DAMASK_EICMD/code/mpie_spectral2d.f90

626 lines
29 KiB
Fortran
Raw Normal View History

! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##############################################################
!* $Id: mpie_spectral2d.f90 665 2010-10-13 16:04:44Z MPIE\m.diehl $
!********************************************************************
! Material subroutine for BVP solution using spectral method
! Version for 2D Problems, suitable for testing and implementation of new features
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Not working by now due to changes on other routines
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts
! D.D. Tjahjanto
! C. Kords
! M. Diehl
! R. Lebensohn
!
! MPI fuer Eisenforschung, Duesseldorf
!
!********************************************************************
! Usage:
! - start program with mpie_spectral PathToMeshFile/NameOfMesh.mesh
! PathToLoadFile/NameOfLoadFile.load
! - PathToLoadFile will be the working directory
! - make sure the file "material.config" exists in the working
! directory
!********************************************************************
program DAMASK_spectral
!********************************************************************
use DAMASK_interface
use prec, only: pInt, pReal
use IO
use math
use CPFEM, only: CPFEM_general
use numerics, only: relevantStrain, rTol_crystalliteStress
implicit none
include 'include/fftw3.f' !header file for fftw3 (declaring variables). Library file is also needed
! variables to read from loadcase and mesh file
real(pReal), dimension(9) :: valuevector ! stores information temporarily from loadcase file
integer(pInt), parameter :: maxNchunksInput = 24 ! 4 identifiers, 18 values for the matrices and 2 scalars
integer(pInt), dimension (1+maxNchunksInput*2) :: posInput
integer(pInt), parameter :: maxNchunksMesh = 7 ! 4 identifiers, 3 values
integer(pInt), dimension (1+2*maxNchunksMesh) :: posMesh
integer(pInt) unit, N_l, N_s, N_t, N_n ! numbers of identifiers
character(len=1024) path, line
logical gotResolution,gotDimension,gotHomogenization
logical, dimension(9) :: bc_maskvector
! variables storing information from loadcase file
real(pReal) timeinc
real(pReal), dimension (:,:,:), allocatable :: bc_velocityGrad, &
bc_stress ! velocity gradient and stress BC
real(pReal), dimension(:), allocatable :: bc_timeIncrement ! length of increment
integer(pInt) N_Loadcases, steps
integer(pInt), dimension(:), allocatable :: bc_steps ! number of steps
logical, dimension(:,:,:,:), allocatable :: bc_mask ! mask of boundary conditions
! variables storing information from mesh file
real(pReal) wgt
real(pReal), dimension(3) :: meshdimension
integer(pInt) homog, prodnn
integer(pInt), dimension(3) :: resolution
! stress etc.
real(pReal), dimension(3,3) :: ones, zeroes, temp33_Real, damper,&
pstress, pstress_av, cstress_av, defgrad_av,&
defgradAim, defgradAimOld, defgradAimCorr, defgradAimCorrPrev,&
mask_stress, mask_defgrad
real(pReal), dimension(3,3,3,3) :: dPdF, c0, s0
real(pReal), dimension(6) :: cstress ! cauchy stress in Mandel notation
real(pReal), dimension(6,6) :: dsde, c066, s066
real(pReal), dimension(:,:,:,:), allocatable :: defgradold, cstress_field, defgrad
complex(pReal), dimension(:,:,:,:), allocatable :: pstress_field, tau
complex(pReal), dimension(:,:), allocatable :: ddefgrad
! variables storing information for spectral method
complex(pReal), dimension(:,:,:,:), allocatable :: workfft
complex(pReal), dimension(3,3) :: temp33_Complex
real(pReal), dimension(3,3) :: xinormdyad
real(pReal), dimension(:,:,:,:,:,:), allocatable :: gamma_hat
real(pReal), dimension(:,:,:), allocatable :: xi
integer(pInt), dimension(2) :: k_s
integer*8, dimension(3,3,3) :: plan_fft
! convergence etc.
real(pReal) err_div, err_stress, err_defgrad
real(pReal) err_div_tol, err_stress_tol, err_stress_tolrel, sigma0
integer(pInt) itmax, ierr
logical errmatinv
! loop variables etc.
