2014-08-14 17:51:51 +05:30
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief defines lattice structure definitions, slip and twin system definitions, Schimd matrix
!> calculation and non-Schmid behavior
!--------------------------------------------------------------------------------------------------
module lattice
use prec , only : &
pReal , &
pInt
implicit none
private
integer ( pInt ) , parameter , public :: &
LATTICE_maxNslipFamily = 6_pInt , & !< max # of slip system families over lattice structures
LATTICE_maxNtwinFamily = 4_pInt , & !< max # of twin system families over lattice structures
LATTICE_maxNtransFamily = 2_pInt , & !< max # of transformation system families over lattice structures
LATTICE_maxNslip = 33_pInt , & !< max # of slip systems over lattice structures
LATTICE_maxNtwin = 24_pInt , & !< max # of twin systems over lattice structures
LATTICE_maxNinteraction = 42_pInt , & !< max # of interaction types (in hardening matrix part)
LATTICE_maxNnonSchmid = 6_pInt , & !< max # of non schmid contributions over lattice structures
LATTICE_maxNtrans = 36_pInt !< max # of transformations over lattice structures
integer ( pInt ) , allocatable , dimension ( : , : ) , protected , public :: &
lattice_NslipSystem , & !< total # of slip systems in each family
lattice_NtwinSystem , & !< total # of twin systems in each family
lattice_NtransSystem !< total # of transformation systems in each family
integer ( pInt ) , allocatable , dimension ( : , : , : ) , protected , public :: &
lattice_interactionSlipSlip , & !< Slip--slip interaction type
lattice_interactionSlipTwin , & !< Slip--twin interaction type
lattice_interactionTwinSlip , & !< Twin--slip interaction type
lattice_interactionTwinTwin !< Twin--twin interaction type
real ( pReal ) , allocatable , dimension ( : , : , : , : , : ) , protected , public :: &
lattice_Sslip !< Schmid and non-Schmid matrices
real ( pReal ) , allocatable , dimension ( : , : , : , : ) , protected , public :: &
lattice_Sslip_v !< Mandel notation of lattice_Sslip
real ( pReal ) , allocatable , dimension ( : , : , : ) , protected , public :: &
lattice_sn , & !< normal direction of slip system
lattice_sd , & !< slip direction of slip system
lattice_st !< sd x sn
! rotation and Schmid matrices, normal, shear direction and d x n of twin systems
real ( pReal ) , allocatable , dimension ( : , : , : , : ) , protected , public :: &
lattice_Stwin , &
lattice_Qtwin
real ( pReal ) , allocatable , dimension ( : , : , : ) , protected , public :: &
lattice_Stwin_v , &
lattice_tn , &
lattice_td , &
lattice_tt
real ( pReal ) , allocatable , dimension ( : , : , : ) , protected , public :: &
lattice_trn1 , &
lattice_trd1 , &
lattice_trt1 , &
lattice_trn2 , &
lattice_trd2 , &
lattice_trt2 , &
lattice_NItrans_v
real ( pReal ) , allocatable , dimension ( : , : , : , : ) , protected , public :: &
lattice_Atrans , &
lattice_Mtrans , &
lattice_Ttrans , &
lattice_Rtrans , &
lattice_Utrans , &
lattice_NItrans
real ( pReal ) , allocatable , dimension ( : , : ) , protected , public :: &
lattice_shearTwin !< characteristic twin shear
integer ( pInt ) , allocatable , dimension ( : ) , protected , public :: &
lattice_NnonSchmid !< total # of non-Schmid contributions for each structure
!--------------------------------------------------------------------------------------------------
! fcc
integer ( pInt ) , dimension ( LATTICE_maxNslipFamily ) , parameter , public :: &
LATTICE_fcc_NslipSystem = int ( [ 12 , 0 , 0 , 0 , 0 , 0 ] , pInt ) !< total # of slip systems per family for fcc
integer ( pInt ) , dimension ( LATTICE_maxNtwinFamily ) , parameter , public :: &
LATTICE_fcc_NtwinSystem = int ( [ 12 , 0 , 0 , 0 ] , pInt ) !< total # of twin systems per family for fcc
integer ( pInt ) , dimension ( LATTICE_maxNtransFamily ) , parameter , public :: &
LATTICE_fcc_NtransSystem = int ( [ 12 , 24 ] , pInt ) !< total # of transformation systems per family for fcc
integer ( pInt ) , parameter , private :: &
LATTICE_fcc_Nslip = 12_pInt , & ! sum(lattice_fcc_NslipSystem), & !< total # of slip systems for fcc
LATTICE_fcc_Ntwin = 12_pInt , & ! sum(lattice_fcc_NtwinSystem) !< total # of twin systems for fcc
LATTICE_fcc_NnonSchmid = 0_pInt , & !< total # of non-Schmid contributions for fcc
LATTICE_fcc_Ntrans = 36_pInt !< total # of transformations for fcc
real ( pReal ) , dimension ( 3 + 3 , LATTICE_fcc_Nslip ) , parameter , private :: &
LATTICE_fcc_systemSlip = reshape ( real ( [ &
! Slip direction Plane normal
0 , 1 , - 1 , 1 , 1 , 1 , &
- 1 , 0 , 1 , 1 , 1 , 1 , &
1 , - 1 , 0 , 1 , 1 , 1 , &
0 , - 1 , - 1 , - 1 , - 1 , 1 , &
1 , 0 , 1 , - 1 , - 1 , 1 , &
- 1 , 1 , 0 , - 1 , - 1 , 1 , &
0 , - 1 , 1 , 1 , - 1 , - 1 , &
- 1 , 0 , - 1 , 1 , - 1 , - 1 , &
1 , 1 , 0 , 1 , - 1 , - 1 , &
0 , 1 , 1 , - 1 , 1 , - 1 , &
1 , 0 , - 1 , - 1 , 1 , - 1 , &
- 1 , - 1 , 0 , - 1 , 1 , - 1 &
] , pReal ) , [ 3_pInt + 3_pInt , LATTICE_fcc_Nslip ] ) !< Slip system <110>{111} directions. Sorted according to Eisenlohr & Hantcherli
real ( pReal ) , dimension ( 3 + 3 , LATTICE_fcc_Ntwin ) , parameter , private :: &
LATTICE_fcc_systemTwin = reshape ( real ( [ &
- 2 , 1 , 1 , 1 , 1 , 1 , &
1 , - 2 , 1 , 1 , 1 , 1 , &
1 , 1 , - 2 , 1 , 1 , 1 , &
2 , - 1 , 1 , - 1 , - 1 , 1 , &
- 1 , 2 , 1 , - 1 , - 1 , 1 , &
- 1 , - 1 , - 2 , - 1 , - 1 , 1 , &
- 2 , - 1 , - 1 , 1 , - 1 , - 1 , &
1 , 2 , - 1 , 1 , - 1 , - 1 , &
1 , - 1 , 2 , 1 , - 1 , - 1 , &
2 , 1 , - 1 , - 1 , 1 , - 1 , &
- 1 , - 2 , - 1 , - 1 , 1 , - 1 , &
- 1 , 1 , 2 , - 1 , 1 , - 1 &
] , pReal ) , [ 3_pInt + 3_pInt , LATTICE_fcc_Ntwin ] ) !< Twin system <112>{111} directions. Sorted according to Eisenlohr & Hantcherli
real ( pReal ) , dimension ( LATTICE_fcc_Ntwin ) , parameter , private :: &
LATTICE_fcc_shearTwin = 0.5_pReal * sqrt ( 2.0_pReal ) !< Twin system <112>{111} ??? Sorted according to Eisenlohr & Hantcherli
integer ( pInt ) , dimension ( 2_pInt , LATTICE_fcc_Ntwin ) , parameter , public :: &
LATTICE_fcc_twinNucleationSlipPair = reshape ( int ( [ &
2 , 3 , &
1 , 3 , &
1 , 2 , &
5 , 6 , &
4 , 6 , &
4 , 5 , &
8 , 9 , &
7 , 9 , &
7 , 8 , &
11 , 12 , &
10 , 12 , &
10 , 11 &
] , pInt ) , [ 2_pInt , LATTICE_fcc_Ntwin ] )
integer ( pInt ) , dimension ( LATTICE_fcc_Nslip , lattice_fcc_Nslip ) , parameter , public :: &
LATTICE_fcc_interactionSlipSlip = reshape ( int ( [ &
1 , 2 , 2 , 4 , 6 , 5 , 3 , 5 , 5 , 4 , 5 , 6 , & ! ---> slip
2 , 1 , 2 , 6 , 4 , 5 , 5 , 4 , 6 , 5 , 3 , 5 , & ! |
2 , 2 , 1 , 5 , 5 , 3 , 5 , 6 , 4 , 6 , 5 , 4 , & ! |
4 , 6 , 5 , 1 , 2 , 2 , 4 , 5 , 6 , 3 , 5 , 5 , & ! v slip
6 , 4 , 5 , 2 , 1 , 2 , 5 , 3 , 5 , 5 , 4 , 6 , &
5 , 5 , 3 , 2 , 2 , 1 , 6 , 5 , 4 , 5 , 6 , 4 , &
3 , 5 , 5 , 4 , 5 , 6 , 1 , 2 , 2 , 4 , 6 , 5 , &
5 , 4 , 6 , 5 , 3 , 5 , 2 , 1 , 2 , 6 , 4 , 5 , &
5 , 6 , 4 , 6 , 5 , 4 , 2 , 2 , 1 , 5 , 5 , 3 , &
4 , 5 , 6 , 3 , 5 , 5 , 4 , 6 , 5 , 1 , 2 , 2 , &
5 , 3 , 5 , 5 , 4 , 6 , 6 , 4 , 5 , 2 , 1 , 2 , &
6 , 5 , 4 , 5 , 6 , 4 , 5 , 5 , 3 , 2 , 2 , 1 &
] , pInt ) , [ LATTICE_fcc_Nslip , LATTICE_fcc_Nslip ] , order = [ 2 , 1 ] ) !< Slip--slip interaction types for fcc
!< 1: self interaction
!< 2: coplanar interaction
!< 3: collinear interaction
!< 4: Hirth locks
!< 5: glissile junctions
!< 6: Lomer locks
integer ( pInt ) , dimension ( LATTICE_fcc_Nslip , LATTICE_fcc_Ntwin ) , parameter , public :: &
LATTICE_fcc_interactionSlipTwin = reshape ( int ( [ &
1 , 1 , 1 , 3 , 3 , 3 , 2 , 2 , 2 , 3 , 3 , 3 , & ! ---> twin
1 , 1 , 1 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 2 , 2 , & ! |
1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , & ! |
3 , 3 , 3 , 1 , 1 , 1 , 3 , 3 , 3 , 2 , 2 , 2 , & ! v slip
3 , 3 , 3 , 1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , &
2 , 2 , 2 , 1 , 1 , 1 , 3 , 3 , 3 , 3 , 3 , 3 , &
2 , 2 , 2 , 3 , 3 , 3 , 1 , 1 , 1 , 3 , 3 , 3 , &
3 , 3 , 3 , 2 , 2 , 2 , 1 , 1 , 1 , 3 , 3 , 3 , &
3 , 3 , 3 , 3 , 3 , 3 , 1 , 1 , 1 , 2 , 2 , 2 , &
3 , 3 , 3 , 2 , 2 , 2 , 3 , 3 , 3 , 1 , 1 , 1 , &
2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 1 , 1 , 1 , &
3 , 3 , 3 , 3 , 3 , 3 , 2 , 2 , 2 , 1 , 1 , 1 &
] , pInt ) , [ LATTICE_fcc_Nslip , LATTICE_fcc_Ntwin ] , order = [ 2 , 1 ] ) !< Slip--twin interaction types for fcc
!< 1: coplanar interaction
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 3: other interaction
integer ( pInt ) , dimension ( LATTICE_fcc_Ntwin , LATTICE_fcc_Nslip ) , parameter , public :: &
