2015-05-28 22:32:23 +05:30
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for temperature evolution from heat conduction
!> @details to be done
!--------------------------------------------------------------------------------------------------
module thermal_conduction
use prec , only : &
pReal , &
pInt
implicit none
private
integer ( pInt ) , dimension ( : ) , allocatable , public , protected :: &
thermal_conduction_sizePostResults !< cumulative size of post results
integer ( pInt ) , dimension ( : , : ) , allocatable , target , public :: &
thermal_conduction_sizePostResult !< size of each post result output
character ( len = 64 ) , dimension ( : , : ) , allocatable , target , public :: &
thermal_conduction_output !< name of each post result output
integer ( pInt ) , dimension ( : ) , allocatable , target , public :: &
thermal_conduction_Noutput !< number of outputs per instance of this damage
enum , bind ( c )
enumerator :: undefined_ID , &
temperature_ID
end enum
integer ( kind ( undefined_ID ) ) , dimension ( : , : ) , allocatable , private :: &
thermal_conduction_outputID !< ID of each post result output
public :: &
thermal_conduction_init , &
thermal_conduction_getSourceAndItsTangent , &
thermal_conduction_getConductivity33 , &
thermal_conduction_getSpecificHeat , &
thermal_conduction_getMassDensity , &
thermal_conduction_putTemperatureAndItsRate , &
thermal_conduction_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
2015-07-24 20:23:50 +05:30
subroutine thermal_conduction_init ( fileUnit )
2015-05-28 22:32:23 +05:30
use , intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO , only : &
IO_read , &
IO_lc , &
IO_getTag , &
IO_isBlank , &
IO_stringPos , &
IO_stringValue , &
IO_floatValue , &
IO_intValue , &
IO_warning , &
IO_error , &
IO_timeStamp , &
IO_EOF
use material , only : &
thermal_type , &
thermal_typeInstance , &
homogenization_Noutput , &
THERMAL_conduction_label , &
THERMAL_conduction_ID , &
material_homog , &
mappingHomogenization , &
thermalState , &
thermalMapping , &
2015-07-24 20:23:50 +05:30
thermal_initialT , &
2015-05-28 22:32:23 +05:30
temperature , &
temperatureRate , &
material_partHomogenization
use numerics , only : &
worldrank
implicit none
integer ( pInt ) , intent ( in ) :: fileUnit
integer ( pInt ) , parameter :: MAXNCHUNKS = 7_pInt
integer ( pInt ) , dimension ( 1 + 2 * MAXNCHUNKS ) :: positions
integer ( pInt ) :: maxNinstance , mySize = 0_pInt , section , instance , o
integer ( pInt ) :: sizeState
integer ( pInt ) :: NofMyHomog
character ( len = 65536 ) :: &
tag = '' , &
line = ''
mainProcess : if ( worldrank == 0 ) then
write ( 6 , '(/,a)' ) ' <<<+- thermal_' / / THERMAL_CONDUCTION_label / / ' init -+>>>'
write ( 6 , '(a)' ) ' $Id$'
write ( 6 , '(a15,a)' ) ' Current time: ' , IO_timeStamp ( )
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int ( count ( thermal_type == THERMAL_conduction_ID ) , pInt )
if ( maxNinstance == 0_pInt ) return
allocate ( thermal_conduction_sizePostResults ( maxNinstance ) , source = 0_pInt )
allocate ( thermal_conduction_sizePostResult ( maxval ( homogenization_Noutput ) , maxNinstance ) , source = 0_pInt )
allocate ( thermal_conduction_output ( maxval ( homogenization_Noutput ) , maxNinstance ) )
thermal_conduction_output = ''
allocate ( thermal_conduction_outputID ( maxval ( homogenization_Noutput ) , maxNinstance ) , source = undefined_ID )
allocate ( thermal_conduction_Noutput ( maxNinstance ) , source = 0_pInt )
rewind ( fileUnit )
section = 0_pInt
do while ( trim ( line ) / = IO_EOF . and . IO_lc ( IO_getTag ( line , '<' , '>' ) ) / = material_partHomogenization ) ! wind forward to <homogenization>
line = IO_read ( fileUnit )
enddo
parsingFile : do while ( trim ( line ) / = IO_EOF ) ! read through sections of homog part
line = IO_read ( fileUnit )
if ( IO_isBlank ( line ) ) cycle ! skip empty lines
if ( IO_getTag ( line , '<' , '>' ) / = '' ) then ! stop at next part
line = IO_read ( fileUnit , . true . ) ! reset IO_read
exit
endif
if ( IO_getTag ( line , '[' , ']' ) / = '' ) then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if ( section > 0_pInt ) then ; if ( thermal_type ( section ) == THERMAL_conduction_ID ) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = thermal_typeInstance ( section ) ! which instance of my thermal is present homog
positions = IO_stringPos ( line , MAXNCHUNKS )
tag = IO_lc ( IO_stringValue ( line , positions , 1_pInt ) ) ! extract key
