364 lines
20 KiB
Python
364 lines
20 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import os,sys,string,itertools,re,time,copy,operator,threading
|
||
|
import numpy as np
|
||
|
import damask
|
||
|
from scipy import spatial
|
||
|
from collections import defaultdict
|
||
|
from optparse import OptionParser, OptionGroup, Option, SUPPRESS_HELP
|
||
|
|
||
|
scriptID = string.replace('$Id: addGrainID.py 2549 2013-07-10 09:13:21Z MPIE\p.eisenlohr $','\n','\\n')
|
||
|
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
||
|
|
||
|
#--------------------------------------------------------------------------------------------------
|
||
|
class extendedOption(Option):
|
||
|
#--------------------------------------------------------------------------------------------------
|
||
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
||
|
|
||
|
ACTIONS = Option.ACTIONS + ("extend",)
|
||
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||
|
|
||
|
def take_action(self, action, dest, opt, value, values, parser):
|
||
|
if action == "extend":
|
||
|
lvalue = value.split(",")
|
||
|
values.ensure_value(dest, []).extend(lvalue)
|
||
|
else:
|
||
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
||
|
|
||
|
|
||
|
# -----------------------------
|
||
|
class backgroundMessage(threading.Thread):
|
||
|
# -----------------------------
|
||
|
|
||
|
def __init__(self):
|
||
|
threading.Thread.__init__(self)
|
||
|
self.message = ''
|
||
|
self.new_message = ''
|
||
|
self.counter = 0
|
||
|
self.symbols = ['- ', '\ ', '| ', '/ ',]
|
||
|
self.waittime = 0.5
|
||
|
|
||
|
def __quit__(self):
|
||
|
length = len(self.message) + len(self.symbols[self.counter])
|
||
|
sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length)
|
||
|
sys.stderr.write('')
|
||
|
|
||
|
def run(self):
|
||
|
while not threading.enumerate()[0]._Thread__stopped:
|
||
|
time.sleep(self.waittime)
|
||
|
self.update_message()
|
||
|
self.__quit__()
|
||
|
|
||
|
def set_message(self, new_message):
|
||
|
self.new_message = new_message
|
||
|
self.print_message()
|
||
|
|
||
|
def print_message(self):
|
||
|
length = len(self.message) + len(self.symbols[self.counter])
|
||
|
sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length) # delete former message
|
||
|
sys.stderr.write(self.symbols[self.counter] + self.new_message) # print new message
|
||
|
self.message = self.new_message
|
||
|
|
||
|
def update_message(self):
|
||
|
self.counter = (self.counter + 1)%len(self.symbols)
|
||
|
self.print_message()
|
||
|
|
||
|
|
||
|
parser = OptionParser(option_class=extendedOption, usage='%prog options [file[s]]', description = """
|
||
|
Add grain index based on similiarity of crystal lattice orientation.
|
||
|
""" + string.replace(scriptID,'\n','\\n')
|
||
|
)
|
||
|
|
||
|
parser.add_option('-r', '--radius', dest='radius', type='float',
|
||
|
help = 'search radius')
|
||
|
parser.add_option('-d', '--disorientation', dest='disorientation', type='float', metavar='ANGLE',
|
||
|
help = 'disorientation threshold per grain [%default] (degrees)')
|
||
|
parser.add_option('-s', '--symmetry', dest='symmetry', type='string',
|
||
|
help = 'crystal symmetry [%default]')
|
||
|
parser.add_option('-e', '--eulers', dest='eulers', type='string', metavar='LABEL',
|
||
|
help = 'Euler angles')
|
||
|
parser.add_option( '--degrees', dest='degrees', action='store_true',
|
||
|
help = 'Euler angles are given in degrees [%default]')
|
||
|
parser.add_option('-m', '--matrix', dest='matrix', type='string', metavar='LABEL',
|
||
|
help = 'orientation matrix')
|
||
|
parser.add_option('-a', dest='a', type='string', metavar='LABEL',
|
||
|
help = 'crystal frame a vector')
|
||
|
parser.add_option('-b', dest='b', type='string', metavar='LABEL',
|
||
|
help = 'crystal frame b vector')
|
||
|
parser.add_option('-c', dest='c', type='string', metavar='LABEL',
|
||
|
help = 'crystal frame c vector')
|
||
|
parser.add_option('-q', '--quaternion', dest='quaternion', type='string', metavar='LABEL',
|
||
|
help = 'quaternion')
|
||
|
parser.add_option('-p', '--position', dest='position', type='string', metavar='LABEL',
|
||
|
help = 'spatial position of voxel [%default]')
|
||
|
|
||
|
parser.set_defaults(symmetry = 'cubic')
|
||
|
parser.set_defaults(position = 'pos')
|
||
|
parser.set_defaults(degrees = False)
|
||
|
|
||
|
(options, filenames) = parser.parse_args()
|
||
|
|
||
|
if options.radius == None:
|
||
|
parser.error('no radius specified.')
