369 lines
13 KiB
Python
369 lines
13 KiB
Python
|
#!/usr/bin/python
|
||
|
# -*- coding: iso-8859-1 -*-
|
||
|
|
||
|
# This script is used for the post processing of the results achieved by the spectral method.
|
||
|
# As it reads in the data coming from "materialpoint_results", it can be adopted to the data
|
||
|
# computed using the FEM solvers. Until now, its capable to handle elements with one IP in a regular order
|
||
|
# written by M. Diehl, m.diehl@mpie.de
|
||
|
|
||
|
import os,sys,re,array,struct,numpy, time, postprocessingMath, math
|
||
|
|
||
|
class vector:
|
||
|
x,y,z = [None,None,None]
|
||
|
|
||
|
def __init__(self,coords):
|
||
|
self.x = coords[0]
|
||
|
self.y = coords[1]
|
||
|
self.z = coords[2]
|
||
|
|
||
|
class element:
|
||
|
items = []
|
||
|
type = None
|
||
|
|
||
|
def __init__(self,nodes,type):
|
||
|
self.items = nodes
|
||
|
self.type = type
|
||
|
|
||
|
class element_scalar:
|
||
|
id = None
|
||
|
value = None
|
||
|
|
||
|
def __init__(self,node,value):
|
||
|
self.id = node
|
||
|
self.value = value
|
||
|
|
||
|
|
||
|
class MPIEspectral_result:
|
||
|
|
||
|
file = None
|
||
|
dataOffset = 0
|
||
|
N_elemental_scalars = 0
|
||
|
resolution = [0,0,0]
|
||
|
dimension = [0.0,0.0,0.0]
|
||
|
theTitle = ''
|
||
|
wd = ''
|
||
|
extrapolate = ''
|
||
|
N_increments = 0
|
||
|
increment = 0
|
||
|
N_nodes = 0
|
||
|
N_node_scalars = 0
|
||
|
N_elements = 0
|
||
|
N_element_scalars = 0
|
||
|
N_element_tensors = 0
|
||
|
theNodes = []
|
||
|
theElements = []
|
||
|
|
||
|
def __init__(self,filename):
|
||
|
|
||
|
self.file = open(filename, 'rb')
|
||
|
|
||
|
self.title = self._keyedString('load')
|
||
|
self.wd = self._keyedString('workingdir')
|
||
|
self.geometry = self._keyedString('geometry')
|
||
|
self.N_increments = self._keyedInt('increments')
|
||
|
self.N_element_scalars = self._keyedInt('materialpoint_sizeResults')
|
||
|
self.resolution = self._keyedPackedArray('resolution',3,'i')
|
||
|
self.N_nodes = (self.resolution[0]+1)*(self.resolution[1]+1)*(self.resolution[2]+1)
|
||
|
self.N_elements = self.resolution[0]*self.resolution[1]*self.resolution[2]
|
||
|
self.dimension = self._keyedPackedArray('dimension',3,'f')
|
||
|
a = self.resolution[0]+1
|
||
|
b = self.resolution[1]+1
|
||
|
c = self.resolution[2]+1
|
||
|
self.file.seek(0)
|
||
|
self.dataOffset = self.file.read(2048).find('eoh')+7
|
||
|
|
||
|
|
||
|
def __str__(self):
|
||
|
return '\n'.join([
|
||
|
'title: %s'%self.title,
|
||
|
'workdir: %s'%self.wd,
|
||
|
'extrapolation: %s'%self.extrapolate,
|
||
|
'increments: %i'%self.N_increments,
|
||
|
'increment: %i'%self.increment,
|
||
|
'nodes: %i'%self.N_nodes,
|
||
|
'resolution: %s'%(','.join(map(str,self.resolution))),
|
||
|
'dimension: %s'%(','.join(map(str,self.dimension))),
|
||
|
'elements: %i'%self.N_elements,
|
||
|
'nodal_scalars: %i'%self.N_node_scalars,
|
||
|
'elemental scalars: %i'%self.N_element_scalars,
|
||
|
'end of header: %i'%self.dataOffset,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
def _keyedPackedArray(self,identifier,length = 3,type = 'f'):
|
||
|
match = {'f': 4,'i': 4} #correct???
