DAMASK_EICMD/processing/post/addNorm.py

119 lines
6.4 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,math,string
2014-06-06 20:41:15 +05:30
from collections import defaultdict
2014-07-25 01:51:18 +05:30
from optparse import OptionParser
import damask
scriptID = string.replace('$Id$','\n','\\n')
scriptName = scriptID.split()[1]
# definition of element-wise p-norms for matrices
2014-07-25 01:51:18 +05:30
def normAbs(object): # p = 1
return sum(map(abs, object))
2014-07-25 01:51:18 +05:30
def normFrobenius(object): # p = 2
return math.sqrt(sum([x*x for x in object]))
2014-07-25 01:51:18 +05:30
def normMax(object): # p = infinity
return max(map(abs, object))
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
2014-07-25 01:51:18 +05:30
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add column(s) containing norm of requested column(s) being either vectors or tensors.
""", version = scriptID)
normChoices = ['abs','frobenius','max']
2014-07-25 01:51:18 +05:30
parser.add_option('-n','--norm', dest='norm', action='store', type='choice', choices=normChoices, metavar='string',
help='type of element-wise p-norm (%s) [frobenius]'%(','.join(map(str,normChoices))))
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', metavar='<string LIST>',
help='heading of columns containing vector field values')
2014-07-25 01:51:18 +05:30
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', metavar='<string LIST>',
help='heading of columns containing tensor field values')
2014-07-25 01:51:18 +05:30
parser.add_option('-s','--special', dest='special', action='extend', type='string', metavar='<string LIST>',
help='heading of columns containing field values of special dimension')
2014-07-25 01:51:18 +05:30
parser.add_option('-d','--dimension', dest='N', action='store', type='int', metavar='int',
help='dimension of special field values [%default]')
parser.set_defaults(norm = 'frobenius')
parser.set_defaults(vector = [])
parser.set_defaults(tensor = [])
parser.set_defaults(special = [])
parser.set_defaults(N = 12)
(options,filenames) = parser.parse_args()
if len(options.vector) + len(options.tensor) + len(options.special)== 0:
parser.error('no data column specified...')
2014-07-25 01:51:18 +05:30
datainfo = { # list of requested labels per datatype
'vector': {'len':3,
'label':[]},
'tensor': {'len':9,
'label':[]},
'special': {'len':options.N,
'label':[]},
}
if options.vector != None: datainfo['vector']['label'] += options.vector
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
if options.special != None: datainfo['special']['label'] += options.special
# ------------------------------------------ setup file handles ------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
#--- loop over input files -------------------------------------------------------------------------
for file in files:
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
2014-07-25 01:51:18 +05:30
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
active = defaultdict(list)
column = defaultdict(dict)
for datatype,info in datainfo.items():
for label in info['label']:
2014-07-25 01:51:18 +05:30
key = {True :'1_%s',
False:'%s' }[info['len']>1]%label
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
active[datatype].append(label)
column[datatype][label] = table.labels.index(key) # remember columns of requested data
# ------------------------------------------ assemble header ---------------------------------------
2014-07-25 01:51:18 +05:30
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested determinants
table.labels_append('norm%s(%s)'%(options.norm.capitalize(),label)) # extend ASCII header with new labels
table.head_write()
# ------------------------------------------ process data ------------------------------------------
outputAlive = True
2014-07-25 01:51:18 +05:30
while outputAlive and table.data_read(): # read next data line of ASCII table
for datatype,labels in active.items(): # loop over vector,tensor
for label in labels: # loop over all requested norms
eval("table.data_append(norm%s(map(float,table.data[column[datatype][label]:"\
"column[datatype][label]+datainfo[datatype]['len']])))"%options.norm.capitalize())
2014-07-25 01:51:18 +05:30
outputAlive = table.data_write() # output processed line
# ------------------------------------------ output result -----------------------------------------
2014-07-25 01:51:18 +05:30
outputAlive and table.output_flush() # just in case of buffered ASCII table
2014-07-25 01:51:18 +05:30
file['input'].close() # close input ASCII table (works for stdin)
file['output'].close() # close output ASCII table (works for stdout)
if file['name'] != 'STDIN':
2014-07-25 01:51:18 +05:30
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new