real(pReal) guessmode ! flip-flop to guess defgrad fluctuation field evolution
integer(pInt) i, j, k, l, m, n, p
integer(pInt) loadcase, ielem, iter, calcmode, CPFEM_mode
real(pReal) temperature ! not used, but needed for call to CPFEM_general
!gmsh output
character(len=1024) :: nriter
character(len=1024) :: nrstep
character(len=1024) :: nrloadcase
real(pReal), dimension(:,:,:), allocatable :: displacement
!gmsh output
!Initializing
bc_maskvector = ''
unit = 234_pInt
ones = 1.0_pReal
zeroes = 0.0_pReal
N_l = 0_pInt
N_s = 0_pInt
N_t = 0_pInt
N_n = 0_pInt
resolution = 1_pInt; meshdimension = 0.0_pReal
err_div_tol = 1.0e-4
itmax = 250_pInt
err_stress_tolrel=0.01
temperature = 300.0_pReal
gotResolution =.false.; gotDimension =.false.; gotHomogenization = .false.
if (IargC() /= 2) call IO_error(102) ! check for correct number of given arguments
! Reading the loadcase file and assign variables
path = getLoadcaseName()
print*,'Loadcase: ',trim(path)
print*,'Workingdir: ',trim(getSolverWorkingDirectoryName())
if (.not. IO_open_file(unit,path)) call IO_error(45,ext_msg = path)
rewind(unit)
do
read(unit,'(a1024)',END = 101) line
if (IO_isBlank(line)) cycle ! skip empty lines
posInput = IO_stringPos(line,maxNchunksInput)
do i = 1, maxNchunksInput, 1
select case (IO_lc(IO_stringValue(line,posInput,i)))
case('l','velocitygrad')
N_l = N_l+1
case('s','stress')
N_s = N_s+1
case('t','time','delta')
N_t = N_t+1
case('n','incs','increments','steps')
N_n = N_n+1
end select
enddo ! count all identifiers to allocate memory and do sanity check
if ((N_l /= N_s).or.(N_s /= N_t).or.(N_t /= N_n)) & ! sanity check
call IO_error(46,ext_msg = path) !error message for incomplete input file
enddo
! allocate memory depending on lines in input file
101 N_Loadcases = N_l
allocate (bc_velocityGrad(3,3,N_Loadcases)); bc_velocityGrad = 0.0_pReal
allocate (bc_stress(3,3,N_Loadcases)); bc_stress = 0.0_pReal
allocate (bc_mask(3,3,2,N_Loadcases)); bc_mask = .false.
allocate (bc_timeIncrement(N_Loadcases)); bc_timeIncrement = 0.0_pReal
allocate (bc_steps(N_Loadcases)); bc_steps = 0_pInt
rewind(unit)
i = 0_pInt
do
read(unit,'(a1024)',END = 200) line
if (IO_isBlank(line)) cycle ! skip empty lines
i = i + 1
posInput = IO_stringPos(line,maxNchunksInput)
do j = 1,maxNchunksInput,2
select case (IO_lc(IO_stringValue(line,posInput,j)))
case('l','velocitygrad')
valuevector = 0.0_pReal
forall (k = 1:9) bc_maskvector(k) = IO_stringValue(line,posInput,j+k) /= '#'
do k = 1,9
if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line,posInput,j+k) ! assign values for the velocity gradient matrix
enddo
bc_mask(:,:,1,i) = reshape(bc_maskvector,(/3,3/))
bc_velocityGrad(:,:,i) = reshape(valuevector,(/3,3/))
case('s','stress')
valuevector = 0.0_pReal
forall (k = 1:9) bc_maskvector(k) = IO_stringValue(line,posInput,j+k) /= '#'
do k = 1,9
if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line,posInput,j+k) ! assign values for the bc_stress matrix
enddo