LATTICE_fcc_interactionTwinSlip = 1_pInt !< Twin--Slip interaction types for fcc
integer ( pInt ) , dimension ( LATTICE_fcc_Ntwin , LATTICE_fcc_Ntwin ) , parameter , public :: &
LATTICE_fcc_interactionTwinTwin = reshape ( int ( [ &
1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , & ! ---> twin
1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , & ! |
1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , & ! |
2 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , & ! v twin
2 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , &
2 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , &
2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , &
2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , &
2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , 2 , 2 , 2 , &
2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , &
2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , &
2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 &
] , pInt ) , [ lattice_fcc_Ntwin , lattice_fcc_Ntwin ] , order = [ 2 , 1 ] ) !< Twin--twin interaction types for fcc
!--------------------------------------------------------------------------------------------------
! bcc
integer ( pInt ) , dimension ( LATTICE_maxNslipFamily ) , parameter , public :: &
LATTICE_bcc_NslipSystem = int ( [ 12 , 12 , 0 , 0 , 0 , 0 ] , pInt ) !< total # of slip systems per family for bcc
integer ( pInt ) , dimension ( LATTICE_maxNtwinFamily ) , parameter , public :: &
LATTICE_bcc_NtwinSystem = int ( [ 12 , 0 , 0 , 0 ] , pInt ) !< total # of twin systems per family for bcc
integer ( pInt ) , dimension ( LATTICE_maxNtransFamily ) , parameter , public :: &
LATTICE_bcc_NtransSystem = int ( [ 0 , 0 ] , pInt ) !< total # of transformation systems per family for bcc
integer ( pInt ) , parameter , private :: &
LATTICE_bcc_Nslip = 24_pInt , & ! sum(lattice_bcc_NslipSystem), & !< total # of slip systems for bcc
LATTICE_bcc_Ntwin = 12_pInt , & ! sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc
LATTICE_bcc_NnonSchmid = 6_pInt , & !< # of non-Schmid contributions for bcc. 6 known non schmid contributions for BCC (A. Koester, A. Ma, A. Hartmaier 2012)
LATTICE_bcc_Ntrans = 0_pInt !< total # of transformations for bcc
real ( pReal ) , dimension ( 3 + 3 , LATTICE_bcc_Nslip ) , parameter , private :: &
LATTICE_bcc_systemSlip = reshape ( real ( [ &
! Slip direction Plane normal
! Slip system <111>{110}
1 , - 1 , 1 , 0 , 1 , 1 , &
- 1 , - 1 , 1 , 0 , 1 , 1 , &
1 , 1 , 1 , 0 , - 1 , 1 , &
- 1 , 1 , 1 , 0 , - 1 , 1 , &
- 1 , 1 , 1 , 1 , 0 , 1 , &
- 1 , - 1 , 1 , 1 , 0 , 1 , &
1 , 1 , 1 , - 1 , 0 , 1 , &
1 , - 1 , 1 , - 1 , 0 , 1 , &
- 1 , 1 , 1 , 1 , 1 , 0 , &
- 1 , 1 , - 1 , 1 , 1 , 0 , &
1 , 1 , 1 , - 1 , 1 , 0 , &
1 , 1 , - 1 , - 1 , 1 , 0 , &
! Slip system <111>{112}
- 1 , 1 , 1 , 2 , 1 , 1 , &
1 , 1 , 1 , - 2 , 1 , 1 , &
1 , 1 , - 1 , 2 , - 1 , 1 , &
1 , - 1 , 1 , 2 , 1 , - 1 , &
1 , - 1 , 1 , 1 , 2 , 1 , &
1 , 1 , - 1 , - 1 , 2 , 1 , &
1 , 1 , 1 , 1 , - 2 , 1 , &
- 1 , 1 , 1 , 1 , 2 , - 1 , &
1 , 1 , - 1 , 1 , 1 , 2 , &
1 , - 1 , 1 , - 1 , 1 , 2 , &
- 1 , 1 , 1 , 1 , - 1 , 2 , &
1 , 1 , 1 , 1 , 1 , - 2 &
! Slip system <111>{123}
! 1, 1,-1, 1, 2, 3, &
! 1,-1, 1, -1, 2, 3, &
! -1, 1, 1, 1,-2, 3, &
! 1, 1, 1, 1, 2,-3, &
! 1,-1, 1, 1, 3, 2, &
! 1, 1,-1, -1, 3, 2, &
! 1, 1, 1, 1,-3, 2, &
! -1, 1, 1, 1, 3,-2, &
! 1, 1,-1, 2, 1, 3, &
! 1,-1, 1, -2, 1, 3, &
! -1, 1, 1, 2,-1, 3, &
! 1, 1, 1, 2, 1,-3, &
! 1,-1, 1, 2, 3, 1, &
! 1, 1,-1, -2, 3, 1, &
! 1, 1, 1, 2,-3, 1, &
! -1, 1, 1, 2, 3,-1, &
! -1, 1, 1, 3, 1, 2, &
! 1, 1, 1, -3, 1, 2, &
! 1, 1,-1, 3,-1, 2, &
! 1,-1, 1, 3, 1,-2, &
! -1, 1, 1, 3, 2, 1, &
! 1, 1, 1, -3, 2, 1, &
! 1, 1,-1, 3,-2, 1, &
! 1,-1, 1, 3, 2,-1 &
] , pReal ) , [ 3_pInt + 3_pInt , LATTICE_bcc_Nslip ] )
real ( pReal ) , dimension ( 3 + 3 , LATTICE_bcc_Ntwin ) , parameter , private :: &
LATTICE_bcc_systemTwin = reshape ( real ( [ &
! Twin system <111>{112}
- 1 , 1 , 1 , 2 , 1 , 1 , &
1 , 1 , 1 , - 2 , 1 , 1 , &
1 , 1 , - 1 , 2 , - 1 , 1 , &
1 , - 1 , 1 , 2 , 1 , - 1 , &
1 , - 1 , 1 , 1 , 2 , 1 , &
1 , 1 , - 1 , - 1 , 2 , 1 , &
1 , 1 , 1 , 1 , - 2 , 1 , &
- 1 , 1 , 1 , 1 , 2 , - 1 , &
1 , 1 , - 1 , 1 , 1 , 2 , &
1 , - 1 , 1 , - 1 , 1 , 2 , &
- 1 , 1 , 1 , 1 , - 1 , 2 , &
1 , 1 , 1 , 1 , 1 , - 2 &
] , pReal ) , [ 3_pInt + 3_pInt , LATTICE_bcc_Ntwin ] )
real ( pReal ) , dimension ( LATTICE_bcc_Ntwin ) , parameter , private :: &
LATTICE_bcc_shearTwin = 0.5_pReal * sqrt ( 2.0_pReal )
integer ( pInt ) , dimension ( LATTICE_bcc_Nslip , LATTICE_bcc_Nslip ) , parameter , public :: &
LATTICE_bcc_interactionSlipSlip = reshape ( int ( [ &
1 , 2 , 6 , 6 , 5 , 4 , 4 , 3 , 4 , 3 , 5 , 4 , 6 , 6 , 4 , 3 , 3 , 4 , 6 , 6 , 4 , 3 , 6 , 6 , & ! ---> slip
2 , 1 , 6 , 6 , 4 , 3 , 5 , 4 , 5 , 4 , 4 , 3 , 6 , 6 , 3 , 4 , 4 , 3 , 6 , 6 , 3 , 4 , 6 , 6 , & ! |
6 , 6 , 1 , 2 , 4 , 5 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 3 , 6 , 6 , 6 , 6 , 3 , 4 , 6 , 6 , 4 , 3 , & ! |
6 , 6 , 2 , 1 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 3 , 4 , 6 , 6 , 6 , 6 , 4 , 3 , 6 , 6 , 3 , 4 , & ! v slip
5 , 4 , 4 , 3 , 1 , 2 , 6 , 6 , 3 , 4 , 5 , 4 , 3 , 6 , 4 , 6 , 6 , 4 , 6 , 3 , 4 , 6 , 3 , 6 , &
4 , 3 , 5 , 4 , 2 , 1 , 6 , 6 , 4 , 5 , 4 , 3 , 4 , 6 , 3 , 6 , 6 , 3 , 6 , 4 , 3 , 6 , 4 , 6 , &
4 , 5 , 3 , 4 , 6 , 6 , 1 , 2 , 5 , 4 , 3 , 4 , 6 , 3 , 6 , 4 , 4 , 6 , 3 , 6 , 6 , 4 , 6 , 3 , &
3 , 4 , 4 , 5 , 6 , 6 , 2 , 1 , 4 , 3 , 4 , 5 , 6 , 4 , 6 , 3 , 3 , 6 , 4 , 6 , 6 , 3 , 6 , 4 , &
4 , 5 , 4 , 3 , 3 , 4 , 5 , 4 , 1 , 2 , 6 , 6 , 3 , 6 , 6 , 4 , 4 , 6 , 6 , 3 , 6 , 4 , 3 , 6 , &
3 , 4 , 5 , 4 , 4 , 5 , 4 , 3 , 2 , 1 , 6 , 6 , 4 , 6 , 6 , 3 , 3 , 6 , 6 , 4 , 6 , 3 , 4 , 6 , &
5 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 6 , 6 , 1 , 2 , 6 , 3 , 4 , 6 , 6 , 4 , 3 , 6 , 4 , 6 , 6 , 3 , &
4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6 , 6 , 2 , 1 , 6 , 4 , 3 , 6 , 6 , 3 , 4 , 6 , 3 , 6 , 6 , 4 , &
!
6 , 6 , 4 , 3 , 3 , 4 , 6 , 6 , 3 , 4 , 6 , 6 , 1 , 5 , 6 , 6 , 5 , 6 , 6 , 3 , 5 , 6 , 3 , 6 , &
6 , 6 , 3 , 4 , 6 , 6 , 3 , 4 , 6 , 6 , 3 , 4 , 5 , 1 , 6 , 6 , 6 , 5 , 3 , 6 , 6 , 5 , 6 , 3 , &
4 , 3 , 6 , 6 , 4 , 3 , 6 , 6 , 6 , 6 , 4 , 3 , 6 , 6 , 1 , 5 , 6 , 3 , 5 , 6 , 3 , 6 , 5 , 6 , &
3 , 4 , 6 , 6 , 6 , 6 , 4 , 3 , 4 , 3 , 6 , 6 , 6 , 6 , 5 , 1 , 3 , 6 , 6 , 5 , 6 , 3 , 6 , 5 , &
3 , 4 , 6 , 6 , 6 , 6 , 4 , 3 , 4 , 3 , 6 , 6 , 5 , 6 , 6 , 3 , 1 , 6 , 5 , 6 , 5 , 3 , 6 , 6 , &
4 , 3 , 6 , 6 , 4 , 3 , 6 , 6 , 6 , 6 , 4 , 3 , 6 , 5 , 3 , 6 , 6 , 1 , 6 , 5 , 3 , 5 , 6 , 6 , &
6 , 6 , 3 , 4 , 6 , 6 , 3 , 4 , 6 , 6 , 3 , 4 , 6 , 3 , 5 , 6 , 5 , 6 , 1 , 6 , 6 , 6 , 5 , 3 , &
6 , 6 , 4 , 3 , 3 , 4 , 6 , 6 , 3 , 4 , 6 , 6 , 3 , 6 , 6 , 5 , 6 , 5 , 6 , 1 , 6 , 6 , 3 , 5 , &
4 , 3 , 6 , 6 , 4 , 3 , 6 , 6 , 6 , 6 , 4 , 3 , 5 , 6 , 3 , 6 , 5 , 3 , 6 , 6 , 1 , 6 , 6 , 5 , &
3 , 4 , 6 , 6 , 6 , 6 , 4 , 3 , 4 , 3 , 6 , 6 , 6 , 5 , 6 , 3 , 3 , 5 , 6 , 6 , 6 , 1 , 5 , 6 , &
6 , 6 , 4 , 3 , 3 , 4 , 6 , 6 , 3 , 4 , 6 , 6 , 3 , 6 , 5 , 6 , 6 , 6 , 5 , 3 , 6 , 5 , 1 , 6 , &
6 , 6 , 3 , 4 , 6 , 6 , 3 , 4 , 6 , 6 , 3 , 4 , 6 , 3 , 6 , 5 , 6 , 6 , 3 , 5 , 5 , 6 , 6 , 1 &
] , pInt ) , [ lattice_bcc_Nslip , lattice_bcc_Nslip ] , order = [ 2 , 1 ] ) !< Slip--slip interaction types for bcc from Queyreau et al. Int J Plast 25 (2009) 361– 377
!< 1: self interaction
!< 2: coplanar interaction
!< 3: collinear interaction
!< 4: mixed-asymmetrical junction
!< 5: mixed-symmetrical junction
!< 6: edge junction
integer ( pInt ) , dimension ( LATTICE_bcc_Nslip , LATTICE_bcc_Ntwin ) , parameter , public :: &
LATTICE_bcc_interactionSlipTwin = reshape ( int ( [ &
3 , 3 , 3 , 2 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , & ! ---> twin
3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 3 , & ! |
3 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 3 , 3 , 2 , & ! |
2 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , & ! v slip
2 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , &
3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 3 , &
3 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 3 , 3 , 2 , &
3 , 3 , 3 , 2 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , &
2 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , &
3 , 3 , 3 , 2 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , &
3 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 3 , 3 , 2 , &
3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 3 , &
!