|
||
|
|
||
|
datainfo = { # list of requested labels per datatype
|
||
|
'tensor': {'len':9,
|
||
|
'label':[]},
|
||
|
'vector': {'len':3,
|
||
|
'label':[]},
|
||
|
'quaternion': {'len':4,
|
||
|
'label':[]},
|
||
|
}
|
||
|
|
||
|
if options.eulers != None: datainfo['vector']['label'] += [options.eulers]; input = 'eulers'
|
||
|
if options.a != None and \
|
||
|
options.b != None and \
|
||
|
options.c != None: datainfo['vector']['label'] += [options.a,options.b,options.c]; input = 'frame'
|
||
|
if options.matrix != None: datainfo['tensor']['label'] += [options.matrix]; input = 'matrix'
|
||
|
if options.quaternion != None: datainfo['quaternion']['label'] += [options.quaternion]; input = 'quaternion'
|
||
|
|
||
|
datainfo['vector']['label'] += [options.position]
|
||
|
|
||
|
toRadians = np.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
|
||
|
cos_disorientation = np.cos(options.disorientation/2.0*toRadians)
|
||
|
|
||
|
# ------------------------------------------ setup file handles ---------------------------------------
|
||
|
|
||
|
files = []
|
||
|
if filenames == []:
|
||
|
files.append({'name':'STDIN',
|
||
|
'input':sys.stdin,
|
||
|
'output':sys.stdout,
|
||
|
'croak':sys.stderr})
|
||
|
else:
|
||
|
for name in filenames:
|
||
|
if os.path.exists(name):
|
||
|
files.append({'name':name,
|
||
|
'input':open(name),
|
||
|
'output':open(name+'_tmp','w'),
|
||
|
'croak':sys.stderr})
|
||
|
|
||
|
#--- loop over input files ------------------------------------------------------------------------
|
||
|
|
||
|
for file in files:
|
||
|
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||
|
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||
|
|
||
|
table = damask.ASCIItable(file['input'],file['output'],buffered = False) # make unbuffered ASCII_table
|
||
|
table.head_read() # read ASCII header info
|
||
|
|
||
|
# --------------- figure out columns to process
|
||
|
|
||
|
column = {}
|
||
|
missingColumns = False
|
||
|
|
||
|
for datatype,info in datainfo.items():
|
||
|
for label in info['label']:
|
||
|
key = list(set([label, '1_'+label]) & set(table.labels)) # check for intersection with table labels
|
||
|
if key == []:
|
||
|
file['croak'].write('column %s not found...\n'%label)
|
||
|
missingColumns = True # break if label not found
|
||
|
else:
|
||
|
column[label] = table.labels.index(key[0]) # remember columns of requested data
|
||
|
|
||
|
if missingColumns:
|
||
|
continue
|
||
|
|
||
|
table.labels_append('grainID_%g'%options.disorientation)
|
||
|
|
||
|
# ------------------------------------------ assemble header ---------------------------------------
|
||
|
|
||
|
table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:]))
|
||
|
table.head_write()
|
||
|
|
||
|
# ------------------------------------------ process data ---------------------------------------
|
||
|
|
||
|
# ------------------------------------------ build KD tree ---------------------------------------
|
||
|
|
||
|
|
||
|
# --- start background messaging
|
||
|
|
||
|
bg = backgroundMessage()
|
||
|
bg.start()
|
||
|
|
||
|
bg.set_message('reading positions...')