bc_mask(:,:,2,i) = reshape(bc_maskvector,(/3,3/))
bc_stress(:,:,i) = reshape(valuevector,(/3,3/))
case('t','time','delta') ! increment time
bc_timeIncrement(i) = IO_floatValue(line,posInput,j+1)
case('n','incs','increments','steps') ! bc_steps
bc_steps(i) = IO_intValue(line,posInput,j+1)
end select
enddo; enddo
200 close(unit)
do i = 1, N_Loadcases
if (any(bc_mask(:,:,1,i) == bc_mask(:,:,2,i))) call IO_error(47,i) ! bc_mask consistency
print '(a,/,3(3(f12.6,x)/))','L',bc_velocityGrad(:,:,i)
print '(a,/,3(3(f12.6,x)/))','bc_stress',bc_stress(:,:,i)
print '(a,/,3(3(l,x)/))','bc_mask for velocitygrad',bc_mask(:,:,1,i)
print '(a,/,3(3(l,x)/))','bc_mask for stress',bc_mask(:,:,2,i)
print *,'time',bc_timeIncrement(i)
print *,'incs',bc_steps(i)
print *, ''
enddo
!read header of mesh file to get the information needed before the complete mesh file is intepretated by mesh.f90
path = getSolverJobName()
print*,'JobName: ',trim(path)
if (.not. IO_open_file(unit,trim(path)//InputFileExtension)) call IO_error(101,ext_msg = path)
rewind(unit)
do
read(unit,'(a1024)',END = 100) line
if (IO_isBlank(line)) cycle ! skip empty lines
posMesh = IO_stringPos(line,maxNchunksMesh)
select case ( IO_lc(IO_StringValue(line,posMesh,1)) )
case ('dimension')
gotDimension = .true.
do i = 2,6,2
select case (IO_lc(IO_stringValue(line,posMesh,i)))
case('x')
meshdimension(1) = IO_floatValue(line,posMesh,i+1)
case('y')
meshdimension(2) = IO_floatValue(line,posMesh,i+1)
case('z')
meshdimension(3) = IO_floatValue(line,posMesh,i+1)
end select
enddo
case ('homogenization')
gotHomogenization = .true.
homog = IO_intValue(line,posMesh,2)
case ('resolution')
gotResolution = .true.
do i = 2,6,2
select case (IO_lc(IO_stringValue(line,posMesh,i)))
case('a')
resolution(1) = IO_intValue(line,posMesh,i+1)
case('b')
resolution(2) = IO_intValue(line,posMesh,i+1)
case('c')
resolution(3) = IO_intValue(line,posMesh,i+1)
end select
enddo
end select
if (gotDimension .and. gotHomogenization .and. gotResolution) exit
if (resolution(3) /=1) exit
enddo
100 close(unit)
print '(a,/,i4,i4,i4)','resolution a b c', resolution
print '(a,/,f6.1,f6.1,f6.1)','dimension x y z', meshdimension
print *,'homogenization',homog
print *, ''
allocate (workfft(resolution(1),resolution(2),3,3)); workfft = 0.0_pReal
allocate (gamma_hat(resolution(1),resolution(2),3,3,3,3)); gamma_hat = 0.0_pReal
allocate (xi(resolution(1),resolution(2),3)); xi = 0.0_pReal
allocate (pstress_field(resolution(1),resolution(2),3,3)); pstress_field = 0.0_pReal
allocate (cstress_field(resolution(1),resolution(2),3,3)); cstress_field = 0.0_pReal
allocate (tau(resolution(1),resolution(2),3,3)); tau = 0.0_pReal
allocate (displacement(resolution(1),resolution(2),3)); displacement = 0.0_pReal
allocate (defgrad(resolution(1),resolution(2),3,3)); defgrad = 0.0_pReal
allocate (defgradold(resolution(1),resolution(2),3,3)); defgradold = 0.0_pReal
allocate (ddefgrad(resolution(1),resolution(2))); ddefgrad = 0.0_pReal