1 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , &
3 , 1 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 3 , 3 , 2 , &
3 , 3 , 1 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 3 , &
3 , 3 , 3 , 1 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , &
3 , 3 , 3 , 2 , 1 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , &
3 , 3 , 2 , 3 , 3 , 1 , 3 , 3 , 2 , 3 , 3 , 3 , &
3 , 2 , 3 , 3 , 3 , 3 , 1 , 3 , 3 , 3 , 3 , 2 , &
2 , 3 , 3 , 3 , 3 , 3 , 3 , 1 , 3 , 3 , 2 , 3 , &
3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 1 , 3 , 3 , 3 , &
3 , 3 , 3 , 2 , 2 , 3 , 3 , 3 , 3 , 1 , 3 , 3 , &
2 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 1 , 3 , &
3 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 3 , 3 , 1 &
] , pInt ) , [ LATTICE_bcc_Nslip , LATTICE_bcc_Ntwin ] , order = [ 2 , 1 ] ) !< Slip--twin interaction types for bcc
!< 1: coplanar interaction
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 3: other interaction
integer ( pInt ) , dimension ( LATTICE_bcc_Ntwin , LATTICE_bcc_Nslip ) , parameter , public :: &
LATTICE_bcc_interactionTwinSlip = 1_pInt !< Twin--slip interaction types for bcc @todo not implemented yet
integer ( pInt ) , dimension ( LATTICE_bcc_Ntwin , LATTICE_bcc_Ntwin ) , parameter , public :: &
LATTICE_bcc_interactionTwinTwin = reshape ( int ( [ &
1 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , & ! ---> twin
3 , 1 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 3 , 3 , 2 , & ! |
3 , 3 , 1 , 3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 3 , & ! |
3 , 3 , 3 , 1 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , & ! v twin
3 , 3 , 3 , 2 , 1 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , &
3 , 3 , 2 , 3 , 3 , 1 , 3 , 3 , 2 , 3 , 3 , 3 , &
3 , 2 , 3 , 3 , 3 , 3 , 1 , 3 , 3 , 3 , 3 , 2 , &
2 , 3 , 3 , 3 , 3 , 3 , 3 , 1 , 3 , 3 , 2 , 3 , &
3 , 3 , 2 , 3 , 3 , 2 , 3 , 3 , 1 , 3 , 3 , 3 , &
3 , 3 , 3 , 2 , 2 , 3 , 3 , 3 , 3 , 1 , 3 , 3 , &
2 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 1 , 3 , &
3 , 2 , 3 , 3 , 3 , 3 , 2 , 3 , 3 , 3 , 3 , 1 &
] , pInt ) , [ LATTICE_bcc_Ntwin , LATTICE_bcc_Ntwin ] , order = [ 2 , 1 ] ) !< Twin--twin interaction types for bcc
!< 1: self interaction
!< 2: collinear interaction
!< 3: other interaction
!--------------------------------------------------------------------------------------------------
! hex
integer ( pInt ) , dimension ( LATTICE_maxNslipFamily ) , parameter , public :: &
lattice_hex_NslipSystem = int ( [ 3 , 3 , 3 , 6 , 12 , 6 ] , pInt ) !< # of slip systems per family for hex
integer ( pInt ) , dimension ( LATTICE_maxNtwinFamily ) , parameter , public :: &
lattice_hex_NtwinSystem = int ( [ 6 , 6 , 6 , 6 ] , pInt ) !< # of slip systems per family for hex
integer ( pInt ) , dimension ( LATTICE_maxNtransFamily ) , parameter , public :: &
LATTICE_hex_NtransSystem = int ( [ 0 , 0 ] , pInt ) !< total # of transformation systems per family for hex
integer ( pInt ) , parameter , private :: &
LATTICE_hex_Nslip = 33_pInt , & ! sum(lattice_hex_NslipSystem), !< total # of slip systems for hex
LATTICE_hex_Ntwin = 24_pInt , & ! sum(lattice_hex_NtwinSystem) !< total # of twin systems for hex
LATTICE_hex_NnonSchmid = 0_pInt , & !< # of non-Schmid contributions for hex
LATTICE_hex_Ntrans = 0_pInt !< total # of transformations for hex
real ( pReal ) , dimension ( 4 + 4 , LATTICE_hex_Nslip ) , parameter , private :: &
LATTICE_hex_systemSlip = reshape ( real ( [ &
! Slip direction Plane normal
! Basal systems <11.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base))
2 , - 1 , - 1 , 0 , 0 , 0 , 0 , 1 , &
- 1 , 2 , - 1 , 0 , 0 , 0 , 0 , 1 , &
- 1 , - 1 , 2 , 0 , 0 , 0 , 0 , 1 , &
! 1st type prismatic systems <11.0>{10.0} (independent of c/a-ratio)
2 , - 1 , - 1 , 0 , 0 , 1 , - 1 , 0 , &
- 1 , 2 , - 1 , 0 , - 1 , 0 , 1 , 0 , &
- 1 , - 1 , 2 , 0 , 1 , - 1 , 0 , 0 , &
! 2nd type prismatic systems <10.0>{11.0} -- a slip; plane normals independent of c/a-ratio
0 , 1 , - 1 , 0 , 2 , - 1 , - 1 , 0 , &
- 1 , 0 , 1 , 0 , - 1 , 2 , - 1 , 0 , &
1 , - 1 , 0 , 0 , - 1 , - 1 , 2 , 0 , &
! 1st type 1st order pyramidal systems <11.0>{-11.1} -- plane normals depend on the c/a-ratio
2 , - 1 , - 1 , 0 , 0 , 1 , - 1 , 1 , &
- 1 , 2 , - 1 , 0 , - 1 , 0 , 1 , 1 , &
- 1 , - 1 , 2 , 0 , 1 , - 1 , 0 , 1 , &
1 , 1 , - 2 , 0 , - 1 , 1 , 0 , 1 , &
- 2 , 1 , 1 , 0 , 0 , - 1 , 1 , 1 , &
1 , - 2 , 1 , 0 , 1 , 0 , - 1 , 1 , &
! pyramidal system: c+a slip <11.3>{-10.1} -- plane normals depend on the c/a-ratio
2 , - 1 , - 1 , 3 , - 1 , 1 , 0 , 1 , &
1 , - 2 , 1 , 3 , - 1 , 1 , 0 , 1 , &
- 1 , - 1 , 2 , 3 , 1 , 0 , - 1 , 1 , &
- 2 , 1 , 1 , 3 , 1 , 0 , - 1 , 1 , &
- 1 , 2 , - 1 , 3 , 0 , - 1 , 1 , 1 , &
1 , 1 , - 2 , 3 , 0 , - 1 , 1 , 1 , &
- 2 , 1 , 1 , 3 , 1 , - 1 , 0 , 1 , &
- 1 , 2 , - 1 , 3 , 1 , - 1 , 0 , 1 , &
1 , 1 , - 2 , 3 , - 1 , 0 , 1 , 1 , &
2 , - 1 , - 1 , 3 , - 1 , 0 , 1 , 1 , &
1 , - 2 , 1 , 3 , 0 , 1 , - 1 , 1 , &
- 1 , - 1 , 2 , 3 , 0 , 1 , - 1 , 1 , &
! pyramidal system: c+a slip <11.3>{-1-1.2} -- as for hexagonal ice (Castelnau et al. 1996, similar to twin system found below)
2 , - 1 , - 1 , 3 , - 2 , 1 , 1 , 2 , & ! sorted according to similar twin system
- 1 , 2 , - 1 , 3 , 1 , - 2 , 1 , 2 , & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a)
- 1 , - 1 , 2 , 3 , 1 , 1 , - 2 , 2 , &
- 2 , 1 , 1 , 3 , 2 , - 1 , - 1 , 2 , &
1 , - 2 , 1 , 3 , - 1 , 2 , - 1 , 2 , &
1 , 1 , - 2 , 3 , - 1 , - 1 , 2 , 2 &
] , pReal ) , [ 4_pInt + 4_pInt , LATTICE_hex_Nslip ] ) !< slip systems for hex sorted by A. Alankar & P. Eisenlohr
real ( pReal ) , dimension ( 4 + 4 , LATTICE_hex_Ntwin ) , parameter , private :: &
LATTICE_hex_systemTwin = reshape ( real ( [ &
! Compression or Tension =f(twinning shear=f(c/a)) for each metal ! (according to Yoo 1981)
1 , - 1 , 0 , 1 , - 1 , 1 , 0 , 2 , & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a)
- 1 , 0 , 1 , 1 , 1 , 0 , - 1 , 2 , &
0 , 1 , - 1 , 1 , 0 , - 1 , 1 , 2 , &
- 1 , 1 , 0 , 1 , 1 , - 1 , 0 , 2 , &
1 , 0 , - 1 , 1 , - 1 , 0 , 1 , 2 , &
0 , - 1 , 1 , 1 , 0 , 1 , - 1 , 2 , &
!
2 , - 1 , - 1 , 6 , - 2 , 1 , 1 , 1 , & ! <11.6>{-1-1.1} shear = 1/(c/a)
- 1 , 2 , - 1 , 6 , 1 , - 2 , 1 , 1 , &
- 1 , - 1 , 2 , 6 , 1 , 1 , - 2 , 1 , &
- 2 , 1 , 1 , 6 , 2 , - 1 , - 1 , 1 , &
1 , - 2 , 1 , 6 , - 1 , 2 , - 1 , 1 , &
1 , 1 , - 2 , 6 , - 1 , - 1 , 2 , 1 , &
!
- 1 , 1 , 0 , - 2 , - 1 , 1 , 0 , 1 , & !! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
1 , 0 , - 1 , - 2 , 1 , 0 , - 1 , 1 , &
0 , - 1 , 1 , - 2 , 0 , - 1 , 1 , 1 , &
1 , - 1 , 0 , - 2 , 1 , - 1 , 0 , 1 , &
- 1 , 0 , 1 , - 2 , - 1 , 0 , 1 , 1 , &
0 , 1 , - 1 , - 2 , 0 , 1 , - 1 , 1 , &
!
2 , - 1 , - 1 , - 3 , 2 , - 1 , - 1 , 2 , & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a)
- 1 , 2 , - 1 , - 3 , - 1 , 2 , - 1 , 2 , &
- 1 , - 1 , 2 , - 3 , - 1 , - 1 , 2 , 2 , &
- 2 , 1 , 1 , - 3 , - 2 , 1 , 1 , 2 , &
1 , - 2 , 1 , - 3 , 1 , - 2 , 1 , 2 , &
1 , 1 , - 2 , - 3 , 1 , 1 , - 2 , 2 &
] , pReal ) , [ 4_pInt + 4_pInt , LATTICE_hex_Ntwin ] ) !< twin systems for hex, order follows Prof. Tom Bieler's scheme; but numbering in data was restarted from 1
integer ( pInt ) , dimension ( LATTICE_hex_Ntwin ) , parameter , private :: &
LATTICE_hex_shearTwin = reshape ( int ( [ & ! indicator to formula further below
1 , & ! <-10.1>{10.2}
1 , &
1 , &
1 , &
1 , &
1 , &
2 , & ! <11.6>{-1-1.1}
2 , &
2 , &
2 , &
2 , &
2 , &
3 , & ! <10.-2>{10.1}
3 , &
3 , &
3 , &
3 , &
3 , &
4 , & ! <11.-3>{11.2}
4 , &
4 , &
4 , &
4 , &
4 &
] , pInt ) , [ LATTICE_hex_Ntwin ] )
integer ( pInt ) , dimension ( LATTICE_hex_Nslip , LATTICE_hex_Nslip ) , parameter , public :: &
LATTICE_hex_interactionSlipSlip = reshape ( int ( [ &
1 , 2 , 2 , 3 , 3 , 3 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 31 , 31 , 31 , 31 , 31 , 31 , & ! ---> slip
2 , 1 , 2 , 3 , 3 , 3 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 31 , 31 , 31 , 31 , 31 , 31 , & ! |
2 , 2 , 1 , 3 , 3 , 3 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 21 , 31 , 31 , 31 , 31 , 31 , 31 , & ! |
! v slip
6 , 6 , 6 , 4 , 5 , 5 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 32 , 32 , 32 , 32 , 32 , 32 , &
6 , 6 , 6 , 5 , 4 , 5 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 32 , 32 , 32 , 32 , 32 , 32 , &
6 , 6 , 6 , 5 , 5 , 4 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 22 , 32 , 32 , 32 , 32 , 32 , 32 , &
!
12 , 12 , 12 , 11 , 11 , 11 , 9 , 10 , 10 , 15 , 15 , 15 , 15 , 15 , 15 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 33 , 33 , 33 , 33 , 33 , 33 , &
12 , 12 , 12 , 11 , 11 , 11 , 10 , 9 , 10 , 15 , 15 , 15 , 15 , 15 , 15 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 33 , 33 , 33 , 33 , 33 , 33 , &
12 , 12 , 12 , 11 , 11 , 11 , 10 , 10 , 9 , 15 , 15 , 15 , 15 , 15 , 15 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 23 , 33 , 33 , 33 , 33 , 33 , 33 , &
!
20 , 20 , 20 , 19 , 19 , 19 , 18 , 18 , 18 , 16 , 17 , 17 , 17 , 17 , 17 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 34 , 34 , 34 , 34 , 34 , 34 , &
20 , 20 , 20 , 19 , 19 , 19 , 18 , 18 , 18 , 17 , 16 , 17 , 17 , 17 , 17 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 34 , 34 , 34 , 34 , 34 , 34 , &
20 , 20 , 20 , 19 , 19 , 19 , 18 , 18 , 18 , 17 , 17 , 16 , 17 , 17 , 17 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 34 , 34 , 34 , 34 , 34 , 34 , &
20 , 20 , 20 , 19 , 19 , 19 , 18 , 18 , 18 , 17 , 17 , 17 , 16 , 17 , 17 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 34 , 34 , 34 , 34 , 34 , 34 , &
20 , 20 , 20 , 19 , 19 , 19 , 18 , 18 , 18 , 17 , 17 , 17 , 17 , 16 , 17 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 34 , 34 , 34 , 34 , 34 , 34 , &
20 , 20 , 20 , 19 , 19 , 19 , 18 , 18 , 18 , 17 , 17 , 17 , 17 , 17 , 16 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 24 , 34 , 34 , 34 , 34 , 34 , 34 , &
!
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 25 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 25 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 25 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 25 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 26 , 25 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 26 , 26 , 25 , 26 , 26 , 26 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 26 , 26 , 26 , 25 , 26 , 26 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 25 , 26 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 25 , 26 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 25 , 26 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 25 , 26 , 35 , 35 , 35 , 35 , 35 , 35 , &
30 , 30 , 30 , 29 , 29 , 29 , 28 , 28 , 28 , 27 , 27 , 27 , 27 , 27 , 27 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 26 , 25 , 35 , 35 , 35 , 35 , 35 , 35 , &
!