|
||
|
self.file.seek(0)
|
||
|
m = re.search('%s%s'%(identifier,'(.{%i})'%(match[type])*length),self.file.read(2048),re.DOTALL)
|
||
|
values = []
|
||
|
if m:
|
||
|
for i in m.groups():
|
||
|
values.append(struct.unpack(type,i)[0])
|
||
|
return values
|
||
|
|
||
|
def _keyedInt(self,identifier):
|
||
|
value = None
|
||
|
self.file.seek(0)
|
||
|
m = re.search('%s%s'%(identifier,'(.{4})'),self.file.read(2048),re.DOTALL)
|
||
|
if m:
|
||
|
value = struct.unpack('i',m.group(1))[0]
|
||
|
return value
|
||
|
|
||
|
def _keyedString(self,identifier):
|
||
|
value = None
|
||
|
self.file.seek(0)
|
||
|
m = re.search(r'(.{4})%s(.*?)\1'%identifier,self.file.read(2048),re.DOTALL)
|
||
|
if m:
|
||
|
value = m.group(2)
|
||
|
return value
|
||
|
|
||
|
def extrapolation(self,value):
|
||
|
self.extrapolate = value
|
||
|
|
||
|
def element_scalar(self,elem,idx):
|
||
|
self.file.seek(self.dataOffset+(self.increment*(4+self.N_elements*self.N_element_scalars*4+4) + 4+(elem*self.N_element_scalars + idx)*4))
|
||
|
value = struct.unpack('f',self.file.read(4))[0]
|
||
|
return [elemental_scalar(node,value) for node in self.theElements[elem].items]
|
||
|
|
||
|
def readScalar(resolution,file,distance,startingPosition,offset):
|
||
|
currentPosition = startingPosition+offset*4+4 - distance*4 # we add distance later on
|
||
|
field = numpy.zeros([resolution[0],resolution[1],resolution[2]], 'f')
|
||
|
for z in range(0,resolution[2]):
|
||
|
for y in range(0,resolution[1]):
|
||
|
for x in range(0,resolution[0]):
|
||
|
currentPosition = currentPosition + distance*4
|
||
|
p.file.seek(currentPosition)
|
||
|
field[x][y][z]=struct.unpack('f',p.file.read(4))[0]
|
||
|
return field
|
||
|
|
||
|
def readTensor(resolution,file,distance,startingPosition,offset):
|
||
|
currentPosition = startingPosition+offset*4+4 - distance*4 # we add distance later on
|
||
|
field = numpy.zeros([resolution[0],resolution[1],resolution[2],3,3], 'f')
|
||
|
for z in range(0,resolution[2]):
|
||
|
for y in range(0,resolution[1]):
|
||
|
for x in range(0,resolution[0]):
|
||
|
currentPosition = currentPosition + distance*4
|
||
|
p.file.seek(currentPosition)
|
||
|
for i in range(0,3):
|
||
|
for j in range(0,3):
|
||
|
field[x][y][z][i][j]=struct.unpack('f',p.file.read(4))[0]
|
||
|
return field
|
||
|
|
||
|
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||
|
def calculateCauchyStress(p_stress,defgrad,res):
|
||
|
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||
|
c_stress = numpy.zeros([res[0],res[1],res[2],3,3],'f')
|
||
|
for z in range(res[2]):
|
||
|
for y in range(res[1]):
|
||
|
for x in range(res[0]):
|
||
|
jacobi = numpy.linalg.det(defgrad[x,y,z])
|
||
|
c_stress[x,y,z] = numpy.dot(p_stress[x,y,z],numpy.transpose(defgrad[x,y,z]))/jacobi
|
||
|
return c_stress
|
||
|
|
||
|
|
||
|
# function writes scalar values to a mesh (geometry)
|
||
|
def writeVtkAscii(filename,geometry,scalar,resolution):
|
||
|