! Initialization of fftw (see manual on fftw.org for more details)
call dfftw_init_threads(ierr)
call dfftw_plan_with_nthreads(4)
do m = 1,3; do n = 1,3
call dfftw_plan_dft_2d(plan_fft(1,m,n),resolution(1),resolution(2),&
cstress_field(:,:,m,n), workfft(:,:,m,n), FFTW_PATIENT, FFTW_FORWARD) !only for calculation of div (P)
call dfftw_plan_dft_2d(plan_fft(2,m,n),resolution(1),resolution(2),&
tau(:,:,m,n), workfft(:,:,m,n), FFTW_PATIENT, FFTW_FORWARD)
call dfftw_plan_dft_2d(plan_fft(3,m,n),resolution(1),resolution(2),&
workfft(:,:,m,n), ddefgrad(:,:), FFTW_PATIENT, FFTW_BACKWARD)
enddo; enddo
prodnn = resolution(1)*resolution(2)
wgt = 1_pReal/real(prodnn, pReal)
defgradAim = math_I3
defgradAimOld = math_I3
defgrad_av = math_I3
! Initialization of CPFEM_general (= constitutive law) and of deformation gradient field
ielem = 0_pInt
c066 = 0.0_pReal
do j = 1, resolution(3); do i = 1, resolution(2)
defgradold(i,j,:,:) = math_I3 !no deformation at the beginning
defgrad(i,j,:,:) = math_I3
ielem = ielem +1
call CPFEM_general(2,math_I3,math_I3,temperature,0.0_pReal,ielem,1_pInt,cstress,dsde,pstress,dPdF)
c066 = c066 + dsde
enddo; enddo
c066 = c066 * wgt
c0 = math_mandel66to3333(c066)
call math_invert(6, c066, s066,i, errmatinv)
s0 = math_mandel66to3333(s066)
!calculation of xinormdyad (to calculate gamma_hat) and xi (waves, for proof of equilibrium)
do j = 1, resolution(2)
k_s(2) = j-1
if(j > resolution(2)/2+1) k_s(2) = k_s(2)-resolution(2)
do i = 1, resolution(1)
k_s(1) = i-1
if(i > resolution(1)/2+1) k_s(1) = k_s(1)-resolution(1)
xi(i,j,3) = 0.0_pReal
xi(i,j,2) = real(k_s(2), pReal)/meshdimension(2)
xi(i,j,1) = real(k_s(1), pReal)/meshdimension(1)
if (any(xi(i,j,:) /= 0.0_pReal)) then
do l = 1,2; do m = 1,2
xinormdyad(l,m) = xi(i,j, l)*xi(i,j, m)/sum(xi(i,j,:)**2)
enddo; enddo
else
xinormdyad = 0.0_pReal
endif
temp33_Real = math_mul3333xx33(c0, xinormdyad)
temp33_Real = math_inv3x3(temp33_Real)
do l=1,3; do m=1,3; do n=1,3; do p=1,3
gamma_hat(i,j, l,m,n,p) = - temp33_Real(l,n) * xinormdyad(m,p)
! gamma_hat(i,j,k, l,m,n,p) = - 0.5_pReal * temp33_Real(l,n) * xinormdyad(m,p)& ! symmetrization????????
! - 0.5_pReal * temp33_Real(m,n) * xinormdyad(l,p)
enddo; enddo; enddo; enddo
enddo; enddo
open(539,file='stress-strain.out')
! Initialization done
!*************************************************************
!Loop over loadcases defined in the loadcase file
do loadcase = 1, N_Loadcases
!*************************************************************
timeinc = bc_timeIncrement(loadcase)/bc_steps(loadcase)
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first step
mask_defgrad = merge(ones,zeroes,bc_mask(:,:,1,loadcase))
mask_stress = merge(ones,zeroes,bc_mask(:,:,2,loadcase))
damper = ones/10
!*************************************************************
! loop oper steps defined in input file for current loadcase
do steps = 1, bc_steps(loadcase)
!*************************************************************
temp33_Real = defgradAim