42 , 42 , 42 , 41 , 41 , 41 , 40 , 40 , 40 , 39 , 39 , 39 , 39 , 39 , 39 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 36 , 37 , 37 , 37 , 37 , 37 , &
42 , 42 , 42 , 41 , 41 , 41 , 40 , 40 , 40 , 39 , 39 , 39 , 39 , 39 , 39 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 37 , 36 , 37 , 37 , 37 , 37 , &
42 , 42 , 42 , 41 , 41 , 41 , 40 , 40 , 40 , 39 , 39 , 39 , 39 , 39 , 39 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 37 , 37 , 36 , 37 , 37 , 37 , &
42 , 42 , 42 , 41 , 41 , 41 , 40 , 40 , 40 , 39 , 39 , 39 , 39 , 39 , 39 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 37 , 37 , 37 , 36 , 37 , 37 , &
42 , 42 , 42 , 41 , 41 , 41 , 40 , 40 , 40 , 39 , 39 , 39 , 39 , 39 , 39 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 37 , 37 , 37 , 37 , 36 , 37 , &
42 , 42 , 42 , 41 , 41 , 41 , 40 , 40 , 40 , 39 , 39 , 39 , 39 , 39 , 39 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 37 , 37 , 37 , 37 , 37 , 36 &
!
] , pInt ) , [ LATTICE_hex_Nslip , LATTICE_hex_Nslip ] , order = [ 2 , 1 ] ) !< Slip--slip interaction types for hex (32? in total)
integer ( pInt ) , dimension ( LATTICE_hex_Nslip , LATTICE_hex_Ntwin ) , parameter , public :: &
LATTICE_hex_interactionSlipTwin = reshape ( int ( [ &
1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 4 , & ! --> twin
1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 4 , & ! |
1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 4 , & ! |
! v
5 , 5 , 5 , 5 , 5 , 5 , 6 , 6 , 6 , 6 , 6 , 6 , 7 , 7 , 7 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , & ! slip
5 , 5 , 5 , 5 , 5 , 5 , 6 , 6 , 6 , 6 , 6 , 6 , 7 , 7 , 7 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , &
5 , 5 , 5 , 5 , 5 , 5 , 6 , 6 , 6 , 6 , 6 , 6 , 7 , 7 , 7 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , &
!
9 , 9 , 9 , 9 , 9 , 9 , 10 , 10 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 11 , 11 , 11 , 12 , 12 , 12 , 12 , 12 , 12 , &
9 , 9 , 9 , 9 , 9 , 9 , 10 , 10 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 11 , 11 , 11 , 12 , 12 , 12 , 12 , 12 , 12 , &
9 , 9 , 9 , 9 , 9 , 9 , 10 , 10 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 11 , 11 , 11 , 12 , 12 , 12 , 12 , 12 , 12 , &
!
13 , 13 , 13 , 13 , 13 , 13 , 14 , 14 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 , 15 , 15 , 16 , 16 , 16 , 16 , 16 , 16 , &
13 , 13 , 13 , 13 , 13 , 13 , 14 , 14 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 , 15 , 15 , 16 , 16 , 16 , 16 , 16 , 16 , &
13 , 13 , 13 , 13 , 13 , 13 , 14 , 14 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 , 15 , 15 , 16 , 16 , 16 , 16 , 16 , 16 , &
13 , 13 , 13 , 13 , 13 , 13 , 14 , 14 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 , 15 , 15 , 16 , 16 , 16 , 16 , 16 , 16 , &
13 , 13 , 13 , 13 , 13 , 13 , 14 , 14 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 , 15 , 15 , 16 , 16 , 16 , 16 , 16 , 16 , &
13 , 13 , 13 , 13 , 13 , 13 , 14 , 14 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 , 15 , 15 , 16 , 16 , 16 , 16 , 16 , 16 , &
!
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
17 , 17 , 17 , 17 , 17 , 17 , 18 , 18 , 18 , 18 , 18 , 18 , 19 , 19 , 19 , 19 , 19 , 19 , 20 , 20 , 20 , 20 , 20 , 20 , &
!
21 , 21 , 21 , 21 , 21 , 21 , 22 , 22 , 22 , 22 , 22 , 22 , 23 , 23 , 23 , 23 , 23 , 23 , 24 , 24 , 24 , 24 , 24 , 24 , &
21 , 21 , 21 , 21 , 21 , 21 , 22 , 22 , 22 , 22 , 22 , 22 , 23 , 23 , 23 , 23 , 23 , 23 , 24 , 24 , 24 , 24 , 24 , 24 , &
21 , 21 , 21 , 21 , 21 , 21 , 22 , 22 , 22 , 22 , 22 , 22 , 23 , 23 , 23 , 23 , 23 , 23 , 24 , 24 , 24 , 24 , 24 , 24 , &
21 , 21 , 21 , 21 , 21 , 21 , 22 , 22 , 22 , 22 , 22 , 22 , 23 , 23 , 23 , 23 , 23 , 23 , 24 , 24 , 24 , 24 , 24 , 24 , &
21 , 21 , 21 , 21 , 21 , 21 , 22 , 22 , 22 , 22 , 22 , 22 , 23 , 23 , 23 , 23 , 23 , 23 , 24 , 24 , 24 , 24 , 24 , 24 , &
21 , 21 , 21 , 21 , 21 , 21 , 22 , 22 , 22 , 22 , 22 , 22 , 23 , 23 , 23 , 23 , 23 , 23 , 24 , 24 , 24 , 24 , 24 , 24 &
!
] , pInt ) , [ LATTICE_hex_Nslip , LATTICE_hex_Ntwin ] , order = [ 2 , 1 ] ) !< Slip--twin interaction types for hex (isotropic, 24 in total)
integer ( pInt ) , dimension ( LATTICE_hex_Ntwin , LATTICE_hex_Nslip ) , parameter , public :: &
LATTICE_hex_interactionTwinSlip = reshape ( int ( [ &
1 , 1 , 1 , 5 , 5 , 5 , 9 , 9 , 9 , 13 , 13 , 13 , 13 , 13 , 13 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 21 , 21 , 21 , 21 , 21 , 21 , & ! --> slip
1 , 1 , 1 , 5 , 5 , 5 , 9 , 9 , 9 , 13 , 13 , 13 , 13 , 13 , 13 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 21 , 21 , 21 , 21 , 21 , 21 , & ! |
1 , 1 , 1 , 5 , 5 , 5 , 9 , 9 , 9 , 13 , 13 , 13 , 13 , 13 , 13 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 21 , 21 , 21 , 21 , 21 , 21 , & ! |
1 , 1 , 1 , 5 , 5 , 5 , 9 , 9 , 9 , 13 , 13 , 13 , 13 , 13 , 13 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 21 , 21 , 21 , 21 , 21 , 21 , & ! v
1 , 1 , 1 , 5 , 5 , 5 , 9 , 9 , 9 , 13 , 13 , 13 , 13 , 13 , 13 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 21 , 21 , 21 , 21 , 21 , 21 , & ! twin
1 , 1 , 1 , 5 , 5 , 5 , 9 , 9 , 9 , 13 , 13 , 13 , 13 , 13 , 13 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 17 , 21 , 21 , 21 , 21 , 21 , 21 , &
!
2 , 2 , 2 , 6 , 6 , 6 , 10 , 10 , 10 , 14 , 14 , 14 , 14 , 14 , 14 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 22 , 22 , 22 , 22 , 22 , 22 , &
2 , 2 , 2 , 6 , 6 , 6 , 10 , 10 , 10 , 14 , 14 , 14 , 14 , 14 , 14 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 22 , 22 , 22 , 22 , 22 , 22 , &
2 , 2 , 2 , 6 , 6 , 6 , 10 , 10 , 10 , 14 , 14 , 14 , 14 , 14 , 14 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 22 , 22 , 22 , 22 , 22 , 22 , &
2 , 2 , 2 , 6 , 6 , 6 , 10 , 10 , 10 , 14 , 14 , 14 , 14 , 14 , 14 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 22 , 22 , 22 , 22 , 22 , 22 , &
2 , 2 , 2 , 6 , 6 , 6 , 10 , 10 , 10 , 14 , 14 , 14 , 14 , 14 , 14 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 22 , 22 , 22 , 22 , 22 , 22 , &
2 , 2 , 2 , 6 , 6 , 6 , 10 , 10 , 10 , 14 , 14 , 14 , 14 , 14 , 14 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 18 , 22 , 22 , 22 , 22 , 22 , 22 , &
!
3 , 3 , 3 , 7 , 7 , 7 , 11 , 11 , 11 , 15 , 15 , 15 , 15 , 15 , 15 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 23 , 23 , 23 , 23 , 23 , 23 , &
3 , 3 , 3 , 7 , 7 , 7 , 11 , 11 , 11 , 15 , 15 , 15 , 15 , 15 , 15 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 23 , 23 , 23 , 23 , 23 , 23 , &
3 , 3 , 3 , 7 , 7 , 7 , 11 , 11 , 11 , 15 , 15 , 15 , 15 , 15 , 15 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 23 , 23 , 23 , 23 , 23 , 23 , &
3 , 3 , 3 , 7 , 7 , 7 , 11 , 11 , 11 , 15 , 15 , 15 , 15 , 15 , 15 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 23 , 23 , 23 , 23 , 23 , 23 , &
3 , 3 , 3 , 7 , 7 , 7 , 11 , 11 , 11 , 15 , 15 , 15 , 15 , 15 , 15 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 23 , 23 , 23 , 23 , 23 , 23 , &
3 , 3 , 3 , 7 , 7 , 7 , 11 , 11 , 11 , 15 , 15 , 15 , 15 , 15 , 15 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 19 , 23 , 23 , 23 , 23 , 23 , 23 , &
!
4 , 4 , 4 , 8 , 8 , 8 , 12 , 12 , 12 , 16 , 16 , 16 , 16 , 16 , 16 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 24 , 24 , 24 , 24 , 24 , 24 , &
4 , 4 , 4 , 8 , 8 , 8 , 12 , 12 , 12 , 16 , 16 , 16 , 16 , 16 , 16 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 24 , 24 , 24 , 24 , 24 , 24 , &
4 , 4 , 4 , 8 , 8 , 8 , 12 , 12 , 12 , 16 , 16 , 16 , 16 , 16 , 16 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 24 , 24 , 24 , 24 , 24 , 24 , &
4 , 4 , 4 , 8 , 8 , 8 , 12 , 12 , 12 , 16 , 16 , 16 , 16 , 16 , 16 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 24 , 24 , 24 , 24 , 24 , 24 , &
4 , 4 , 4 , 8 , 8 , 8 , 12 , 12 , 12 , 16 , 16 , 16 , 16 , 16 , 16 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 24 , 24 , 24 , 24 , 24 , 24 , &
4 , 4 , 4 , 8 , 8 , 8 , 12 , 12 , 12 , 16 , 16 , 16 , 16 , 16 , 16 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 20 , 24 , 24 , 24 , 24 , 24 , 24 &
] , pInt ) , [ LATTICE_hex_Ntwin , LATTICE_hex_Nslip ] , order = [ 2 , 1 ] ) !< Twin--twin interaction types for hex (isotropic, 20 in total)
integer ( pInt ) , dimension ( LATTICE_hex_Ntwin , LATTICE_hex_Ntwin ) , parameter , public :: &
LATTICE_hex_interactionTwinTwin = reshape ( int ( [ &
1 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 7 , 7 , 7 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , & ! ---> twin
2 , 1 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 7 , 7 , 7 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , & ! |
2 , 2 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 7 , 7 , 7 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , & ! |
2 , 2 , 2 , 1 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 7 , 7 , 7 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , & ! v twin
2 , 2 , 2 , 2 , 1 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 7 , 7 , 7 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , &
2 , 2 , 2 , 2 , 2 , 1 , 3 , 3 , 3 , 3 , 3 , 3 , 7 , 7 , 7 , 7 , 7 , 7 , 13 , 13 , 13 , 13 , 13 , 13 , &
!
6 , 6 , 6 , 6 , 6 , 6 , 4 , 5 , 5 , 5 , 5 , 5 , 8 , 8 , 8 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , &
6 , 6 , 6 , 6 , 6 , 6 , 5 , 4 , 5 , 5 , 5 , 5 , 8 , 8 , 8 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , &
6 , 6 , 6 , 6 , 6 , 6 , 5 , 5 , 4 , 5 , 5 , 5 , 8 , 8 , 8 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , &
6 , 6 , 6 , 6 , 6 , 6 , 5 , 5 , 5 , 4 , 5 , 5 , 8 , 8 , 8 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , &
6 , 6 , 6 , 6 , 6 , 6 , 5 , 5 , 5 , 5 , 4 , 5 , 8 , 8 , 8 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , &
6 , 6 , 6 , 6 , 6 , 6 , 5 , 5 , 5 , 5 , 5 , 4 , 8 , 8 , 8 , 8 , 8 , 8 , 14 , 14 , 14 , 14 , 14 , 14 , &
!
