DAMASK_EICMD/src/grid/grid_thermal_spectral.f90

310 lines
14 KiB
Fortran
Raw Normal View History

!--------------------------------------------------------------------------------------------------
2019-03-12 16:06:18 +05:30
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Shaokang Zhang, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Spectral solver for thermal conduction
!--------------------------------------------------------------------------------------------------
2019-03-12 04:07:06 +05:30
module grid_thermal_spectral
#include <petsc/finclude/petscsnes.h>
#include <petsc/finclude/petscdmda.h>
2019-03-12 16:06:18 +05:30
use PETScdmda
use PETScsnes
2019-06-10 00:50:38 +05:30
use prec
use spectral_utilities
2019-09-28 03:04:34 +05:30
use mesh_grid
2019-06-10 00:50:38 +05:30
use thermal_conduction
use numerics
2020-01-03 18:23:23 +05:30
use material
2019-03-12 16:06:18 +05:30
implicit none
private
2019-06-10 00:50:38 +05:30
!--------------------------------------------------------------------------------------------------
! derived types
2019-03-12 16:06:18 +05:30
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
2019-03-12 16:06:18 +05:30
SNES, private :: thermal_snes
Vec, private :: solution_vec
PetscInt, private :: xstart, xend, ystart, yend, zstart, zend
real(pReal), private, dimension(:,:,:), allocatable :: &
2020-01-31 03:37:45 +05:30
T_current, & !< field of current temperature
T_lastInc, & !< field of previous temperature
T_stagInc !< field of staggered temperature
!--------------------------------------------------------------------------------------------------
! reference diffusion tensor, mobility etc.
2019-03-12 16:06:18 +05:30
integer, private :: totalIter = 0 !< total iteration in current increment
2020-01-31 03:37:45 +05:30
real(pReal), dimension(3,3), private :: K_ref
real(pReal), private :: mu_ref
2019-03-12 16:06:18 +05:30
public :: &
grid_thermal_spectral_init, &
grid_thermal_spectral_solution, &
grid_thermal_spectral_forward
private :: &
formResidual
contains
!--------------------------------------------------------------------------------------------------
2019-03-12 10:23:12 +05:30
!> @brief allocates all neccessary fields and fills them with data
! ToDo: Restart not implemented
!--------------------------------------------------------------------------------------------------
2019-03-12 04:07:06 +05:30
subroutine grid_thermal_spectral_init
2019-03-09 14:24:33 +05:30
2020-01-12 05:19:03 +05:30
PetscInt, dimension(0:worldsize-1) :: localK
2019-03-09 14:24:33 +05:30
integer :: i, j, k, cell
DM :: thermal_grid
2019-03-12 04:07:06 +05:30
PetscScalar, dimension(:,:,:), pointer :: x_scal
2019-03-09 14:24:33 +05:30
PetscErrorCode :: ierr
2019-03-12 04:07:06 +05:30
write(6,'(/,a)') ' <<<+- grid_thermal_spectral init -+>>>'
2019-03-09 15:32:12 +05:30
write(6,'(/,a)') ' Shanthraj et al., Handbook of Mechanics of Materials, 2019'
write(6,'(a)') ' https://doi.org/10.1007/978-981-10-6855-3_80'
2019-03-12 04:07:06 +05:30
!--------------------------------------------------------------------------------------------------
! set default and user defined options for PETSc
call PETScOptionsInsertString(PETSC_NULL_OPTIONS,'-thermal_snes_type ngmres',ierr)
CHKERRQ(ierr)
call PETScOptionsInsertString(PETSC_NULL_OPTIONS,trim(petsc_options),ierr)
CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
2019-03-09 14:24:33 +05:30
call SNESCreate(PETSC_COMM_WORLD,thermal_snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(thermal_snes,'thermal_',ierr);CHKERRQ(ierr)
2020-01-12 05:19:03 +05:30
localK = 0
localK(worldrank) = grid3