defgradAim = defgradAim & ! update macroscopic displacement gradient (defgrad BC)
+ guessmode * mask_stress * (defgradAim - defgradAimOld) &
+ math_mul33x33(bc_velocityGrad(:,:,loadcase), defgradAim)*timeinc
defgradAimOld = temp33_Real
do j = 1, resolution(2); do i = 1, resolution(1)
temp33_Real = defgrad(i,j,:,:)
defgrad(i,j,:,:) = defgrad(i,j,:,:)& ! old fluctuations as guess for new step, no fluctuations for new loadcase
+ guessmode * (defgrad(i,j,:,:) - defgradold(i,j,:,:))&
+ (1.0_pReal-guessmode) * math_mul33x33(bc_velocityGrad(:,:,loadcase),defgradold(i,j,:,:))*timeinc
defgradold(i,j,:,:) = temp33_Real
enddo; enddo
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
calcmode = 0_pInt ! start calculation of BC fullfillment
CPFEM_mode = 1_pInt ! winding forward
iter = 0_pInt
err_div= 2_pReal * err_div_tol ! go into loop
defgradAimCorr = 0.0_pReal ! reset damping calculation
damper = damper * 0.9_pReal
!*************************************************************
! convergence loop
do while( iter <= itmax .and. &
(err_div > err_div_tol .or. &
err_stress > err_stress_tol))
iter = iter + 1
print '(A,I5.5,tr2,A,I5.5)', ' Step = ',steps,'Iteration = ',iter
!*************************************************************
! adjust defgrad to fulfill BCs
select case (calcmode)
case (0)
print *, 'Update Stress Field (constitutive evaluation P(F))'
ielem = 0_pInt
do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(3, defgradold(i,j,:,:), defgrad(i,j,:,:),&
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
enddo; enddo
ielem = 0_pInt
do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
defgradold(i,j,:,:), defgrad(i,j,:,:),& ! others get 2 (saves winding forward effort)
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
CPFEM_mode = 2_pInt
pstress_field(i,j,:,:) = pstress
cstress_field(i,j,:,:) = math_mandel6to33(cstress)
enddo; enddo
do m = 1,3; do n = 1,3
pstress_av(m,n) = sum(pstress_field(:,:,m,n)) * wgt
cstress_av(m,n) = sum(cstress_field(:,:,m,n)) * wgt
defgrad_av(m,n) = sum(defgrad(:,:,m,n)) * wgt
enddo; enddo
err_stress = maxval(abs(mask_stress * (cstress_av - bc_stress(:,:,loadcase))))
err_stress_tol = maxval(abs(cstress_av))*err_stress_tolrel
print*, 'Correcting deformation gradient to fullfill BCs'
defgradAimCorrPrev = defgradAimCorr
defgradAimCorr = -mask_stress * math_mul3333xx33(s0, (mask_stress*(cstress_av - bc_stress(:,:,loadcase))))
do m=1,3; do n =1,3 ! calculate damper (correction is far to strong)
if ( sign(1.0_pReal,defgradAimCorr(m,n))/=sign(1.0_pReal,defgradAimCorrPrev(m,n))) then
damper(m,n) = max(0.01_pReal,damper(m,n)*0.8)
else
damper(m,n) = min(1.0_pReal,damper(m,n) *1.2)
endif
enddo; enddo
defgradAimCorr = mask_Stress*(damper * defgradAimCorr)
defgradAim = defgradAim + defgradAimCorr
do m = 1,3; do n = 1,3
defgrad(:,:,m,n) = defgrad(:,:,m,n) + (defgradAim(m,n) - defgrad_av(m,n)) !anticipated target minus current state
enddo; enddo
err_div = 2 * err_div_tol