12 , 12 , 12 , 12 , 12 , 12 , 11 , 11 , 11 , 11 , 11 , 11 , 9 , 10 , 10 , 10 , 10 , 10 , 15 , 15 , 15 , 15 , 15 , 15 , &
12 , 12 , 12 , 12 , 12 , 12 , 11 , 11 , 11 , 11 , 11 , 11 , 10 , 9 , 10 , 10 , 10 , 10 , 15 , 15 , 15 , 15 , 15 , 15 , &
12 , 12 , 12 , 12 , 12 , 12 , 11 , 11 , 11 , 11 , 11 , 11 , 10 , 10 , 9 , 10 , 10 , 10 , 15 , 15 , 15 , 15 , 15 , 15 , &
12 , 12 , 12 , 12 , 12 , 12 , 11 , 11 , 11 , 11 , 11 , 11 , 10 , 10 , 10 , 9 , 10 , 10 , 15 , 15 , 15 , 15 , 15 , 15 , &
12 , 12 , 12 , 12 , 12 , 12 , 11 , 11 , 11 , 11 , 11 , 11 , 10 , 10 , 10 , 10 , 9 , 10 , 15 , 15 , 15 , 15 , 15 , 15 , &
12 , 12 , 12 , 12 , 12 , 12 , 11 , 11 , 11 , 11 , 11 , 11 , 10 , 10 , 10 , 10 , 10 , 9 , 15 , 15 , 15 , 15 , 15 , 15 , &
!
20 , 20 , 20 , 20 , 20 , 20 , 19 , 19 , 19 , 19 , 19 , 19 , 18 , 18 , 18 , 18 , 18 , 18 , 16 , 17 , 17 , 17 , 17 , 17 , &
20 , 20 , 20 , 20 , 20 , 20 , 19 , 19 , 19 , 19 , 19 , 19 , 18 , 18 , 18 , 18 , 18 , 18 , 17 , 16 , 17 , 17 , 17 , 17 , &
20 , 20 , 20 , 20 , 20 , 20 , 19 , 19 , 19 , 19 , 19 , 19 , 18 , 18 , 18 , 18 , 18 , 18 , 17 , 17 , 16 , 17 , 17 , 17 , &
20 , 20 , 20 , 20 , 20 , 20 , 19 , 19 , 19 , 19 , 19 , 19 , 18 , 18 , 18 , 18 , 18 , 18 , 17 , 17 , 17 , 16 , 17 , 17 , &
20 , 20 , 20 , 20 , 20 , 20 , 19 , 19 , 19 , 19 , 19 , 19 , 18 , 18 , 18 , 18 , 18 , 18 , 17 , 17 , 17 , 17 , 16 , 17 , &
20 , 20 , 20 , 20 , 20 , 20 , 19 , 19 , 19 , 19 , 19 , 19 , 18 , 18 , 18 , 18 , 18 , 18 , 17 , 17 , 17 , 17 , 17 , 16 &
] , pInt ) , [ lattice_hex_Ntwin , lattice_hex_Ntwin ] , order = [ 2 , 1 ] ) !< Twin--slip interaction types for hex (isotropic, 16 in total)
real ( pReal ) , dimension ( : , : , : ) , allocatable , public , protected :: &
lattice_C66
real ( pReal ) , dimension ( : , : , : , : , : ) , allocatable , public , protected :: &
lattice_C3333
real ( pReal ) , dimension ( : ) , allocatable , public , protected :: &
lattice_mu , &
lattice_nu
real ( pReal ) , dimension ( : , : , : ) , allocatable , public , protected :: &
lattice_thermalConductivity33 , &
lattice_thermalExpansion33 , &
lattice_surfaceEnergy33
real ( pReal ) , dimension ( : ) , allocatable , public , protected :: &
lattice_referenceTemperature
enum , bind ( c )
enumerator :: LATTICE_undefined_ID , &
LATTICE_iso_ID , &
LATTICE_fcc_ID , &
LATTICE_bcc_ID , &
LATTICE_hex_ID , &
LATTICE_ort_ID
end enum
integer ( kind ( LATTICE_undefined_ID ) ) , dimension ( : ) , allocatable , public , protected :: &
lattice_structure
integer ( pInt ) , dimension ( 2 ) , parameter , private :: &
lattice_NsymOperations = [ 24_pInt , 12_pInt ]
real ( pReal ) , dimension ( 4 , 36 ) , parameter , private :: &
lattice_symOperations = reshape ( [ &
1.0_pReal , 0.0_pReal , 0.0_pReal , 0.0_pReal , & ! cubic symmetry operations
0.0_pReal , 0.0_pReal , 0.7071067811865476_pReal , 0.7071067811865476_pReal , & ! 2-fold symmetry
0.0_pReal , 0.7071067811865476_pReal , 0.0_pReal , 0.7071067811865476_pReal , &
0.0_pReal , 0.7071067811865476_pReal , 0.7071067811865476_pReal , 0.0_pReal , &
0.0_pReal , 0.0_pReal , 0.7071067811865476_pReal , - 0.7071067811865476_pReal , &
0.0_pReal , - 0.7071067811865476_pReal , 0.0_pReal , 0.7071067811865476_pReal , &
0.0_pReal , 0.7071067811865476_pReal , - 0.7071067811865476_pReal , 0.0_pReal , &
0.5_pReal , 0.5_pReal , 0.5_pReal , 0.5_pReal , & ! 3-fold symmetry
- 0.5_pReal , 0.5_pReal , 0.5_pReal , 0.5_pReal , &
0.5_pReal , - 0.5_pReal , 0.5_pReal , 0.5_pReal , &
- 0.5_pReal , - 0.5_pReal , 0.5_pReal , 0.5_pReal , &
0.5_pReal , 0.5_pReal , - 0.5_pReal , 0.5_pReal , &
- 0.5_pReal , 0.5_pReal , - 0.5_pReal , 0.5_pReal , &
0.5_pReal , 0.5_pReal , 0.5_pReal , - 0.5_pReal , &
- 0.5_pReal , 0.5_pReal , 0.5_pReal , - 0.5_pReal , &
0.7071067811865476_pReal , 0.7071067811865476_pReal , 0.0_pReal , 0.0_pReal , & ! 4-fold symmetry
0.0_pReal , 1.0_pReal , 0.0_pReal , 0.0_pReal , &
- 0.7071067811865476_pReal , 0.7071067811865476_pReal , 0.0_pReal , 0.0_pReal , &
0.7071067811865476_pReal , 0.0_pReal , 0.7071067811865476_pReal , 0.0_pReal , &
0.0_pReal , 0.0_pReal , 1.0_pReal , 0.0_pReal , &
- 0.7071067811865476_pReal , 0.0_pReal , 0.7071067811865476_pReal , 0.0_pReal , &
0.7071067811865476_pReal , 0.0_pReal , 0.0_pReal , 0.7071067811865476_pReal , &
0.0_pReal , 0.0_pReal , 0.0_pReal , 1.0_pReal , &
- 0.7071067811865476_pReal , 0.0_pReal , 0.0_pReal , 0.7071067811865476_pReal , &
1.0_pReal , 0.0_pReal , 0.0_pReal , 0.0_pReal , & ! hexagonal symmetry operations
0.0_pReal , 1.0_pReal , 0.0_pReal , 0.0_pReal , & ! 2-fold symmetry
0.0_pReal , 0.0_pReal , 1.0_pReal , 0.0_pReal , &
0.0_pReal , 0.5_pReal , 0.866025403784439_pReal , 0.0_pReal , &
0.0_pReal , - 0.5_pReal , 0.866025403784439_pReal , 0.0_pReal , &
0.0_pReal , 0.866025403784439_pReal , 0.5_pReal , 0.0_pReal , &
0.0_pReal , - 0.866025403784439_pReal , 0.5_pReal , 0.0_pReal , &
0.866025403784439_pReal , 0.0_pReal , 0.0_pReal , 0.5_pReal , & ! 6-fold symmetry
- 0.866025403784439_pReal , 0.0_pReal , 0.0_pReal , 0.5_pReal , &
0.5_pReal , 0.0_pReal , 0.0_pReal , 0.866025403784439_pReal , &
- 0.5_pReal , 0.0_pReal , 0.0_pReal , 0.866025403784439_pReal , &
0.0_pReal , 0.0_pReal , 0.0_pReal , 1.0_pReal &
] , [ 4 , 36 ] ) !< Symmetry operations as quaternions 24 for cubic, 12 for hexagonal = 36
! use this later on to substitute the matrix above
! if self.lattice == 'cubic':
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! [ 0.0,1.0,0.0,0.0 ],
! [ 0.0,0.0,1.0,0.0 ],
! [ 0.0,0.0,0.0,1.0 ],
! [ 0.0, 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2) ],
! [ 0.0, 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2) ],
! [ 0.0, 0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2) ],
! [ 0.0, 0.5*math.sqrt(2), 0.0,-0.5*math.sqrt(2) ],
! [ 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ],
! [ 0.0,-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ],
! [ 0.5, 0.5, 0.5, 0.5 ],
! [-0.5, 0.5, 0.5, 0.5 ],
! [-0.5, 0.5, 0.5,-0.5 ],
! [-0.5, 0.5,-0.5, 0.5 ],
! [-0.5,-0.5, 0.5, 0.5 ],
! [-0.5,-0.5, 0.5,-0.5 ],
! [-0.5,-0.5,-0.5, 0.5 ],
! [-0.5, 0.5,-0.5,-0.5 ],
! [-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
! [ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
! [-0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2), 0.0 ],
! [-0.5*math.sqrt(2), 0.0,-0.5*math.sqrt(2), 0.0 ],
! [-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0, 0.0 ],
! [-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0, 0.0 ],
! ]
! elif self.lattice == 'hexagonal':
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! [ 0.0,1.0,0.0,0.0 ],
! [ 0.0,0.0,1.0,0.0 ],
! [ 0.0,0.0,0.0,1.0 ],
! [-0.5*math.sqrt(3), 0.0, 0.0, 0.5 ],
! [-0.5*math.sqrt(3), 0.0, 0.0,-0.5 ],
! [ 0.0, 0.5*math.sqrt(3), 0.5, 0.0 ],
! [ 0.0,-0.5*math.sqrt(3), 0.5, 0.0 ],
! [ 0.0, 0.5,-0.5*math.sqrt(3), 0.0 ],
! [ 0.0,-0.5,-0.5*math.sqrt(3), 0.0 ],
! [ 0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
! [-0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
! ]
! elif self.lattice == 'tetragonal':
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! [ 0.0,1.0,0.0,0.0 ],
! [ 0.0,0.0,1.0,0.0 ],
! [ 0.0,0.0,0.0,1.0 ],
! [ 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ],
! [ 0.0,-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ],
! [ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
! [-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
! ]
! elif self.lattice == 'orthorhombic':
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! [ 0.0,1.0,0.0,0.0 ],
! [ 0.0,0.0,1.0,0.0 ],
! [ 0.0,0.0,0.0,1.0 ],
! ]
! else:
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! ]
public :: &
lattice_init , &
lattice_qDisorientation , &
LATTICE_fcc_ID , &
LATTICE_bcc_ID , &
LATTICE_hex_ID
contains
!--------------------------------------------------------------------------------------------------
!> @brief Module initialization
!--------------------------------------------------------------------------------------------------
subroutine lattice_init
use , intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec , only : &
tol_math_check
use IO , only : &
IO_open_file , &
IO_open_jobFile_stat , &
IO_countSections , &
IO_countTagInPart , &
IO_error , &
IO_timeStamp , &
IO_stringPos , &
IO_EOF , &
IO_read , &
IO_lc , &
IO_getTag , &
IO_isBlank , &
IO_stringPos , &
IO_stringValue , &
IO_floatValue , &
IO_EOF
use material , only : &
material_configfile , &
material_localFileExt , &
material_partPhase
use debug , only : &
debug_level , &
debug_lattice , &
debug_levelBasic
implicit none
integer ( pInt ) , parameter :: FILEUNIT = 200_pInt
integer ( pInt ) :: Nphases
character ( len = 65536 ) :: &
tag = '' , &
line = ''
integer ( pInt ) , parameter :: MAXNCHUNKS = 2_pInt
integer ( pInt ) , dimension ( 1 + 2 * MAXNCHUNKS ) :: positions
integer ( pInt ) :: section = 0_pInt , i
real ( pReal ) , dimension ( : ) , allocatable :: &
CoverA , & !< c/a ratio for hex type lattice
aA , & !< lattice parameter a for fcc austenite
aM , & !< lattice paramater a for bcc martensite
cM !< lattice parameter c for bcc martensite
write ( 6 , '(/,a)' ) ' <<<+- lattice init -+>>>'
write ( 6 , '(a)' ) ' $Id$'
write ( 6 , '(a15,a)' ) ' Current time: ' , IO_timeStamp ( )
#include "compilation_info.f90"
!--------------------------------------------------------------------------------------------------
! consistency checks
if ( LATTICE_maxNslip / = maxval ( [ LATTICE_fcc_Nslip , LATTICE_bcc_Nslip , LATTICE_hex_Nslip ] ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_maxNslip' )
if ( LATTICE_maxNtwin / = maxval ( [ LATTICE_fcc_Ntwin , LATTICE_bcc_Ntwin , LATTICE_hex_Ntwin ] ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_maxNtwin' )
if ( LATTICE_maxNtrans / = maxval ( [ LATTICE_fcc_Ntrans , LATTICE_bcc_Ntrans , LATTICE_hex_Ntrans ] ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_maxNtrans' )
if ( LATTICE_maxNnonSchmid / = maxval ( [ lattice_fcc_NnonSchmid , lattice_bcc_NnonSchmid , &
lattice_hex_NnonSchmid ] ) ) call IO_error ( 0_pInt , ext_msg = 'LATTICE_maxNnonSchmid' )
if ( LATTICE_fcc_Nslip / = sum ( lattice_fcc_NslipSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_fcc_Nslip' )
if ( LATTICE_bcc_Nslip / = sum ( lattice_bcc_NslipSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_bcc_Nslip' )
if ( LATTICE_hex_Nslip / = sum ( lattice_hex_NslipSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_hex_Nslip' )
if ( LATTICE_fcc_Ntwin / = sum ( lattice_fcc_NtwinSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_fcc_Ntwin' )
if ( LATTICE_bcc_Ntwin / = sum ( lattice_bcc_NtwinSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_bcc_Ntwin' )
if ( LATTICE_hex_Ntwin / = sum ( lattice_hex_NtwinSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_hex_Ntwin' )
if ( LATTICE_fcc_Ntrans / = sum ( lattice_fcc_NtransSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_fcc_Ntrans' )
if ( LATTICE_bcc_Ntrans / = sum ( lattice_bcc_NtransSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_bcc_Ntrans' )
if ( LATTICE_hex_Ntrans / = sum ( lattice_hex_NtransSystem ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_hex_Ntrans' )
if ( LATTICE_maxNinteraction / = max ( &
maxval ( lattice_fcc_interactionSlipSlip ) , &
maxval ( lattice_bcc_interactionSlipSlip ) , &
maxval ( lattice_hex_interactionSlipSlip ) , &
!