2019-03-09 14:24:33 +05:30
call MPI_Allreduce(MPI_IN_PLACE,localK,worldsize,MPI_INTEGER,MPI_SUM,PETSC_COMM_WORLD,ierr)
call DMDACreate3D(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point
grid(1),grid(2),grid(3), & ! global grid
1, 1, worldsize, &
2019-03-12 16:06:18 +05:30
1, 0, & ! #dof (thermal phase field), ghost boundary width (domain overlap)
[grid(1)],[grid(2)],localK, & ! local grid
thermal_grid,ierr) ! handle, error
2019-03-09 14:24:33 +05:30
CHKERRQ(ierr)
call SNESSetDM(thermal_snes,thermal_grid,ierr); CHKERRQ(ierr) ! connect snes to da
call DMsetFromOptions(thermal_grid,ierr); CHKERRQ(ierr)
call DMsetUp(thermal_grid,ierr); CHKERRQ(ierr)
2019-03-12 04:07:06 +05:30
call DMCreateGlobalVector(thermal_grid,solution_vec,ierr); CHKERRQ(ierr) ! global solution vector (grid x 1, i.e. every def grad tensor)
2019-03-12 10:23:12 +05:30
call DMDASNESSetFunctionLocal(thermal_grid,INSERT_VALUES,formResidual,PETSC_NULL_SNES,ierr) ! residual vector of same shape as solution vector
2019-03-09 14:24:33 +05:30
CHKERRQ(ierr)
call SNESSetFromOptions(thermal_snes,ierr); CHKERRQ(ierr) ! pull it all together with additional CLI arguments
!--------------------------------------------------------------------------------------------------
! init fields
2019-03-09 14:24:33 +05:30
call DMDAGetCorners(thermal_grid,xstart,ystart,zstart,xend,yend,zend,ierr)
CHKERRQ(ierr)
xend = xstart + xend - 1
yend = ystart + yend - 1
zend = zstart + zend - 1
2020-01-31 03:37:45 +05:30
allocate(T_current(grid(1),grid(2),grid3), source=0.0_pReal)
allocate(T_lastInc(grid(1),grid(2),grid3), source=0.0_pReal)
allocate(T_stagInc(grid(1),grid(2),grid3), source=0.0_pReal)
2019-03-09 14:24:33 +05:30
cell = 0
2019-03-12 16:06:18 +05:30
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
2019-03-09 14:24:33 +05:30
cell = cell + 1
2020-01-31 03:37:45 +05:30
T_current(i,j,k) = temperature(material_homogenizationAt(cell))% &
2019-03-10 15:53:39 +05:30
p(thermalMapping(material_homogenizationAt(cell))%p(1,cell))
2020-01-31 03:37:45 +05:30
T_lastInc(i,j,k) = T_current(i,j,k)
T_stagInc(i,j,k) = T_current(i,j,k)
2019-03-09 14:24:33 +05:30
enddo; enddo; enddo
2019-03-12 04:07:06 +05:30
call DMDAVecGetArrayF90(thermal_grid,solution_vec,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
2020-01-31 03:37:45 +05:30
x_scal(xstart:xend,ystart:yend,zstart:zend) = T_current
2019-03-12 04:07:06 +05:30
call DMDAVecRestoreArrayF90(thermal_grid,solution_vec,x_scal,ierr); CHKERRQ(ierr)
2020-01-31 03:37:45 +05:30
call updateReference
2019-03-12 04:07:06 +05:30
end subroutine grid_thermal_spectral_init
2019-03-12 16:06:18 +05:30
!--------------------------------------------------------------------------------------------------
2016-06-27 21:20:43 +05:30
!> @brief solution for the spectral thermal scheme with internal iterations
!--------------------------------------------------------------------------------------------------
2019-09-23 19:20:25 +05:30
function grid_thermal_spectral_solution(timeinc,timeinc_old) result(solution)
2019-03-09 14:24:33 +05:30
real(pReal), intent(in) :: &
2019-03-12 04:07:06 +05:30
timeinc, & !< increment in time for current solution
2019-09-23 19:20:25 +05:30
timeinc_old !< increment in time of last increment
2019-03-09 14:24:33 +05:30
integer :: i, j, k, cell
2019-03-12 04:07:06 +05:30
type(tSolutionState) :: solution
2020-01-31 03:37:45 +05:30
PetscInt :: devNull
PetscReal :: T_min, T_max, stagNorm, solnNorm
2016-06-27 21:20:43 +05:30
2019-03-09 14:24:33 +05:30
PetscErrorCode :: ierr
SNESConvergedReason :: reason
2016-06-27 21:20:43 +05:30
2019-03-12 04:07:06 +05:30
solution%converged =.false.
