2021-03-16 21:50:24 +05:30
submodule ( phase : mechanical ) elastic
2021-05-24 20:49:38 +05:30
type :: tParameters
real ( pReal ) , dimension ( 6 , 6 ) :: &
2021-07-22 02:49:41 +05:30
C66 = 0.0_pReal !< Elastic constants in Voigt notation
2021-07-21 19:53:21 +05:30
real ( pReal ) :: &
mu , &
nu
2021-05-24 20:49:38 +05:30
end type tParameters
2021-06-01 02:32:51 +05:30
2021-05-24 20:49:38 +05:30
type ( tParameters ) , allocatable , dimension ( : ) :: param
2021-03-16 21:50:24 +05:30
contains
2021-03-18 21:34:20 +05:30
2021-03-16 21:50:24 +05:30
module subroutine elastic_init ( phases )
class ( tNode ) , pointer :: &
phases
integer :: &
2021-05-20 02:07:36 +05:30
ph
2021-03-16 21:50:24 +05:30
class ( tNode ) , pointer :: &
phase , &
mech , &
2021-05-20 02:07:36 +05:30
elastic
2021-05-24 20:49:38 +05:30
2021-03-16 21:50:24 +05:30
print '(/,a)' , ' <<<+- phase:mechanical:elastic init -+>>>'
2021-05-27 11:55:48 +05:30
print '(/,a)' , ' <<<+- phase:mechanical:elastic:Hooke init -+>>>'
print '(a,i0)' , ' # phases: ' , phases % length ; flush ( IO_STDOUT )
2021-03-16 21:50:24 +05:30
2021-05-24 20:49:38 +05:30
allocate ( param ( phases % length ) )
2021-06-01 02:32:51 +05:30
2021-03-16 21:50:24 +05:30
do ph = 1 , phases % length
phase = > phases % get ( ph )
mech = > phase % get ( 'mechanical' )
elastic = > mech % get ( 'elastic' )
2021-05-24 20:49:38 +05:30
if ( elastic % get_asString ( 'type' ) / = 'Hooke' ) call IO_error ( 200 , ext_msg = elastic % get_asString ( 'type' ) )
2021-06-01 02:32:51 +05:30
2021-05-24 20:49:38 +05:30
associate ( prm = > param ( ph ) )
2021-07-21 19:53:21 +05:30
2021-05-24 20:49:38 +05:30
prm % C66 ( 1 , 1 ) = elastic % get_asFloat ( 'C_11' )
prm % C66 ( 1 , 2 ) = elastic % get_asFloat ( 'C_12' )
prm % C66 ( 4 , 4 ) = elastic % get_asFloat ( 'C_44' )
2021-06-01 14:39:02 +05:30
if ( any ( phase_lattice ( ph ) == [ 'hP' , 'tI' ] ) ) then
2021-05-25 00:03:50 +05:30
prm % C66 ( 1 , 3 ) = elastic % get_asFloat ( 'C_13' )
prm % C66 ( 3 , 3 ) = elastic % get_asFloat ( 'C_33' )
endif
2021-06-01 14:39:02 +05:30
if ( phase_lattice ( ph ) == 'tI' ) prm % C66 ( 6 , 6 ) = elastic % get_asFloat ( 'C_66' )
2021-07-21 19:53:21 +05:30
prm % C66 = lattice_symmetrize_C66 ( prm % C66 , phase_lattice ( ph ) )
prm % nu = lattice_equivalent_nu ( prm % C66 , 'voigt' )
prm % mu = lattice_equivalent_mu ( prm % C66 , 'voigt' )
2021-07-23 01:09:05 +05:30
prm % C66 = math_sym3333to66 ( math_Voigt66to3333 ( prm % C66 ) ) ! Literature data is in Voigt notation
2021-07-21 19:53:21 +05:30
2021-05-24 20:49:38 +05:30
end associate
2021-03-16 21:50:24 +05:30
enddo
end subroutine elastic_init
!--------------------------------------------------------------------------------------------------
!> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to
!> the elastic and intermediate deformation gradients using Hooke's law
!--------------------------------------------------------------------------------------------------
module subroutine phase_hooke_SandItsTangents ( S , dS_dFe , dS_dFi , &