|
||
|
|
||
|
backup_readSize = table.__IO__['validReadSize'] # bad hack to circumvent overwriting by readArray...
|
||
|
backup_labels = table.labels # bad hack...
|
||
|
table.data_rewind()
|
||
|
table.data_readArray(range(column[options.position],
|
||
|
column[options.position]+datainfo['vector']['len'])) # read position vectors
|
||
|
# file['croak'].write('%i\n'%(len(table.data)))
|
||
|
grainID = -np.ones(len(table.data),dtype=int)
|
||
|
|
||
|
start = tick = time.clock()
|
||
|
bg.set_message('building KD tree...')
|
||
|
kdtree = spatial.KDTree(copy.deepcopy(table.data))
|
||
|
# neighborhood = kdtree.query_ball_tree(kdtree,options.radius)
|
||
|
# file['croak'].write('%.2f seconds\n'%(time.clock()-tick))
|
||
|
# file['croak'].write('%i points\n'%(len(neighborhood)))
|
||
|
|
||
|
|
||
|
# ------------------------------------------ assign grain IDs ---------------------------------------
|
||
|
|
||
|
orientations = [] # quaternions found for grain
|
||
|
memberCounts = [] # number of voxels in grain
|
||
|
|
||
|
table.data_rewind()
|
||
|
table.__IO__['validReadSize'] = backup_readSize # bad hack to circumvent overwriting by readArray...
|
||
|
table.labels = backup_labels # bad hack...
|
||
|
p = 0 # point counter
|
||
|
g = 0 # grain counter
|
||
|
matchedID = -1
|
||
|
lastDistance = np.dot(kdtree.data[-1]-kdtree.data[0],kdtree.data[-1]-kdtree.data[0]) # (arbitrarily) use diagonal of cloud
|
||
|
|
||
|
tick = time.clock()
|
||
|
while table.data_read(): # read next data line of ASCII table
|
||
|
|
||
|
if p > 0 and p % 1000 == 0:
|
||
|
|
||
|
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
|
||
|
bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
|
||
|
|
||
|
if input == 'eulers':
|
||
|
o = damask.Orientation(Eulers=toRadians*\
|
||
|
np.array(map(float,table.data[column[options.eulers]:\
|
||
|
column[options.eulers]+datainfo['vector']['len']])),
|
||
|
symmetry=options.symmetry).reduced()
|
||
|
elif input == 'matrix':
|
||
|
o = damask.Orientation(matrix=\
|
||
|
np.array([map(float,table.data[column[options.matrix]:\
|
||
|
column[options.matrix]+datainfo['tensor']['len']])]).reshape(np.sqrt(datainfo['tensor']['len']),
|
||
|
np.sqrt(datainfo['tensor']['len'])).transpose(),
|
||
|
symmetry=options.symmetry).reduced()
|
||
|
elif input == 'frame':
|
||
|
o = damask.Orientation(matrix=\
|
||
|
np.array([map(float,table.data[column[options.a]:\
|
||
|
column[options.a]+datainfo['vector']['len']] + \
|
||
|
table.data[column[options.b]:\
|
||
|
column[options.b]+datainfo['vector']['len']] + \
|
||
|
table.data[column[options.c]:\
|
||
|
column[options.c]+datainfo['vector']['len']]
|
||
|
)]).reshape(3,3),
|
||
|
symmetry=options.symmetry).reduced()
|
||
|
elif input == 'quaternion':
|
||
|
o = damask.Orientation(quaternion=\
|
||
|
np.array(map(float,table.data[column[options.quaternion]:\
|
||
|
column[options.quaternion]+datainfo['quaternion']['len']])),
|
||
|
symmetry=options.symmetry).reduced()
|
||
|
|
||
|
matched = False
|
||
|
|
||
|
# check against last matched needs to be really picky. best would be to exclude jumps across the poke (checking distance between last and me?)