prodnn=(p.resolution[0]+1)*(p.resolution[1]+1)*(p.resolution[2]+1)
|
||
|
vtk = open(filename, 'w')
|
||
|
vtk.write('# vtk DataFile Version 3.1\n') # header
|
||
|
vtk.write('just a test\n') # header
|
||
|
vtk.write('ASCII\n') # header
|
||
|
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
|
||
|
vtk.write('POINTS ') # header
|
||
|
vtk.write(str(prodnn)) # header
|
||
|
vtk.write(' FLOAT\n') # header
|
||
|
|
||
|
# nodes
|
||
|
for k in range (resolution[2]+1):
|
||
|
for j in range (resolution[1]+1):
|
||
|
for i in range (resolution[0]+1):
|
||
|
vtk.write('\t'.join(map(str,geometry[i,j,k]))+'\n')
|
||
|
vtk.write('\n')
|
||
|
vtk.write('CELLS ')
|
||
|
vtk.write(str(resolution[0]*resolution[1]*resolution[2]))
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(resolution[0]*resolution[1]*resolution[2]*9))
|
||
|
vtk.write('\n')
|
||
|
|
||
|
# elements
|
||
|
for i in range (resolution[2]):
|
||
|
for j in range (resolution[1]):
|
||
|
for k in range (resolution[0]):
|
||
|
vtk.write('8')
|
||
|
vtk.write('\t')
|
||
|
base = i*(resolution[1]+1)*(resolution[2]+1)+j*(resolution[1]+1)+k
|
||
|
vtk.write(str(base))
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(base+1))
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(base+resolution[1]+2))
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(base+resolution[1]+1))
|
||
|
vtk.write('\t')
|
||
|
base = base + (resolution[1]+1)*(resolution[2]+1)
|
||
|
vtk.write(str(base))
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(base+1))
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(base+resolution[1]+2))
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(base+resolution[1]+1))
|
||
|
vtk.write('\n')
|
||
|
vtk.write('\n')
|
||
|
vtk.write('CELL_TYPES ')
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(resolution[0]*resolution[1]*resolution[2]))
|
||
|
vtk.write('\n')
|
||
|
for i in range (resolution[0]*resolution[1]*resolution[2]):
|
||
|
vtk.write('12\n')
|
||
|
vtk.write('\nCELL_DATA ') # header
|
||
|
vtk.write(str(resolution[0]*resolution[1]*resolution[2])) # header
|
||
|
vtk.write('\n') # header
|
||
|
vtk.write('SCALARS HorizontalSpeed float\n') # header
|
||
|
vtk.write('LOOKUP_TABLE default\n') # header
|
||
|
for k in range (resolution[2]):
|
||
|
for j in range (resolution[1]):
|
||
|
for i in range (resolution[0]):
|
||
|
vtk.write(str(scalar[i,j,k]))
|
||
|
vtk.write('\n')
|
||
|
return
|
||
|
|
||
|
# function writes scalar values to a point field
|
||
|
def writeVtkAsciiDots(filename,coordinates,scalar,resolution):
|
||
|
prodnn=(p.resolution[0])*(p.resolution[1])*(p.resolution[2])
|
||
|
vtk = open(filename, 'w')
|
||
|
vtk.write('# vtk DataFile Version 3.1\n') # header
|
||
|
vtk.write('just a test\n') # header
|
||
|
vtk.write('ASCII\n') # header
|
||
|
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
|
||
|
vtk.write('POINTS ') # header
|
||
|
vtk.write(str(prodnn)) # header
|
||
|
vtk.write(' FLOAT\n') # header
|
||