2021-04-29 02:59:57 +05:30
Fe , Fi , ph , en )
2021-03-16 21:50:24 +05:30
integer , intent ( in ) :: &
ph , &
2021-04-29 02:59:57 +05:30
en
2021-03-16 21:50:24 +05:30
real ( pReal ) , intent ( in ) , dimension ( 3 , 3 ) :: &
Fe , & !< elastic deformation gradient
Fi !< intermediate deformation gradient
real ( pReal ) , intent ( out ) , dimension ( 3 , 3 ) :: &
S !< 2nd Piola-Kirchhoff stress tensor in lattice configuration
real ( pReal ) , intent ( out ) , dimension ( 3 , 3 , 3 , 3 ) :: &
dS_dFe , & !< derivative of 2nd P-K stress with respect to elastic deformation gradient
dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient
real ( pReal ) , dimension ( 3 , 3 ) :: E
real ( pReal ) , dimension ( 3 , 3 , 3 , 3 ) :: C
integer :: &
i , j
2021-05-24 20:49:38 +05:30
2021-04-29 02:59:57 +05:30
C = math_66toSym3333 ( phase_homogenizedC ( ph , en ) )
2021-05-10 18:01:21 +05:30
C = phase_damage_C ( C , ph , en )
2021-03-16 21:50:24 +05:30
E = 0.5_pReal * ( matmul ( transpose ( Fe ) , Fe ) - math_I3 ) !< Green-Lagrange strain in unloaded configuration
S = math_mul3333xx33 ( C , matmul ( matmul ( transpose ( Fi ) , E ) , Fi ) ) !< 2PK stress in lattice configuration in work conjugate with GL strain pulled back to lattice configuration
do i = 1 , 3 ; do j = 1 , 3
dS_dFe ( i , j , 1 : 3 , 1 : 3 ) = matmul ( Fe , matmul ( matmul ( Fi , C ( i , j , 1 : 3 , 1 : 3 ) ) , transpose ( Fi ) ) ) !< dS_ij/dFe_kl = C_ijmn * Fi_lm * Fi_on * Fe_ko
dS_dFi ( i , j , 1 : 3 , 1 : 3 ) = 2.0_pReal * matmul ( matmul ( E , Fi ) , C ( i , j , 1 : 3 , 1 : 3 ) ) !< dS_ij/dFi_kl = C_ijln * E_km * Fe_mn
enddo ; enddo
end subroutine phase_hooke_SandItsTangents
2021-04-29 19:46:51 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief returns the homogenized elasticity matrix
!> ToDo: homogenizedC66 would be more consistent
!--------------------------------------------------------------------------------------------------
module function phase_homogenizedC ( ph , en ) result ( C )
real ( pReal ) , dimension ( 6 , 6 ) :: C
integer , intent ( in ) :: ph , en
plasticType : select case ( phase_plasticity ( ph ) )
case ( PLASTICITY_DISLOTWIN_ID ) plasticType
C = plastic_dislotwin_homogenizedC ( ph , en )
case default plasticType
2021-07-21 19:53:21 +05:30
C = param ( ph ) % C66
2021-04-29 19:46:51 +05:30
end select plasticType
end function phase_homogenizedC
2021-07-21 19:53:21 +05:30
module function elastic_C66 ( ph ) result ( C66 )
real ( pReal ) , dimension ( 6 , 6 ) :: C66
integer , intent ( in ) :: ph
C66 = param ( ph ) % C66
end function elastic_C66
module function elastic_mu ( ph ) result ( mu )
real ( pReal ) :: mu
integer , intent ( in ) :: ph
mu = param ( ph ) % mu
end function elastic_mu
module function elastic_nu ( ph ) result ( nu )
real ( pReal ) :: nu
integer , intent ( in ) :: ph
2021-08-19 23:27:52 +05:30
nu = param ( ph ) % nu
2021-07-21 19:53:21 +05:30
end function elastic_nu
2021-04-29 19:46:51 +05:30
2021-03-16 21:50:24 +05:30
end submodule elastic