125 lines
5.2 KiB
Python
125 lines
5.2 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import os,re,sys,math,numpy,string
|
||
|
import damask
|
||
|
from collections import defaultdict
|
||
|
from optparse import OptionParser, Option
|
||
|
|
||
|
scriptID = '$Id$'
|
||
|
scriptName = scriptID.split()[1]
|
||
|
|
||
|
# -----------------------------
|
||
|
class extendableOption(Option):
|
||
|
# -----------------------------
|
||
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
||
|
|
||
|
ACTIONS = Option.ACTIONS + ("extend",)
|
||
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||
|
|
||
|
def take_action(self, action, dest, opt, value, values, parser):
|
||
|
if action == "extend":
|
||
|
lvalue = value.split(",")
|
||
|
values.ensure_value(dest, []).extend(lvalue)
|
||
|
else:
|
||
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
||
|
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# MAIN
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
||
|
Permute all values in given column(s).
|
||
|
|
||
|
""" + string.replace(scriptID,'\n','\\n')
|
||
|
)
|
||
|
|
||
|
parser.add_option('-l','--label', dest='label', action='extend', type='string',
|
||
|
help='heading(s) of column to permute',
|
||
|
metavar='<label>')
|
||
|
|
||
|
parser.set_defaults(label = [])
|
||
|
|
||
|
(options,filenames) = parser.parse_args()
|
||
|
|
||
|
if len(options.label)== 0:
|
||
|
parser.error('no data column specified...')
|
||
|
|
||
|
datainfo = { # list of requested labels per datatype
|
||
|
'scalar': {'len':1,
|
||
|
'label':[]},
|
||
|
}
|
||
|
|
||
|
if options.label != None: datainfo['scalar']['label'] += options.label
|
||
|
|
||
|
# ------------------------------------------ setup file handles ---------------------------------------
|
||
|
|
||
|
files = []
|
||
|
if filenames == []:
|
||
|
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
|
||
|
else:
|
||
|
for name in filenames:
|
||
|
if os.path.exists(name):
|
||
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
||
|
|
||
|
#--- loop over input files ------------------------------------------------------------------------
|
||
|
for file in files:
|
||
|
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||
|
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||
|
|
||
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||
|
table.head_read() # read ASCII header info
|
||
|
table.info_append(string.replace(scriptName,'\n','\\n') + \
|
||
|
'\t' + ' '.join(sys.argv[1:]))
|
||
|
|
||
|
# --------------- figure out columns to process
|
||
|
active = defaultdict(list)
|
||
|
column = defaultdict(dict)
|
||
|
|
||
|
for datatype,info in datainfo.items():
|
||
|
for label in info['label']:
|
||
|
foundIt = False
|
||
|
for key in ['1_'+label,label]:
|
||
|
if key in table.labels:
|
||
|
foundIt = True
|
||
|
active[datatype].append(label)
|
||
|
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||
|
if not foundIt:
|
||
|
file['croak'].write('column %s not found...\n'%label)
|
||
|
|
||
|
# ------------------------------------------ assemble header ---------------------------------------
|
||
|
|
||
|
table.head_write()
|
||
|
|
||
|
# ------------------------------------------ process data ---------------------------------------
|
||
|
|
||
|
permutation = {}
|
||
|
theColumns = table.data_asArray([column['scalar'][label] for label in active['scalar']])
|
||
|
for i,label in enumerate(active['scalar']):
|
||
|
unique = list(set(theColumns[:,i]))
|
||
|
permutated = numpy.random.permutation(unique)
|
||
|
permutation[label] = dict(zip(unique,permutated))
|
||
|
|
||
|
table.data_rewind()
|
||
|
while table.data_read(): # read next data line of ASCII table
|
||
|
|
||
|
for datatype,labels in active.items(): # loop over vector,tensor
|
||
|
for label in labels: # loop over all requested stiffnesses
|
||
|
for c in xrange(column[datatype][label],
|
||
|
column[datatype][label]+datainfo[datatype]['len']):
|
||
|
table.data[c] = permutation[label][float(table.data[c])] # apply permutation
|
||
|
|
||
|
table.data_write() # output processed line
|
||
|
|
||
|
# ------------------------------------------ output result ---------------------------------------
|
||
|
|
||
|
table.output_flush() # just in case of buffered ASCII table
|
||
|
|
||
|
if file['name'] != 'STDIN':
|
||
|
file['input'].close() # close input ASCII table
|
||
|
file['output'].close() # close output ASCII table
|
||
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|