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
2019-03-09 14:24:33 +05:30
params%timeinc = timeinc
params%timeincOld = timeinc_old
2019-03-12 04:07:06 +05:30
call SNESSolve(thermal_snes,PETSC_NULL_VEC,solution_vec,ierr); CHKERRQ(ierr)
2019-03-09 14:24:33 +05:30
call SNESGetConvergedReason(thermal_snes,reason,ierr); CHKERRQ(ierr)
2019-03-09 14:24:33 +05:30
if (reason < 1) then
2019-03-12 04:07:06 +05:30
solution%converged = .false.
solution%iterationsNeeded = itmax
2019-03-09 14:24:33 +05:30
else
2019-03-12 04:07:06 +05:30
solution%converged = .true.
solution%iterationsNeeded = totalIter
2019-03-09 14:24:33 +05:30
endif
2020-01-31 03:37:45 +05:30
stagNorm = maxval(abs(T_current - T_stagInc))
solnNorm = maxval(abs(T_current))
2019-03-09 14:24:33 +05:30
call MPI_Allreduce(MPI_IN_PLACE,stagNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
call MPI_Allreduce(MPI_IN_PLACE,solnNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
2020-01-31 03:37:45 +05:30
T_stagInc = T_current
2019-04-04 03:12:30 +05:30
solution%stagConverged = stagNorm < max(err_thermal_tolAbs, err_thermal_tolRel*solnNorm)
!--------------------------------------------------------------------------------------------------
! updating thermal state
2019-03-09 14:24:33 +05:30
cell = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
2020-01-31 03:37:45 +05:30
call thermal_conduction_putTemperatureAndItsRate(T_current(i,j,k), &
(T_current(i,j,k)-T_lastInc(i,j,k))/params%timeinc, &
2019-03-09 14:24:33 +05:30
1,cell)
enddo; enddo; enddo
2020-01-31 03:37:45 +05:30
call VecMin(solution_vec,devNull,T_min,ierr); CHKERRQ(ierr)
call VecMax(solution_vec,devNull,T_max,ierr); CHKERRQ(ierr)
2019-03-12 04:07:06 +05:30
if (solution%converged) &
2019-03-09 14:24:33 +05:30
write(6,'(/,a)') ' ... thermal conduction converged ..................................'
write(6,'(/,a,f8.4,2x,f8.4,2x,f8.4,/)',advance='no') ' Minimum|Maximum|Delta Temperature / K = ',&
2020-01-31 03:37:45 +05:30
T_min, T_max, stagNorm
2019-03-09 14:24:33 +05:30
write(6,'(/,a)') ' ==========================================================================='
flush(6)
2019-03-12 04:07:06 +05:30
end function grid_thermal_spectral_solution
2019-03-12 10:23:12 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine grid_thermal_spectral_forward(cutBack)
2019-06-10 00:50:38 +05:30
logical, intent(in) :: cutBack
2019-03-12 16:06:18 +05:30
integer :: i, j, k, cell
DM :: dm_local
PetscScalar, dimension(:,:,:), pointer :: x_scal
PetscErrorCode :: ierr
if (cutBack) then
2020-01-31 03:37:45 +05:30
T_current = T_lastInc
T_stagInc = T_lastInc
2019-03-12 10:23:12 +05:30
!--------------------------------------------------------------------------------------------------
! reverting thermal field state
2019-03-12 16:06:18 +05:30
cell = 0
call SNESGetDM(thermal_snes,dm_local,ierr); CHKERRQ(ierr)
call DMDAVecGetArrayF90(dm_local,solution_vec,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
2020-01-31 03:37:45 +05:30
x_scal(xstart:xend,ystart:yend,zstart:zend) = T_current
2019-03-12 16:06:18 +05:30
call DMDAVecRestoreArrayF90(dm_local,solution_vec,x_scal,ierr); CHKERRQ(ierr)
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
2020-01-31 03:37:45 +05:30
call thermal_conduction_putTemperatureAndItsRate(T_current(i,j,k), &
(T_current(i,j,k) - &
T_lastInc(i,j,k))/params%timeinc, &
2019-03-12 16:06:18 +05:30
1,cell)
enddo; enddo; enddo
else
2020-01-31 03:37:45 +05:30
T_lastInc = T_current
call updateReference
2019-03-12 16:06:18 +05:30
endif
2019-03-12 10:23:12 +05:30
end subroutine grid_thermal_spectral_forward