|
||
|
# when walking through neighborhood first check whether grainID of that point has already been tested, if yes, skip!
|
||
|
|
||
|
if matchedID != -1: # has matched before?
|
||
|
matched = (o.quaternion.conjugated() * orientations[matchedID].quaternion).w > cos_disorientation
|
||
|
# if matchedID > 0: # has matched before?
|
||
|
# thisDistance = np.dot(kdtree.data[p]-kdtree.data[p-1],kdtree.data[p]-kdtree.data[p-1],)
|
||
|
# if thisDistance < 4.*lastDistance: # about as close as last point pair?
|
||
|
# disorientation = o.disorientation(orientations[matchedID-1]).quaternion.w # check whether former grainID matches now again
|
||
|
# matched = disorientation > cos_disorientation
|
||
|
# lastDistance = thisDistance
|
||
|
#
|
||
|
|
||
|
if not matched:
|
||
|
alreadyChecked = {}
|
||
|
bestDisorientation = damask.Orientation(quaternion=np.array([0,0,0,1]),symmetry = options.symmetry) # initialize to 180 deg rotation as worst case
|
||
|
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
|
||
|
gID = grainID[i]
|
||
|
if gID != -1 and gID not in alreadyChecked: # an already indexed point belonging to a grain not yet tested?
|
||
|
alreadyChecked[gID] = True # remember not to check again
|
||
|
disorientation = o.disorientation(orientations[gID]) # compare against that grain's orientation
|
||
|
if disorientation.quaternion.w > cos_disorientation and \
|
||
|
disorientation.quaternion.w >= bestDisorientation.quaternion.w: # within disorientation threshold and better than current best?
|
||
|
matched = True
|
||
|
matchedID = gID # remember that grain
|
||
|
# file['croak'].write('%i %f '%(matchedID,disorientation.quaternion.w))
|
||
|
|
||
|
bestDisorientation = disorientation
|
||
|
|
||
|
if not matched: # no match -> new grain found
|
||
|
memberCounts += [1] # start new membership counter
|
||
|
orientations += [o] # initialize with current orientation
|
||
|
matchedID = g
|
||
|
g += 1 # increment grain counter
|
||
|
# file['croak'].write('+')
|
||
|
|
||
|
else: # did match existing grain
|
||
|
memberCounts[matchedID] += 1
|
||
|
# file['croak'].write('got back %s is close by %f to %s\n'%(np.degrees(bestQ.asEulers()),np.degrees(2*np.arccos(bestDisorientation.quaternion.w)),np.degrees(bestFormerQ.asEulers())))
|
||
|
# file['croak'].write('.%i %s'%(matchedID, orientations[matchedID-1].quaternion))
|
||
|
# M = (1. - 1./memberCounts[matchedID-1]) * bestFormerQ.asM() + 1./memberCounts[matchedID-1] * bestQ.asM() # 4x4 matrix holding weighted quaternion outer products per grain
|
||
|
# w,v = np.linalg.eigh(M)
|
||
|
# avgQ = damask.Orientation(quaternion=v[:,w.argmax()],symmetry=options.symmetry)
|
||
|
# file['croak'].write('new avg has misori of %f\n'%np.degrees(2*np.arccos(orientations[matchedID-1].disorientation(avgQ)[0].quaternion.w)))
|
||
|
# orientations[matchedID-1].quaternion = damask.Quaternion(v[:,w.argmax()])
|
||
|
# orientations[matchedID-1] = damask.Orientation(quaternion = bestDisorientation.quaternion**(1./memberCounts[matchedID-1]) \