err_defgrad = maxval(abs(mask_defgrad * (defgrad_av - defgradAim)))
print '(a,/,3(3(f12.7,x)/))', ' Deformation Gradient: ',defgrad_av(1:3,:)
print '(a,/,3(3(f10.4,x)/))', ' Cauchy Stress [MPa]: ',cstress_av(1:3,:)/1.e6
print '(a,E8.2)', ' error defgrad ',err_defgrad
print '(2(a,E8.2))', ' error stress ',err_stress,' Tol. = ', err_stress_tol*0.8
if(err_stress < err_stress_tol*0.8) then
calcmode = 1
endif
! Using the spectral method to calculate the change of deformation gradient, check divergence of stress field in fourier space
case (1)
print *, 'Update Stress Field (constitutive evaluation P(F))'
ielem = 0_pInt
do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(3, defgradold(i,j,:,:), defgrad(i,j,:,:),&
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
enddo; enddo
ielem = 0_pInt
do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(2,&
defgradold(i,j,:,:), defgrad(i,j,:,:),&
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
pstress_field(i,j,:,:) = pstress
cstress_field(i,j,:,:) = math_mandel6to33(cstress)
enddo; enddo
do j = 1, resolution(2); do i = 1, resolution(1)
tau(i,j,:,:) = cstress_field(i,j,:,:) - math_mul3333xx33(c0, defgrad(i,j,:,:)-math_I3)
enddo; enddo
print *, 'Calculating equilibrium using spectral method'
err_div = 0.0_pReal; sigma0 = 0.0_pReal
do m = 1,3; do n = 1,3
call dfftw_execute_dft(plan_fft(1,m,n), cstress_field(:,:,m,n),workfft(:,:,m,n))
if(n==3) sigma0 = max(sigma0, sum(abs(workfft(1,1,m,:)))) ! L infinity Norm of stress tensor
enddo; enddo
do j = 1, resolution(2); do i = 1, resolution(1)
err_div = err_div + (maxval(abs(math_mul33x3_complex(workfft(i,j,:,:),xi(i,j,:))))) ! L infinity Norm of div(stress)
enddo; enddo
err_div = err_div/real(prodnn, pReal)/sigma0 !weighting of error
do m = 1,3; do n = 1,3
call dfftw_execute_dft(plan_fft(2,m,n), tau(:,:,m,n), workfft(:,:,m,n))
enddo; enddo
do j = 1, resolution(2); do i = 1, resolution(1)
temp33_Complex = 0.0_pReal
do m = 1,3; do n = 1,3
temp33_Complex(m,n) = sum(gamma_hat(i,j,m,n,:,:) * workfft(i,j,:,:))
enddo; enddo
workfft(i,j,:,:) = temp33_Complex(:,:)
enddo; enddo
workfft(1,1,:,:) = zeroes!????
do m = 1,3; do n = 1,3
call dfftw_execute_dft(plan_fft(3,m,n), workfft(:,:,m,n),ddefgrad(:,:))
defgrad(:,:,m,n) = defgrad_av(m,n) + real(ddefgrad, pReal) * wgt
pstress_av(m,n) = sum(pstress_field(:,:,m,n))*wgt
cstress_av(m,n) = sum(cstress_field(:,:,m,n))*wgt
defgrad_av(m,n) = sum(defgrad(:,:,m,n))*wgt
defgrad(:,:,m,n) = defgrad(:,:,m,n) + (defgradAim(m,n) - defgrad_av(m,n)) !anticipated target minus current state
enddo; enddo
err_stress = maxval(abs(mask_stress * (cstress_av - bc_stress(:,:,loadcase))))
err_stress_tol = maxval(abs(cstress_av))*err_stress_tolrel !accecpt relativ error specified
print '(2(a,E8.2))', ' error divergence ',err_div,' Tol. = ', err_div_tol
print '(2(a,E8.2))', ' error stress ',err_stress,' Tol. = ', err_stress_tol
if(err_stress > err_stress_tol .and. err_div < err_div_tol) then ! change to calculation of BCs, reset damper etc.