maxval ( lattice_fcc_interactionSlipTwin ) , &
maxval ( lattice_bcc_interactionSlipTwin ) , &
maxval ( lattice_hex_interactionSlipTwin ) , &
!
maxval ( lattice_fcc_interactionTwinSlip ) , &
maxval ( lattice_bcc_interactionTwinSlip ) , &
maxval ( lattice_hex_interactionTwinSlip ) , &
!
maxval ( lattice_fcc_interactionTwinTwin ) , &
maxval ( lattice_bcc_interactionTwinTwin ) , &
maxval ( lattice_hex_interactionTwinTwin ) ) ) &
call IO_error ( 0_pInt , ext_msg = 'LATTICE_maxNinteraction' )
!--------------------------------------------------------------------------------------------------
! read from material configuration file
if ( . not . IO_open_jobFile_stat ( FILEUNIT , material_localFileExt ) ) & ! no local material configuration present...
call IO_open_file ( FILEUNIT , material_configFile ) ! ... open material.config file
Nphases = IO_countSections ( FILEUNIT , material_partPhase )
if ( Nphases < 1_pInt ) &
call IO_error ( 160_pInt , Nphases , ext_msg = 'No phases found' )
if ( iand ( debug_level ( debug_lattice ) , debug_levelBasic ) / = 0_pInt ) then
write ( 6 , '(a16,1x,i5)' ) ' # phases:' , Nphases
endif
allocate ( lattice_structure ( Nphases ) , source = LATTICE_undefined_ID )
allocate ( lattice_C66 ( 6 , 6 , Nphases ) , source = 0.0_pReal )
allocate ( lattice_C3333 ( 3 , 3 , 3 , 3 , Nphases ) , source = 0.0_pReal )
allocate ( lattice_thermalConductivity33 ( 3 , 3 , Nphases ) , source = 0.0_pReal )
allocate ( lattice_thermalExpansion33 ( 3 , 3 , Nphases ) , source = 0.0_pReal )
allocate ( lattice_surfaceEnergy33 ( 3 , 3 , Nphases ) , source = 0.0_pReal )
allocate ( lattice_referenceTemperature ( Nphases ) , source = 0.0_pReal )
allocate ( lattice_mu ( Nphases ) , source = 0.0_pReal )
allocate ( lattice_nu ( Nphases ) , source = 0.0_pReal )
allocate ( lattice_NnonSchmid ( Nphases ) , source = 0_pInt )
allocate ( lattice_Sslip ( 3 , 3 , 1 + 2 * lattice_maxNnonSchmid , lattice_maxNslip , Nphases ) , source = 0.0_pReal )
allocate ( lattice_Sslip_v ( 6 , 1 + 2 * lattice_maxNnonSchmid , lattice_maxNslip , Nphases ) , source = 0.0_pReal )
allocate ( lattice_sd ( 3 , lattice_maxNslip , Nphases ) , source = 0.0_pReal )
allocate ( lattice_st ( 3 , lattice_maxNslip , Nphases ) , source = 0.0_pReal )
allocate ( lattice_sn ( 3 , lattice_maxNslip , Nphases ) , source = 0.0_pReal )
allocate ( lattice_Qtwin ( 3 , 3 , lattice_maxNtwin , Nphases ) , source = 0.0_pReal )
allocate ( lattice_Stwin ( 3 , 3 , lattice_maxNtwin , Nphases ) , source = 0.0_pReal )
allocate ( lattice_Stwin_v ( 6 , lattice_maxNtwin , Nphases ) , source = 0.0_pReal )
allocate ( lattice_td ( 3 , lattice_maxNtwin , Nphases ) , source = 0.0_pReal )
allocate ( lattice_tt ( 3 , lattice_maxNtwin , Nphases ) , source = 0.0_pReal )
allocate ( lattice_tn ( 3 , lattice_maxNtwin , Nphases ) , source = 0.0_pReal )
allocate ( lattice_shearTwin ( lattice_maxNtwin , Nphases ) , source = 0.0_pReal )
allocate ( lattice_NslipSystem ( lattice_maxNslipFamily , Nphases ) , source = 0_pInt )
allocate ( lattice_NtwinSystem ( lattice_maxNtwinFamily , Nphases ) , source = 0_pInt )
allocate ( lattice_NtransSystem ( lattice_maxNtransFamily , Nphases ) , source = 0_pInt )
allocate ( lattice_interactionSlipSlip ( lattice_maxNslip , lattice_maxNslip , Nphases ) , source = 0_pInt ) ! other:me
allocate ( lattice_interactionSlipTwin ( lattice_maxNslip , lattice_maxNtwin , Nphases ) , source = 0_pInt ) ! other:me
allocate ( lattice_interactionTwinSlip ( lattice_maxNtwin , lattice_maxNslip , Nphases ) , source = 0_pInt ) ! other:me
allocate ( lattice_interactionTwinTwin ( lattice_maxNtwin , lattice_maxNtwin , Nphases ) , source = 0_pInt ) ! other:me
allocate ( CoverA ( Nphases ) , source = 0.0_pReal )
allocate ( aA ( Nphases ) , source = 0.0_pReal )
allocate ( aM ( Nphases ) , source = 0.0_pReal )
allocate ( cM ( Nphases ) , source = 0.0_pReal )
rewind ( fileUnit )
line = '' ! to have it initialized
section = 0_pInt ! - " -
do while ( trim ( line ) / = IO_EOF . and . IO_lc ( IO_getTag ( line , '<' , '>' ) ) / = material_partPhase ) ! wind forward to <Phase>
line = IO_read ( fileUnit )
enddo
do while ( trim ( line ) / = IO_EOF ) ! read through sections of material part
line = IO_read ( fileUnit )
if ( IO_isBlank ( line ) ) cycle ! skip empty lines
if ( IO_getTag ( line , '<' , '>' ) / = '' ) then ! stop at next part
line = IO_read ( fileUnit , . true . ) ! reset IO_read
exit
endif
if ( IO_getTag ( line , '[' , ']' ) / = '' ) then ! next section
section = section + 1_pInt
endif
if ( section > 0_pInt ) then
positions = IO_stringPos ( line , MAXNCHUNKS )
tag = IO_lc ( IO_stringValue ( line , positions , 1_pInt ) ) ! extract key
select case ( tag )
case ( 'lattice_structure' )
select case ( trim ( IO_lc ( IO_stringValue ( line , positions , 2_pInt ) ) ) )
case ( 'iso' , 'isotropic' )
lattice_structure ( section ) = LATTICE_iso_ID
case ( 'fcc' )
lattice_structure ( section ) = LATTICE_fcc_ID
case ( 'bcc' )
lattice_structure ( section ) = LATTICE_bcc_ID
case ( 'hex' , 'hexagonal' )
lattice_structure ( section ) = LATTICE_hex_ID
case ( 'ort' , 'orthorombic' )
lattice_structure ( section ) = LATTICE_ort_ID
case default
call IO_error ( 450_pInt , ext_msg = trim ( IO_lc ( IO_stringValue ( line , positions , 2_pInt ) ) ) )
end select
case ( 'c11' )
lattice_C66 ( 1 , 1 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'c12' )
lattice_C66 ( 1 , 2 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'c13' )
lattice_C66 ( 1 , 3 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'c22' )
lattice_C66 ( 2 , 2 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'c23' )
lattice_C66 ( 2 , 3 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'c33' )
lattice_C66 ( 3 , 3 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'c44' )
lattice_C66 ( 4 , 4 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'c55' )
lattice_C66 ( 5 , 5 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'c66' )
lattice_C66 ( 6 , 6 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'covera_ratio' , 'c/a_ratio' , 'c/a' )
CoverA ( section ) = IO_floatValue ( line , positions , 2_pInt )
2014-08-14 18:48:33 +05:30
case ( 'aa' , 'a_a' , 'a_austenite' , 'a_fcc' )
2014-08-14 17:51:51 +05:30
aA ( section ) = IO_floatValue ( line , positions , 2_pInt )
2014-08-14 18:48:33 +05:30
case ( 'am' , 'a_m' , 'a_martensite' , 'a_bcc' )
2014-08-14 17:51:51 +05:30
aM ( section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'cm' , 'c_m' , 'c_martensite' )
cM ( section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'k11' )
lattice_thermalConductivity33 ( 1 , 1 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'k22' )
lattice_thermalConductivity33 ( 2 , 2 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'k33' )
lattice_thermalConductivity33 ( 3 , 3 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'thermal_expansion11' )
lattice_thermalExpansion33 ( 1 , 1 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'thermal_expansion22' )
lattice_thermalExpansion33 ( 2 , 2 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'thermal_expansion33' )
lattice_thermalExpansion33 ( 3 , 3 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'g11' )
lattice_surfaceEnergy33 ( 1 , 1 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'g22' )
lattice_surfaceEnergy33 ( 2 , 2 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'g33' )
lattice_surfaceEnergy33 ( 3 , 3 , section ) = IO_floatValue ( line , positions , 2_pInt )
case ( 'reference_temperature' )
lattice_referenceTemperature ( section ) = IO_floatValue ( line , positions , 2_pInt )
end select
endif
enddo
do i = 1_pInt , Nphases
if ( ( CoverA ( i ) < 1.0_pReal . or . CoverA ( i ) > 2.0_pReal ) &
. and . lattice_structure ( i ) == LATTICE_hex_ID ) call IO_error ( 206_pInt ) ! checking physical significance of c/a
call lattice_initializeStructure ( i , CoverA ( i ) , aA ( i ) , aM ( i ) , cM ( i ) )
enddo
deallocate ( CoverA , aA , aM , cM )
end subroutine lattice_init
!--------------------------------------------------------------------------------------------------
!> @brief Calculation of Schmid matrices, etc.