|
# points
|
||
|
for k in range (resolution[2]):
|
||
|
for j in range (resolution[1]):
|
||
|
for i in range (resolution[0]):
|
||
|
vtk.write('\t'.join(map(str,coordinates[i,j,k]))+'\n')
|
||
|
vtk.write('\n')
|
||
|
vtk.write('CELLS ')
|
||
|
vtk.write(str(prodnn))
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(prodnn*2))
|
||
|
vtk.write('\n')
|
||
|
for i in range(prodnn):
|
||
|
vtk.write('1\t' + str(i) + '\n')
|
||
|
vtk.write('CELL_TYPES ')
|
||
|
vtk.write('\t')
|
||
|
vtk.write(str(prodnn))
|
||
|
vtk.write('\n')
|
||
|
for i in range (prodnn):
|
||
|
vtk.write('1\n')
|
||
|
vtk.write('\nPOINT_DATA ') # header
|
||
|
vtk.write(str(prodnn)) # header
|
||
|
vtk.write('\n') # header
|
||
|
vtk.write('SCALARS HorizontalSpeed float\n') # header
|
||
|
vtk.write('LOOKUP_TABLE default\n') # header
|
||
|
for k in range (resolution[2]):
|
||
|
for j in range (resolution[1]):
|
||
|
for i in range (resolution[0]):
|
||
|
vtk.write(str(scalar[i,j,k]))
|
||
|
vtk.write('\n')
|
||
|
return
|
||
|
|
||
|
# functiongives the corner box for the average defgrad
|
||
|
def writeVtkAsciidefgrad_av(filename,diag,defgrad):
|
||
|
|
||
|
points = numpy.array([\
|
||
|
[0.0,0.0,0.0,],\
|
||
|
[diag[0],0.0,0.0,],\
|
||
|
[diag[0],diag[1],0.0,],\
|
||
|
[0.0,diag[1],0.0,],\
|
||
|
[0.0,0.0,diag[2],],\
|
||
|
[diag[0],0.0,diag[2],],\
|
||
|
[diag[0],diag[1],diag[2],],\
|
||
|
[0.0,diag[1],diag[2],]]\
|
||
|
)
|
||
|
vtk = open(filename, 'w')
|
||
|
vtk.write('# vtk DataFile Version 3.1\n') # header
|
||
|
vtk.write('just a test\n') # header
|
||
|
vtk.write('ASCII\n') # header
|
||
|
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
|
||
|
vtk.write('POINTS 8') # header
|
||
|
vtk.write(' FLOAT\n') # header
|
||
|
|
||
|
# points
|
||
|
for p in range (8):
|
||
|
vtk.write('\t'.join(map(str,numpy.dot(defgrad_av,points[p])))+'\n')
|
||
|
vtk.write('\n')
|
||
|
vtk.write('CELLS 8 16\n')
|
||
|
vtk.write('\n'.join(['1\t%i'%i for i in range(8)])+'\n')
|
||
|
vtk.write('CELL_TYPES 8\n')
|
||
|
vtk.write('\n'.join(['1']*8)+'\n')
|
||
|
|
||
|
return
|
||
|
|
||
|
print '*********************************************************************************'
|
||
|
print 'Post Processing for Material subroutine for BVP solution using spectral method'
|
||
|
print '*********************************************************************************\n'
|
||
|
|
||
|
#reading in the header of the results file
|
||
|
name = 'dipl32_shear'
|
||
|
p = MPIEspectral_result(name+'.spectralOut')
|
||
|
p.extrapolation('')
|
||
|
print p
|
||
|
|
||
|
# Ended reading of header
|
||
|
|
||
|
res_x=p.resolution[0]
|
||
|
res_y=p.resolution[1]
|
||
|
res_z=p.resolution[2]
|
||
|
|
||
|
|
||
|
ms=numpy.zeros([res_x,res_y,res_z,3], 'f')
|
||
|
print 'data structure'
|
||
|
for i in range(p.N_element_scalars):
|
||
|
c_pos = p.dataOffset + i*4.0 + 4.0
|
||
|
p.file.seek(c_pos)
|
||
|
print(i, struct.unpack('f',p.file.read(4)))
|
||
|
for i in range(1,2):