!--------------------------------------------------------------------------------------------------
!> @brief forms the spectral thermal residual vector
!--------------------------------------------------------------------------------------------------
2019-03-12 10:23:12 +05:30
subroutine formResidual(in,x_scal,f_scal,dummy,ierr)
2019-03-12 16:06:18 +05:30
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, dimension( &
XG_RANGE,YG_RANGE,ZG_RANGE), intent(in) :: &
x_scal
PetscScalar, dimension( &
X_RANGE,Y_RANGE,Z_RANGE), intent(out) :: &
f_scal
PetscObject :: dummy
PetscErrorCode :: ierr
integer :: i, j, k, cell
real(pReal) :: Tdot, dTdot_dT
2020-01-31 03:37:45 +05:30
T_current = x_scal
!--------------------------------------------------------------------------------------------------
! evaluate polarization field
2019-03-12 16:06:18 +05:30
scalarField_real = 0.0_pReal
2020-01-31 03:37:45 +05:30
scalarField_real(1:grid(1),1:grid(2),1:grid3) = T_current
2019-03-12 16:06:18 +05:30
call utilities_FFTscalarForward
2020-01-31 03:37:45 +05:30
call utilities_fourierScalarGradient !< calculate gradient of temperature field
2019-03-12 16:06:18 +05:30
call utilities_FFTvectorBackward
cell = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
2020-01-31 03:37:45 +05:30
vectorField_real(1:3,i,j,k) = matmul(thermal_conduction_getConductivity33(1,cell) - K_ref, &
2019-03-12 16:06:18 +05:30
vectorField_real(1:3,i,j,k))
enddo; enddo; enddo
call utilities_FFTvectorForward
2020-01-31 03:37:45 +05:30
call utilities_fourierVectorDivergence !< calculate temperature divergence in fourier field
2019-03-12 16:06:18 +05:30
call utilities_FFTscalarBackward
cell = 0
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
2020-01-31 03:37:45 +05:30
call thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T_current(i,j,k), 1, cell)
scalarField_real(i,j,k) = params%timeinc*(scalarField_real(i,j,k) + Tdot) &
+ thermal_conduction_getMassDensity (1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)*(T_lastInc(i,j,k) - &
T_current(i,j,k))&
+ mu_ref*T_current(i,j,k)
2019-03-12 16:06:18 +05:30
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
2020-01-31 03:37:45 +05:30
! convolution of temperature field with green operator
2019-03-12 16:06:18 +05:30
call utilities_FFTscalarForward
2020-01-31 03:37:45 +05:30
call utilities_fourierGreenConvolution(K_ref, mu_ref, params%timeinc)
2019-03-12 16:06:18 +05:30
call utilities_FFTscalarBackward
!--------------------------------------------------------------------------------------------------
! constructing residual
2020-01-31 03:37:45 +05:30
f_scal = T_current - scalarField_real(1:grid(1),1:grid(2),1:grid3)
2019-03-12 10:23:12 +05:30
end subroutine formResidual
2020-01-31 03:37:45 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief update reference viscosity and conductivity
!--------------------------------------------------------------------------------------------------
subroutine updateReference
integer :: i,j,k,cell,ierr
cell = 0
K_ref = 0.0_pReal
mu_ref = 0.0_pReal
do k = 1, grid3; do j = 1, grid(2); do i = 1,grid(1)
cell = cell + 1
K_ref = K_ref + thermal_conduction_getConductivity33(1,cell)
mu_ref = mu_ref + thermal_conduction_getMassDensity(1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)
enddo; enddo; enddo
K_ref = K_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,K_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mu_ref = mu_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mu_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
end subroutine updateReference
2019-03-12 04:07:06 +05:30
end module grid_thermal_spectral