|
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
|
|
|
for type, data in items.iteritems():
|
|
|
|
for label in data['active']:
|
|
|
|
table.labels_append(['Gauss{}({})'.format(options.sigma,label)]) # extend ASCII header with new labels
|
|
|
|
table.head_write()
|
|
|
|
|
|
|
|
# --------------- figure out size and grid ---------------------------------------------------------
|
|
|
|
|
|
|
|
table.data_readArray()
|
|
|
|
|
|
|
|
coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
|
|
|
|
mincorner = np.array(map(min,coords))
|
|
|
|
maxcorner = np.array(map(max,coords))
|
|
|
|
grid = np.array(map(len,coords),'i')
|
|
|
|
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
|
|
|
|
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other ones
|
|
|
|
|
|
|
|
# ------------------------------------------ process value field -----------------------------------
|
|
|
|
|
|
|
|
stack = [table.data]
|
|
|
|
for type, data in items.iteritems():
|
|
|
|
for i,label in enumerate(data['active']):
|
|
|
|
stack.append(ndimage.filters.gaussian_filter(table.data[:,data['column'][i]],
|
|
|
|
options.sigma,options.order,
|
|
|
|
mode = 'wrap' if options.periodic else 'nearest'
|
|
|
|
).reshape([table.data.shape[0],1])
|
|
|
|
)
|
|
|
|
|
|
|
|
# ------------------------------------------ output result -----------------------------------------
|
|
|
|
if len(stack) > 1: table.data = np.hstack(tuple(stack))
|
|
|
|
table.data_writeArray('%.12g')
|
|
|
|
|
|
|
|
# ------------------------------------------ output finalization -----------------------------------
|
|
|
|
|
|
|
|
table.close() # close input ASCII table (works for stdin)
|