|
||
|
c_pos = p.dataOffset + i*(p.N_element_scalars*4*p.N_elements + 8)
|
||
|
defgrad = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,7)
|
||
|
defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
||
|
centroids_coord = postprocessingMath.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
||
|
undeformed = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
||
|
#writeVtkAscii(name+'-mesh-undeformed.vtk',undeformed,defgrad[:,:,:,1,2],p.resolution)
|
||
|
|
||
|
for i in range(240,241):
|
||
|
c_pos = p.dataOffset + i*(p.N_element_scalars*4*p.N_elements + 8) #8 accounts for header&footer
|
||
|
defgrad = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,7)
|
||
|
defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
||
|
#defgrad = numpy.zeros([p.resolution[0],p.resolution[1],p.resolution[2],3,3], 'f')
|
||
|
#for z in range(p.resolution[2]):
|
||
|
# defgrad[:,:,z,1,2] = (2.0*z)/(p.resolution[2]-1.0)+ 3.8*math.sin(z*20.0/(p.resolution[2]-1.0)*2*math.pi)
|
||
|
# defgrad[:,:,z,0,2] = (2.0*z)/(p.resolution[2]-1.0)+ 5.0*math.cos(z/(p.resolution[2]-1.0)*2*math.pi)
|
||
|
#defgrad[:,:,:,0,0] = 1.0
|
||
|
#defgrad[:,:,:,1,1] = 1.0
|
||
|
#defgrad[:,:,:,2,2] = 1.0
|
||
|
#logstrain = postprocessingMath.logstrain_mat(res_x,res_y,res_z,defgrad)
|
||
|
#logstrain2 = postprocessingMath.logstrain_spat(res_x,res_y,res_z,defgrad)
|
||
|
#p_stress = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,52)
|
||
|
#c_stress = postprocessingMath.calculate_cauchy(res_x,res_y,res_z,defgrad,p_stress)
|
||
|
#vm = postprocessingMath.calculate_mises(res_x,res_y,res_z,c_stress)
|
||
|
#defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
||
|
#subroutine inverse_reconstruction(res_x,res_y,res_z,reference_configuration,current_configuration,defgrad)
|
||
|
centroids_coord = postprocessingMath.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
||
|
deformed = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
||
|
#writeVtkAscii(name+'-mesh-deformed.vtk',deformed,defgrad[:,:,:,1,2],p.resolution)
|
||
|
defgrad = postprocessingMath.inverse_reconstruction(res_x,res_y,res_z,undeformed,deformed)
|
||
|
defgrad_av = postprocessingMath.tensor_avg(res_x,res_y,res_z,defgrad)
|
||
|
centroids_coord = postprocessingMath.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
||
|
centroids_coord2 = postprocessingMath.deformed_fft(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av,1.0)
|
||
|
ms = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
||
|
ms2 = postprocessingMath.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord2)
|
||
|
writeVtkAscii(name+'-mesh-usual-%s.vtk'%i,ms,defgrad[:,:,:,1,2],p.resolution)
|
||
|
writeVtkAscii(name+'-mesh-fft-%s.vtk'%i,ms2,defgrad[:,:,:,1,2],p.resolution)
|
||
|
#writeVtkAsciidefgrad_av(name+'-box-%i.vtk'%i,p.dimension,defgrad_av)
|
||
|
#writeVtkAsciiDots(name+'-points-%i.vtk'%i,centroids_coord,grain,p.resolution)
|
||
|
sys.stdout.flush()
|
||
|
|
||
|
|