select case ( tag )
case ( '(output)' )
select case ( IO_lc ( IO_stringValue ( line , positions , 2_pInt ) ) )
case ( 'temperature' )
thermal_conduction_Noutput ( instance ) = thermal_conduction_Noutput ( instance ) + 1_pInt
thermal_conduction_outputID ( thermal_conduction_Noutput ( instance ) , instance ) = temperature_ID
thermal_conduction_output ( thermal_conduction_Noutput ( instance ) , instance ) = &
IO_lc ( IO_stringValue ( line , positions , 2_pInt ) )
end select
end select
endif ; endif
enddo parsingFile
initializeInstances : do section = 1_pInt , size ( thermal_type )
if ( thermal_type ( section ) == THERMAL_conduction_ID ) then
NofMyHomog = count ( material_homog == section )
instance = thermal_typeInstance ( section )
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop : do o = 1_pInt , thermal_conduction_Noutput ( instance )
select case ( thermal_conduction_outputID ( o , instance ) )
case ( temperature_ID )
mySize = 1_pInt
end select
if ( mySize > 0_pInt ) then ! any meaningful output found
thermal_conduction_sizePostResult ( o , instance ) = mySize
thermal_conduction_sizePostResults ( instance ) = thermal_conduction_sizePostResults ( instance ) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 0_pInt
thermalState ( section ) % sizeState = sizeState
thermalState ( section ) % sizePostResults = thermal_conduction_sizePostResults ( instance )
allocate ( thermalState ( section ) % state0 ( sizeState , NofMyHomog ) )
allocate ( thermalState ( section ) % subState0 ( sizeState , NofMyHomog ) )
allocate ( thermalState ( section ) % state ( sizeState , NofMyHomog ) )
nullify ( thermalMapping ( section ) % p )
thermalMapping ( section ) % p = > mappingHomogenization ( 1 , : , : )
deallocate ( temperature ( section ) % p )
2015-07-24 20:23:50 +05:30
allocate ( temperature ( section ) % p ( NofMyHomog ) , source = thermal_initialT ( section ) )
2015-05-28 22:32:23 +05:30
deallocate ( temperatureRate ( section ) % p )
allocate ( temperatureRate ( section ) % p ( NofMyHomog ) , source = 0.0_pReal )
endif
enddo initializeInstances
end subroutine thermal_conduction_init
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_getSourceAndItsTangent ( Tdot , dTdot_dT , T , ip , el )
use math , only : &
math_Mandel6to33
use material , only : &
homogenization_Ngrains , &
mappingHomogenization , &
mappingConstitutive , &
thermal_typeInstance , &
phase_Nsources , &
phase_source , &
SOURCE_thermal_dissipation_ID
use source_thermal_dissipation , only : &
source_thermal_dissipation_getRateAndItsTangent
use crystallite , only : &
crystallite_Tstar_v , &
crystallite_Lp
implicit none
integer ( pInt ) , intent ( in ) :: &
ip , & !< integration point number
el !< element number
real ( pReal ) , intent ( in ) :: &
T
real ( pReal ) , intent ( out ) :: &
Tdot , dTdot_dT
real ( pReal ) :: &
my_Tdot , my_dTdot_dT
integer ( pInt ) :: &
phase , &
homog , &
offset , &
instance , &
grain , &
source
homog = mappingHomogenization ( 2 , ip , el )
offset = mappingHomogenization ( 1 , ip , el )
instance = thermal_typeInstance ( homog )
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
do grain = 1 , homogenization_Ngrains ( homog )
phase = mappingConstitutive ( 2 , grain , ip , el )
do source = 1 , phase_Nsources ( phase )
select case ( phase_source ( source , phase ) )
case ( SOURCE_thermal_dissipation_ID )
call source_thermal_dissipation_getRateAndItsTangent ( my_Tdot , my_dTdot_dT , &
crystallite_Tstar_v ( 1 : 6 , grain , ip , el ) , &
crystallite_Lp ( 1 : 3 , 1 : 3 , grain , ip , el ) , &
grain , ip , el )
case default
my_Tdot = 0.0_pReal
my_dTdot_dT = 0.0_pReal
end select
Tdot = Tdot + my_Tdot
dTdot_dT = dTdot_dT + my_dTdot_dT
enddo
enddo
Tdot = Tdot / homogenization_Ngrains ( homog )
dTdot_dT = dTdot_dT / homogenization_Ngrains ( homog )
end subroutine thermal_conduction_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getConductivity33 ( ip , el )
use lattice , only : &
lattice_thermalConductivity33
use material , only : &
homogenization_Ngrains , &
mappingHomogenization , &
material_phase
use mesh , only : &
mesh_element
use crystallite , only : &
crystallite_push33ToRef
implicit none
integer ( pInt ) , intent ( in ) :: &
ip , & !< integration point number
el !< element number
real ( pReal ) , dimension ( 3 , 3 ) :: &
thermal_conduction_getConductivity33
integer ( pInt ) :: &
homog , &
grain