calcmode = 0
defgradAimCorr = 0.0_pReal
damper = damper * 0.9_pReal
endif
end select
enddo ! end looping when convergency is achieved
write(539,'(E12.6,a,E12.6)'),defgrad_av(3,3)-1,' ', cstress_av(3,3)
print '(a,/,3(3(f12.7,x)/))', ' Deformation Gradient: ',defgrad_av(1:3,:)
print *, ''
print '(a,/,3(3(f10.4,x)/))', ' Cauchy Stress [MPa]: ',cstress_av(1:3,:)/1.e6
print '(A)', '************************************************************'
! Postprocessing (gsmh output)
temp33_Real(1,:) = 0.0_pReal; temp33_Real(1,3) = -(real(resolution(3))/meshdimension(3)) ! start just below origin
k=1
do j = 1, resolution(2); do i = 1, resolution(1)
if((j==1).and.(i==1)) then
temp33_Real(1,:) = temp33_Real(1,:) + math_mul33x3(defgrad(i,j,:,:),&
(/0.0_pReal,0.0_pReal,(real(resolution(3))/meshdimension(3))/))
temp33_Real(2,:) = temp33_Real(1,:)
temp33_Real(3,:) = temp33_Real(1,:)
displacement(i,j,:) = temp33_Real(1,:)
else
if(i==1) then
temp33_Real(2,:) = temp33_Real(2,:) + math_mul33x3(defgrad(i,j,:,:),&
(/0.0_pReal,(real(resolution(2))/meshdimension(2)),0.0_pReal/))
temp33_Real(3,:) = temp33_Real(2,:)
displacement(i,j,:) = temp33_Real(2,:)
else
temp33_Real(3,:) = temp33_Real(3,:) + math_mul33x3(defgrad(i,j,:,:),&
(/(real(resolution(1))/meshdimension(1)),0.0_pReal,0.0_pReal/))
displacement(i,j,:) = temp33_Real(3,:)
endif
endif
enddo; enddo
write(nrloadcase, *) loadcase; write(nriter, *) iter; write(nrstep, *) steps
open(589,file = 'stress' //trim(adjustl(nrloadcase))//'-'//trim(adjustl(nrstep))//'-'//trim(adjustl(nriter))//'_cpfem.msh')
open(588,file = 'disgrad'//trim(adjustl(nrloadcase))//'-'//trim(adjustl(nrstep))//'-'//trim(adjustl(nriter))//'_cpfem.msh')
write(589, '(4(A, /), I10)'), '$MeshFormat', '2.1 0 8', '$EndMeshFormat', '$Nodes', prodnn
write(588, '(4(A, /), I10)'), '$MeshFormat', '2.1 0 8', '$EndMeshFormat', '$Nodes', prodnn
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
write(589, '(I10, 3(tr2, E12.6))'), ielem, displacement(i,j,:) !for deformed configuration
write(588, '(I10, 3(tr2, E12.6))'), ielem, displacement(i,j,:)
! write(589, '(4(I10,tr2))'), ielem, i-1,j-1,k-1 !for undeformed configuration
! write(588, '(4(I10,tr2))'), ielem, i-1,j-1,k-1
enddo; enddo; enddo
write(589, '(2(A, /), I10)'), '$EndNodes', '$Elements', prodnn
write(588, '(2(A, /), I10)'), '$EndNodes', '$Elements', prodnn
do i = 1, prodnn
write(589, '(I10, A, I10)'), i, ' 15 2 1 2', i
write(588, '(I10, A, I10)'), i, ' 15 2 1 2', i
enddo
write(589, '(A)'), '$EndElements'
write(588, '(A)'), '$EndElements'
write(589, '(8(A, /), I10)'), '$NodeData', '1','"'//trim(adjustl('stress'//trim(adjustl(nrloadcase))//'-'//&
trim(adjustl(nrstep))//'-'//trim(adjustl(nriter))//'_cpfem.msh'))//'"','1','0.0', '3', '0', '9', prodnn
write(588, '(8(A, /), I10)'), '$NodeData', '1','"'//trim(adjustl('disgrad'//trim(adjustl(nrloadcase))//'-'//&
trim(adjustl(nrstep))//'-'//trim(adjustl(nriter))//'_cpfem.msh'))//'"','1','0.0', '3', '0', '9', prodnn
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
write(589, '(i10, 9(tr2, E14.8))'), ielem, cstress_field(i,j,:,:)
write(588, '(i10, 9(tr2, E14.8))'), ielem, defgrad(i,j,:,:) - math_I3
enddo; enddo; enddo
write(589, *), '$EndNodeData'
write(588, *), '$EndNodeData'
close(589); close(588)
enddo ! end looping over steps in current loadcase
enddo ! end looping over loadcases
close(539)
do i=1,3; do m = 1,3; do n = 1,3
call dfftw_destroy_plan(plan_fft(i,m,n))
enddo; enddo; enddo
end program DAMASK_spectral
!********************************************************************
! quit subroutine to satisfy IO_error
!
!********************************************************************
subroutine quit(id)
use prec
implicit none
integer(pInt) id
stop
end subroutine