!--------------------------------------------------------------------------------------------------
subroutine lattice_initializeStructure ( myPhase , CoverA , aA , aM , cM )
use prec , only : &
tol_math_check
use math , only : &
math_vectorproduct , &
math_tensorproduct , &
math_norm3 , &
math_mul33x3 , &
math_trace33 , &
math_symmetric33 , &
math_Mandel33to6 , &
math_Mandel3333to66 , &
math_Voigt66to3333 , &
math_axisAngleToR , &
INRAD
use IO , only : &
IO_error
implicit none
integer ( pInt ) , intent ( in ) :: myPhase
real ( pReal ) , intent ( in ) :: &
CoverA , &
aA , &
aM , &
cM
real ( pReal ) , dimension ( 3 ) :: &
sdU , snU , &
np , nn
real ( pReal ) , dimension ( 3 , lattice_maxNslip ) :: &
sd , sn
real ( pReal ) , dimension ( 3 , 3 , 2 , lattice_maxNnonSchmid , lattice_maxNslip ) :: &
sns
real ( pReal ) , dimension ( 3 , lattice_maxNtwin ) :: &
td , tn
real ( pReal ) , dimension ( lattice_maxNtwin ) :: &
ts
integer ( pInt ) :: &
i , j , &
myNslip , myNtwin
lattice_C66 ( 1 : 6 , 1 : 6 , myPhase ) = lattice_symmetrizeC66 ( lattice_structure ( myPhase ) , &
lattice_C66 ( 1 : 6 , 1 : 6 , myPhase ) )
lattice_mu ( myPhase ) = 0.2_pReal * ( lattice_C66 ( 1 , 1 , myPhase ) &
- lattice_C66 ( 1 , 2 , myPhase ) &
+ 3.0_pReal * lattice_C66 ( 4 , 4 , myPhase ) ) ! (C11iso-C12iso)/2 with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5
lattice_nu ( myPhase ) = ( lattice_C66 ( 1 , 1 , myPhase ) &
+ 4.0_pReal * lattice_C66 ( 1 , 2 , myPhase ) &
- 2.0_pReal * lattice_C66 ( 4 , 4 , myPhase ) ) &
/ ( 4.0_pReal * lattice_C66 ( 1 , 1 , myPhase ) &
+ 6.0_pReal * lattice_C66 ( 1 , 2 , myPhase ) &
+ 2.0_pReal * lattice_C66 ( 4 , 4 , myPhase ) ) ! C12iso/(C11iso+C12iso) with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5
lattice_C3333 ( 1 : 3 , 1 : 3 , 1 : 3 , 1 : 3 , myPhase ) = math_Voigt66to3333 ( lattice_C66 ( 1 : 6 , 1 : 6 , myPhase ) ) ! Literature data is Voigt
lattice_C66 ( 1 : 6 , 1 : 6 , myPhase ) = math_Mandel3333to66 ( lattice_C3333 ( 1 : 3 , 1 : 3 , 1 : 3 , 1 : 3 , myPhase ) ) ! DAMASK uses Mandel
do i = 1_pInt , 6_pInt
if ( abs ( lattice_C66 ( i , i , myPhase ) ) < tol_math_check ) call IO_error ( 43_pInt , el = i , ip = myPhase )
enddo
lattice_thermalConductivity33 ( 1 : 3 , 1 : 3 , myPhase ) = lattice_symmetrize33 ( lattice_structure ( myPhase ) , &
lattice_thermalConductivity33 ( 1 : 3 , 1 : 3 , myPhase ) )
lattice_thermalExpansion33 ( 1 : 3 , 1 : 3 , myPhase ) = lattice_symmetrize33 ( lattice_structure ( myPhase ) , &
lattice_thermalExpansion33 ( 1 : 3 , 1 : 3 , myPhase ) )
lattice_surfaceEnergy33 ( 1 : 3 , 1 : 3 , myPhase ) = lattice_symmetrize33 ( lattice_structure ( myPhase ) , &
lattice_surfaceEnergy33 ( 1 : 3 , 1 : 3 , myPhase ) )
select case ( lattice_structure ( myPhase ) )
!--------------------------------------------------------------------------------------------------
! fcc
case ( LATTICE_fcc_ID )
myNslip = lattice_fcc_Nslip
myNtwin = lattice_fcc_Ntwin
do i = 1_pInt , myNslip ! assign slip system vectors
sd ( 1 : 3 , i ) = lattice_fcc_systemSlip ( 1 : 3 , i )
sn ( 1 : 3 , i ) = lattice_fcc_systemSlip ( 4 : 6 , i )
enddo
do i = 1_pInt , myNtwin ! assign twin system vectors and shears
td ( 1 : 3 , i ) = lattice_fcc_systemTwin ( 1 : 3 , i )
tn ( 1 : 3 , i ) = lattice_fcc_systemTwin ( 4 : 6 , i )
ts ( i ) = lattice_fcc_shearTwin ( i )
enddo
lattice_NslipSystem ( 1 : lattice_maxNslipFamily , myPhase ) = lattice_fcc_NslipSystem
lattice_NtwinSystem ( 1 : lattice_maxNtwinFamily , myPhase ) = lattice_fcc_NtwinSystem
lattice_NtransSystem ( 1 : lattice_maxNtransFamily , myPhase ) = lattice_fcc_NtransSystem
lattice_NnonSchmid ( myPhase ) = lattice_fcc_NnonSchmid
lattice_interactionSlipSlip ( 1 : myNslip , 1 : myNslip , myPhase ) = lattice_fcc_interactionSlipSlip
lattice_interactionSlipTwin ( 1 : myNslip , 1 : myNtwin , myPhase ) = lattice_fcc_interactionSlipTwin
lattice_interactionTwinSlip ( 1 : myNtwin , 1 : myNslip , myPhase ) = lattice_fcc_interactionTwinSlip
lattice_interactionTwinTwin ( 1 : myNtwin , 1 : myNtwin , myPhase ) = lattice_fcc_interactionTwinTwin
!--------------------------------------------------------------------------------------------------
! bcc
case ( LATTICE_bcc_ID )
myNslip = lattice_bcc_Nslip
myNtwin = lattice_bcc_Ntwin
do i = 1_pInt , myNslip ! assign slip system vectors
sd ( 1 : 3 , i ) = lattice_bcc_systemSlip ( 1 : 3 , i )
sn ( 1 : 3 , i ) = lattice_bcc_systemSlip ( 4 : 6 , i )
sdU = sd ( 1 : 3 , i ) / math_norm3 ( sd ( 1 : 3 , i ) )
snU = sn ( 1 : 3 , i ) / math_norm3 ( sn ( 1 : 3 , i ) )
! "np" and "nn" according to Gröger_etal2008, Acta Materialia 56 (2008) 5412– 5425, table 1 (corresponds to their "n1" for positive and negative slip direction respectively)
np = math_mul33x3 ( math_axisAngleToR ( sdU , 6 0.0_pReal * INRAD ) , snU )
nn = math_mul33x3 ( math_axisAngleToR ( - sdU , 6 0.0_pReal * INRAD ) , snU )
! Schmid matrices with non-Schmid contributions according to Koester_etal2012, Acta Materialia 60 (2012) 3894– 3901, eq. (17) ("n1" is replaced by either "np" or "nn" according to either positive or negative slip direction)
sns ( 1 : 3 , 1 : 3 , 1 , 1 , i ) = math_tensorproduct ( sdU , np )
sns ( 1 : 3 , 1 : 3 , 2 , 1 , i ) = math_tensorproduct ( - sdU , nn )
sns ( 1 : 3 , 1 : 3 , 1 , 2 , i ) = math_tensorproduct ( math_vectorproduct ( snU , sdU ) , snU )
sns ( 1 : 3 , 1 : 3 , 2 , 2 , i ) = math_tensorproduct ( math_vectorproduct ( snU , - sdU ) , snU )
sns ( 1 : 3 , 1 : 3 , 1 , 3 , i ) = math_tensorproduct ( math_vectorproduct ( np , sdU ) , np )
sns ( 1 : 3 , 1 : 3 , 2 , 3 , i ) = math_tensorproduct ( math_vectorproduct ( nn , - sdU ) , nn )
sns ( 1 : 3 , 1 : 3 , 1 , 4 , i ) = math_tensorproduct ( snU , snU )
sns ( 1 : 3 , 1 : 3 , 2 , 4 , i ) = math_tensorproduct ( snU , snU )
sns ( 1 : 3 , 1 : 3 , 1 , 5 , i ) = math_tensorproduct ( math_vectorproduct ( snU , sdU ) , math_vectorproduct ( snU , sdU ) )
sns ( 1 : 3 , 1 : 3 , 2 , 5 , i ) = math_tensorproduct ( math_vectorproduct ( snU , - sdU ) , math_vectorproduct ( snU , - sdU ) )
sns ( 1 : 3 , 1 : 3 , 1 , 6 , i ) = math_tensorproduct ( sdU , sdU )
sns ( 1 : 3 , 1 : 3 , 2 , 6 , i ) = math_tensorproduct ( - sdU , - sdU )
enddo
do i = 1_pInt , myNtwin ! assign twin system vectors and shears
td ( 1 : 3 , i ) = lattice_bcc_systemTwin ( 1 : 3 , i )
tn ( 1 : 3 , i ) = lattice_bcc_systemTwin ( 4 : 6 , i )
ts ( i ) = lattice_bcc_shearTwin ( i )
enddo
lattice_NslipSystem ( 1 : lattice_maxNslipFamily , myPhase ) = lattice_bcc_NslipSystem
lattice_NtwinSystem ( 1 : lattice_maxNtwinFamily , myPhase ) = lattice_bcc_NtwinSystem
lattice_NtransSystem ( 1 : lattice_maxNtransFamily , myPhase ) = lattice_bcc_NtransSystem
lattice_NnonSchmid ( myPhase ) = lattice_bcc_NnonSchmid
lattice_interactionSlipSlip ( 1 : myNslip , 1 : myNslip , myPhase ) = lattice_bcc_interactionSlipSlip
lattice_interactionSlipTwin ( 1 : myNslip , 1 : myNtwin , myPhase ) = lattice_bcc_interactionSlipTwin
lattice_interactionTwinSlip ( 1 : myNtwin , 1 : myNslip , myPhase ) = lattice_bcc_interactionTwinSlip
lattice_interactionTwinTwin ( 1 : myNtwin , 1 : myNtwin , myPhase ) = lattice_bcc_interactionTwinTwin
!--------------------------------------------------------------------------------------------------
! hex (including conversion from miller-bravais (a1=a2=a3=c) to miller (a, b, c) indices)
case ( LATTICE_hex_ID )
myNslip = lattice_hex_Nslip
myNtwin = lattice_hex_Ntwin
do i = 1_pInt , myNslip ! assign slip system vectors
sd ( 1 , i ) = lattice_hex_systemSlip ( 1 , i ) * 1.5_pReal ! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)]
sd ( 2 , i ) = ( lattice_hex_systemSlip ( 1 , i ) + 2.0_pReal * lattice_hex_systemSlip ( 2 , i ) ) * &
0.5_pReal * sqrt ( 3.0_pReal )
sd ( 3 , i ) = lattice_hex_systemSlip ( 4 , i ) * CoverA
sn ( 1 , i ) = lattice_hex_systemSlip ( 5 , i ) ! plane (hkil)->(h (h+2k)/sqrt(3) l/(c/a))
sn ( 2 , i ) = ( lattice_hex_systemSlip ( 5 , i ) + 2.0_pReal * lattice_hex_systemSlip ( 6 , i ) ) / sqrt ( 3.0_pReal )
sn ( 3 , i ) = lattice_hex_systemSlip ( 8 , i ) / CoverA
enddo
do i = 1_pInt , myNtwin ! assign twin system vectors and shears
td ( 1 , i ) = lattice_hex_systemTwin ( 1 , i ) * 1.5_pReal
td ( 2 , i ) = ( lattice_hex_systemTwin ( 1 , i ) + 2.0_pReal * lattice_hex_systemTwin ( 2 , i ) ) * &
0.5_pReal * sqrt ( 3.0_pReal )
td ( 3 , i ) = lattice_hex_systemTwin ( 4 , i ) * CoverA
tn ( 1 , i ) = lattice_hex_systemTwin ( 5 , i )
tn ( 2 , i ) = ( lattice_hex_systemTwin ( 5 , i ) + 2.0_pReal * lattice_hex_systemTwin ( 6 , i ) ) / sqrt ( 3.0_pReal )
tn ( 3 , i ) = lattice_hex_systemTwin ( 8 , i ) / CoverA
select case ( lattice_hex_shearTwin ( i ) ) ! from Christian & Mahajan 1995 p.29
case ( 1_pInt ) ! <-10.1>{10.2}
ts ( i ) = ( 3.0_pReal - CoverA * CoverA ) / sqrt ( 3.0_pReal ) / CoverA
case ( 2_pInt ) ! <11.6>{-1-1.1}
ts ( i ) = 1.0_pReal / CoverA
case ( 3_pInt ) ! <10.-2>{10.1}
ts ( i ) = ( 4.0_pReal * CoverA * CoverA - 9.0_pReal ) / 4.0_pReal / sqrt ( 3.0_pReal ) / CoverA
case ( 4_pInt ) ! <11.-3>{11.2}
ts ( i ) = 2.0_pReal * ( CoverA * CoverA - 2.0_pReal ) / 3.0_pReal / CoverA
end select
enddo
lattice_NslipSystem ( 1 : lattice_maxNslipFamily , myPhase ) = lattice_hex_NslipSystem
lattice_NtwinSystem ( 1 : lattice_maxNtwinFamily , myPhase ) = lattice_hex_NtwinSystem
lattice_NtransSystem ( 1 : lattice_maxNtransFamily , myPhase ) = lattice_hex_NtransSystem
lattice_NnonSchmid ( myPhase ) = lattice_hex_NnonSchmid
lattice_interactionSlipSlip ( 1 : myNslip , 1 : myNslip , myPhase ) = lattice_hex_interactionSlipSlip
lattice_interactionSlipTwin ( 1 : myNslip , 1 : myNtwin , myPhase ) = lattice_hex_interactionSlipTwin
lattice_interactionTwinSlip ( 1 : myNtwin , 1 : myNslip , myPhase ) = lattice_hex_interactionTwinSlip
lattice_interactionTwinTwin ( 1 : myNtwin , 1 : myNtwin , myPhase ) = lattice_hex_interactionTwinTwin
!--------------------------------------------------------------------------------------------------
! orthorombic and isotropic (no crystal plasticity)
case ( LATTICE_ort_ID , LATTICE_iso_ID )