homog = mappingHomogenization ( 2 , ip , el )
thermal_conduction_getConductivity33 = 0.0_pReal
do grain = 1 , homogenization_Ngrains ( mesh_element ( 3 , el ) )
thermal_conduction_getConductivity33 = thermal_conduction_getConductivity33 + &
crystallite_push33ToRef ( grain , ip , el , lattice_thermalConductivity33 ( : , : , material_phase ( grain , ip , el ) ) )
enddo
thermal_conduction_getConductivity33 = &
thermal_conduction_getConductivity33 / &
homogenization_Ngrains ( mesh_element ( 3 , el ) )
end function thermal_conduction_getConductivity33
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getSpecificHeat ( ip , el )
use lattice , only : &
lattice_specificHeat
use material , only : &
homogenization_Ngrains , &
mappingHomogenization , &
material_phase
use mesh , only : &
mesh_element
use crystallite , only : &
crystallite_push33ToRef
implicit none
integer ( pInt ) , intent ( in ) :: &
ip , & !< integration point number
el !< element number
real ( pReal ) :: &
thermal_conduction_getSpecificHeat
integer ( pInt ) :: &
homog , grain
thermal_conduction_getSpecificHeat = 0.0_pReal
homog = mappingHomogenization ( 2 , ip , el )
do grain = 1 , homogenization_Ngrains ( mesh_element ( 3 , el ) )
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat + &
lattice_specificHeat ( material_phase ( grain , ip , el ) )
enddo
thermal_conduction_getSpecificHeat = &
thermal_conduction_getSpecificHeat / &
homogenization_Ngrains ( mesh_element ( 3 , el ) )
end function thermal_conduction_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getMassDensity ( ip , el )
use lattice , only : &
lattice_massDensity
use material , only : &
homogenization_Ngrains , &
mappingHomogenization , &
material_phase
use mesh , only : &
mesh_element
use crystallite , only : &
crystallite_push33ToRef
implicit none
integer ( pInt ) , intent ( in ) :: &
ip , & !< integration point number
el !< element number
real ( pReal ) :: &
thermal_conduction_getMassDensity
integer ( pInt ) :: &
homog , grain
thermal_conduction_getMassDensity = 0.0_pReal
homog = mappingHomogenization ( 2 , ip , el )
do grain = 1 , homogenization_Ngrains ( mesh_element ( 3 , el ) )
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity + &
lattice_massDensity ( material_phase ( grain , ip , el ) )
enddo
thermal_conduction_getMassDensity = &
thermal_conduction_getMassDensity / &
homogenization_Ngrains ( mesh_element ( 3 , el ) )
end function thermal_conduction_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief updates thermal state with solution from heat conduction PDE
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_putTemperatureAndItsRate ( T , Tdot , ip , el )
use material , only : &
mappingHomogenization , &
temperature , &
temperatureRate , &
thermalMapping
implicit none
integer ( pInt ) , intent ( in ) :: &
ip , & !< integration point number
el !< element number
real ( pReal ) , intent ( in ) :: &
T , &
Tdot
integer ( pInt ) :: &
homog , &
offset
homog = mappingHomogenization ( 2 , ip , el )
offset = thermalMapping ( homog ) % p ( ip , el )
temperature ( homog ) % p ( offset ) = T
temperatureRate ( homog ) % p ( offset ) = Tdot
end subroutine thermal_conduction_putTemperatureAndItsRate
!--------------------------------------------------------------------------------------------------
!> @brief return array of thermal results
!--------------------------------------------------------------------------------------------------
function thermal_conduction_postResults ( ip , el )
use material , only : &
mappingHomogenization , &
thermal_typeInstance , &
temperature , &
thermalMapping
implicit none
integer ( pInt ) , intent ( in ) :: &
ip , & !< integration point
el !< element
real ( pReal ) , dimension ( thermal_conduction_sizePostResults ( thermal_typeInstance ( mappingHomogenization ( 2 , ip , el ) ) ) ) :: &
thermal_conduction_postResults
integer ( pInt ) :: &
instance , homog , offset , o , c
homog = mappingHomogenization ( 2 , ip , el )
offset = thermalMapping ( homog ) % p ( ip , el )
instance = thermal_typeInstance ( homog )
c = 0_pInt
thermal_conduction_postResults = 0.0_pReal
do o = 1_pInt , thermal_conduction_Noutput ( instance )
select case ( thermal_conduction_outputID ( o , instance ) )
case ( temperature_ID )
thermal_conduction_postResults ( c + 1_pInt ) = temperature ( homog ) % p ( offset )
c = c + 1
end select
enddo
end function thermal_conduction_postResults
end module thermal_conduction