|
||
|
# * orientations[matchedID-1].quaternion,
|
||
|
# symmetry = options.symmetry) # adjust average orientation taking newest member into account
|
||
|
# file['croak'].write(' stored --> %s\n'%(np.degrees(orientations[matchedID-1].quaternion.asEulers())))
|
||
|
# file['croak'].write('.')
|
||
|
|
||
|
grainID[p] = matchedID # remember grain index assigned to point
|
||
|
p += 1 # increment point
|
||
|
|
||
|
bg.set_message('identifying similar orientations among %i grains...'%(len(orientations)))
|
||
|
|
||
|
memberCounts = np.array(memberCounts)
|
||
|
similarOrientations = [[] for i in xrange(len(orientations))]
|
||
|
|
||
|
for i,orientation in enumerate(orientations): # compare each identified orientation...
|
||
|
for j in xrange(i+1,len(orientations)): # ...against all others that were defined afterwards
|
||
|
if orientation.disorientation(orientations[j]).quaternion.w > cos_disorientation: # similar orientations in both grainIDs?
|
||
|
similarOrientations[i].append(j) # remember in upper triangle...
|
||
|
similarOrientations[j].append(i) # ...and lower triangle of matrix
|
||
|
|
||
|
if similarOrientations[i] != []:
|
||
|
bg.set_message('grainID %i is as: %s'%(i,' '.join(map(lambda x:str(x),similarOrientations[i]))))
|
||
|
|
||
|
stillShifting = True
|
||
|
while stillShifting:
|
||
|
stillShifting = False
|
||
|
tick = time.clock()
|
||
|
|
||
|
for p,gID in enumerate(grainID): # walk through all points
|
||
|
if p > 0 and p % 1000 == 0:
|
||
|
|
||
|
time_delta = (time.clock()-tick) * (len(grainID) - p) / p
|
||
|
bg.set_message('(%02i:%02i:%02i) shifting ID of point %i out of %i (grain count %i)...'%(time_delta//3600,time_delta%3600//60,time_delta%60,p,len(grainID),len(orientations)))
|
||
|
if similarOrientations[gID] != []: # orientation of my grainID is similar to someone else?
|
||
|
similarNeighbors = defaultdict(int) # dict holding frequency of neighboring grainIDs that share my orientation (freq info not used...)
|
||
|
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
|
||
|
if grainID[i] in similarOrientations[gID]: # neighboring point shares my orientation?
|
||
|
similarNeighbors[grainID[i]] += 1 # remember its grainID
|
||
|
if similarNeighbors != {}: # found similar orientation(s) in neighborhood
|
||
|
candidates = np.array([gID]+similarNeighbors.keys()) # possible replacement grainIDs for me
|
||
|
grainID[p] = candidates[np.argsort(memberCounts[candidates])[-1]] # adopt ID that is most frequent in overall dataset
|
||
|
memberCounts[gID] -= 1 # my former ID loses one fellow
|
||
|
memberCounts[grainID[p]] += 1 # my new ID gains one fellow
|
||
|
bg.set_message('%i:%i --> %i'%(p,gID,grainID[p])) # report switch of grainID
|
||
|
stillShifting = True
|
||
|
|
||
|
table.data_rewind()
|
||
|
p = 0
|
||
|
while table.data_read(): # read next data line of ASCII table
|
||
|
table.data_append(1+grainID[p]) # add grain ID
|
||
|
table.data_write() # output processed line
|
||
|
p += 1
|
||
|
|
||
|
bg.set_message('done after %i seconds'%(time.clock()-start))
|
||
|
|
||
|
# for i,o in enumerate(orientations): # croak about average grain orientations
|
||
|
# file['croak'].write('%i: %s\n'%(i,' '.join(map(str,o.quaternion.asEulers()))))
|
||
|
|
||
|
# ------------------------------------------ output result ---------------------------------------
|
||
|
|
||
|
table.output_flush() # just in case of buffered ASCII table
|
||
|
table.close() # close ASCII tables
|
||
|
if file['name'] != 'STDIN':
|
||
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|