myNslip = 0_pInt
myNtwin = 0_pInt
!--------------------------------------------------------------------------------------------------
! something went wrong
case default
call IO_error ( 450_pInt , ext_msg = 'lattice_initializeStructure' )
end select
do i = 1_pInt , myNslip ! store slip system vectors and Schmid matrix for my structure
lattice_sd ( 1 : 3 , i , myPhase ) = sd ( 1 : 3 , i ) / math_norm3 ( sd ( 1 : 3 , i ) ) ! make unit vector
lattice_sn ( 1 : 3 , i , myPhase ) = sn ( 1 : 3 , i ) / math_norm3 ( sn ( 1 : 3 , i ) ) ! make unit vector
lattice_st ( 1 : 3 , i , myPhase ) = math_vectorproduct ( lattice_sd ( 1 : 3 , i , myPhase ) , &
lattice_sn ( 1 : 3 , i , myPhase ) )
lattice_Sslip ( 1 : 3 , 1 : 3 , 1 , i , myPhase ) = math_tensorproduct ( lattice_sd ( 1 : 3 , i , myPhase ) , &
lattice_sn ( 1 : 3 , i , myPhase ) )
do j = 1_pInt , lattice_NnonSchmid ( myPhase )
lattice_Sslip ( 1 : 3 , 1 : 3 , 2 * j , i , myPhase ) = sns ( 1 : 3 , 1 : 3 , 1 , j , i )
lattice_Sslip ( 1 : 3 , 1 : 3 , 2 * j + 1 , i , myPhase ) = sns ( 1 : 3 , 1 : 3 , 2 , j , i )
enddo
do j = 1_pInt , 1_pInt + 2_pInt * lattice_NnonSchmid ( myPhase )
lattice_Sslip_v ( 1 : 6 , j , i , myPhase ) = &
math_Mandel33to6 ( math_symmetric33 ( lattice_Sslip ( 1 : 3 , 1 : 3 , j , i , myPhase ) ) )
enddo
if ( abs ( math_trace33 ( lattice_Sslip ( 1 : 3 , 1 : 3 , 1 , i , myPhase ) ) ) > tol_math_check ) &
call IO_error ( 0_pInt , myPhase , i , 0_pInt , ext_msg = 'dilatational slip Schmid matrix' )
enddo
do i = 1_pInt , myNtwin ! store twin system vectors and Schmid plus rotation matrix for my structure
lattice_td ( 1 : 3 , i , myPhase ) = td ( 1 : 3 , i ) / math_norm3 ( td ( 1 : 3 , i ) ) ! make unit vector
lattice_tn ( 1 : 3 , i , myPhase ) = tn ( 1 : 3 , i ) / math_norm3 ( tn ( 1 : 3 , i ) ) ! make unit vector
lattice_tt ( 1 : 3 , i , myPhase ) = math_vectorproduct ( lattice_td ( 1 : 3 , i , myPhase ) , &
lattice_tn ( 1 : 3 , i , myPhase ) )
lattice_Stwin ( 1 : 3 , 1 : 3 , i , myPhase ) = math_tensorproduct ( lattice_td ( 1 : 3 , i , myPhase ) , &
lattice_tn ( 1 : 3 , i , myPhase ) )
lattice_Stwin_v ( 1 : 6 , i , myPhase ) = math_Mandel33to6 ( math_symmetric33 ( lattice_Stwin ( 1 : 3 , 1 : 3 , i , myPhase ) ) )
lattice_Qtwin ( 1 : 3 , 1 : 3 , i , myPhase ) = math_axisAngleToR ( tn ( 1 : 3 , i ) , 18 0.0_pReal * INRAD )
lattice_shearTwin ( i , myPhase ) = ts ( i )
if ( abs ( math_trace33 ( lattice_Stwin ( 1 : 3 , 1 : 3 , i , myPhase ) ) ) > tol_math_check ) &
call IO_error ( 301_pInt , myPhase , ext_msg = 'dilatational twin Schmid matrix' )
enddo
end subroutine lattice_initializeStructure
!--------------------------------------------------------------------------------------------------
!> @brief Symmetrizes stiffness matrix according to lattice type
!--------------------------------------------------------------------------------------------------
pure function lattice_symmetrizeC66 ( struct , C66 )
implicit none
integer ( kind ( LATTICE_undefined_ID ) ) , intent ( in ) :: struct
real ( pReal ) , dimension ( 6 , 6 ) , intent ( in ) :: C66
real ( pReal ) , dimension ( 6 , 6 ) :: lattice_symmetrizeC66
integer ( pInt ) :: j , k
lattice_symmetrizeC66 = 0.0_pReal
select case ( struct )
case ( LATTICE_iso_ID )
forall ( k = 1_pInt : 3_pInt )
forall ( j = 1_pInt : 3_pInt ) lattice_symmetrizeC66 ( k , j ) = C66 ( 1 , 2 )
lattice_symmetrizeC66 ( k , k ) = C66 ( 1 , 1 )
lattice_symmetrizeC66 ( k + 3 , k + 3 ) = 0.5_pReal * ( C66 ( 1 , 1 ) - C66 ( 1 , 2 ) )
end forall
case ( LATTICE_fcc_ID , LATTICE_bcc_ID )
forall ( k = 1_pInt : 3_pInt )
forall ( j = 1_pInt : 3_pInt ) lattice_symmetrizeC66 ( k , j ) = C66 ( 1 , 2 )
lattice_symmetrizeC66 ( k , k ) = C66 ( 1 , 1 )
lattice_symmetrizeC66 ( k + 3_pInt , k + 3_pInt ) = C66 ( 4 , 4 )
end forall
case ( LATTICE_hex_ID )
lattice_symmetrizeC66 ( 1 , 1 ) = C66 ( 1 , 1 )
lattice_symmetrizeC66 ( 2 , 2 ) = C66 ( 1 , 1 )
lattice_symmetrizeC66 ( 3 , 3 ) = C66 ( 3 , 3 )
lattice_symmetrizeC66 ( 1 , 2 ) = C66 ( 1 , 2 )
lattice_symmetrizeC66 ( 2 , 1 ) = C66 ( 1 , 2 )
lattice_symmetrizeC66 ( 1 , 3 ) = C66 ( 1 , 3 )
lattice_symmetrizeC66 ( 3 , 1 ) = C66 ( 1 , 3 )
lattice_symmetrizeC66 ( 2 , 3 ) = C66 ( 1 , 3 )
lattice_symmetrizeC66 ( 3 , 2 ) = C66 ( 1 , 3 )
lattice_symmetrizeC66 ( 4 , 4 ) = C66 ( 4 , 4 )
lattice_symmetrizeC66 ( 5 , 5 ) = C66 ( 4 , 4 )
lattice_symmetrizeC66 ( 6 , 6 ) = 0.5_pReal * ( C66 ( 1 , 1 ) - C66 ( 1 , 2 ) )
case ( LATTICE_ort_ID )
lattice_symmetrizeC66 ( 1 , 1 ) = C66 ( 1 , 1 )
lattice_symmetrizeC66 ( 2 , 2 ) = C66 ( 2 , 2 )
lattice_symmetrizeC66 ( 3 , 3 ) = C66 ( 3 , 3 )
lattice_symmetrizeC66 ( 1 , 2 ) = C66 ( 1 , 2 )
lattice_symmetrizeC66 ( 2 , 1 ) = C66 ( 1 , 2 )
lattice_symmetrizeC66 ( 1 , 3 ) = C66 ( 1 , 3 )
lattice_symmetrizeC66 ( 3 , 1 ) = C66 ( 1 , 3 )
lattice_symmetrizeC66 ( 2 , 3 ) = C66 ( 2 , 3 )
lattice_symmetrizeC66 ( 3 , 2 ) = C66 ( 2 , 3 )
lattice_symmetrizeC66 ( 4 , 4 ) = C66 ( 4 , 4 )
lattice_symmetrizeC66 ( 5 , 5 ) = C66 ( 5 , 5 )
lattice_symmetrizeC66 ( 6 , 6 ) = C66 ( 6 , 6 )
case default
lattice_symmetrizeC66 = C66
end select
end function lattice_symmetrizeC66
!--------------------------------------------------------------------------------------------------
!> @brief Symmetrizes 2nd order tensor according to lattice type
!--------------------------------------------------------------------------------------------------
pure function lattice_symmetrize33 ( struct , T33 )
implicit none
integer ( kind ( LATTICE_undefined_ID ) ) , intent ( in ) :: struct
real ( pReal ) , dimension ( 3 , 3 ) , intent ( in ) :: T33
real ( pReal ) , dimension ( 3 , 3 ) :: lattice_symmetrize33
integer ( pInt ) :: j , k
lattice_symmetrize33 = 0.0_pReal
select case ( struct )
case ( LATTICE_iso_ID , LATTICE_fcc_ID , LATTICE_bcc_ID )
forall ( k = 1_pInt : 3_pInt ) lattice_symmetrize33 ( k , k ) = T33 ( 1 , 1 )
case ( LATTICE_hex_ID )
lattice_symmetrize33 ( 1 , 1 ) = T33 ( 1 , 1 )
lattice_symmetrize33 ( 2 , 2 ) = T33 ( 1 , 1 )
lattice_symmetrize33 ( 3 , 3 ) = T33 ( 3 , 3 )
case ( LATTICE_ort_ID )
lattice_symmetrize33 ( 1 , 1 ) = T33 ( 1 , 1 )
lattice_symmetrize33 ( 2 , 2 ) = T33 ( 2 , 2 )
lattice_symmetrize33 ( 3 , 3 ) = T33 ( 3 , 3 )
case default
lattice_symmetrize33 = T33
end select
end function lattice_symmetrize33
!--------------------------------------------------------------------------------------------------
!> @brief figures whether unit quat falls into stereographic standard triangle
!--------------------------------------------------------------------------------------------------
logical pure function lattice_qInSST ( Q , struct )
use math , only : &
math_qToRodrig
implicit none
real ( pReal ) , dimension ( 4 ) , intent ( in ) :: Q ! orientation
integer ( kind ( LATTICE_undefined_ID ) ) , intent ( in ) :: struct ! lattice structure
real ( pReal ) , dimension ( 3 ) :: Rodrig ! Rodrigues vector of Q
Rodrig = math_qToRodrig ( Q )
if ( any ( Rodrig / = Rodrig ) ) then
lattice_qInSST = . false .
else
select case ( struct )
case ( LATTICE_bcc_ID , LATTICE_fcc_ID )
lattice_qInSST = Rodrig ( 1 ) > Rodrig ( 2 ) . and . &
Rodrig ( 2 ) > Rodrig ( 3 ) . and . &
Rodrig ( 3 ) > 0.0_pReal
case ( LATTICE_hex_ID )
lattice_qInSST = Rodrig ( 1 ) > sqrt ( 3.0_pReal ) * Rodrig ( 2 ) . and . &
Rodrig ( 2 ) > 0.0_pReal . and . &
Rodrig ( 3 ) > 0.0_pReal
case default
lattice_qInSST = . true .
end select
endif
end function lattice_qInSST
!--------------------------------------------------------------------------------------------------
!> @brief calculates the disorientation for 2 unit quaternions
!--------------------------------------------------------------------------------------------------
pure function lattice_qDisorientation ( Q1 , Q2 , struct )
use prec , only : &
tol_math_check
use math , only : &
math_qMul , &
math_qConj
implicit none
real ( pReal ) , dimension ( 4 ) :: lattice_qDisorientation
real ( pReal ) , dimension ( 4 ) , intent ( in ) :: &
Q1 , & ! 1st orientation
Q2 ! 2nd orientation
integer ( kind ( LATTICE_undefined_ID ) ) , optional , intent ( in ) :: & ! if given, symmetries between the two orientation will be considered
struct
real ( pReal ) , dimension ( 4 ) :: dQ , dQsymA , mis
integer ( pInt ) :: i , j , k , s , symmetry
integer ( kind ( LATTICE_undefined_ID ) ) :: myStruct
!--------------------------------------------------------------------------------------------------
! check if a structure with known symmetries is given
if ( present ( struct ) ) then
myStruct = struct
select case ( struct )
case ( LATTICE_fcc_ID , LATTICE_bcc_ID )
symmetry = 1_pInt
case ( LATTICE_hex_ID )
symmetry = 2_pInt
case default
symmetry = 0_pInt
end select
else
symmetry = 0_pInt
myStruct = LATTICE_undefined_ID
endif
!--------------------------------------------------------------------------------------------------
! calculate misorientation, for cubic(1) and hexagonal(2) structure find symmetries
dQ = math_qMul ( math_qConj ( Q1 ) , Q2 )
lattice_qDisorientation = dQ
select case ( symmetry )
case ( 1_pInt , 2_pInt )
s = sum ( lattice_NsymOperations ( 1 : symmetry - 1_pInt ) )
do i = 1_pInt , 2_pInt
dQ = math_qConj ( dQ ) ! switch order of "from -- to"
do j = 1_pInt , lattice_NsymOperations ( symmetry ) ! run through first crystal's symmetries
dQsymA = math_qMul ( lattice_symOperations ( 1 : 4 , s + j ) , dQ ) ! apply sym
do k = 1_pInt , lattice_NsymOperations ( symmetry ) ! run through 2nd crystal's symmetries
mis = math_qMul ( dQsymA , lattice_symOperations ( 1 : 4 , s + k ) ) ! apply sym
if ( mis ( 1 ) < 0.0_pReal ) & ! want positive angle
mis = - mis
if ( mis ( 1 ) - lattice_qDisorientation ( 1 ) > - tol_math_check &
. and . lattice_qInSST ( mis , LATTICE_undefined_ID ) ) lattice_qDisorientation = mis ! found better one
enddo ; enddo ; enddo
case ( 0_pInt )
if ( lattice_qDisorientation ( 1 ) < 0.0_pReal ) lattice_qDisorientation = - lattice_qDisorientation ! keep omega within 0 to 180 deg
end select
end function lattice_qDisorientation
end module lattice