DAMASK_EICMD/python/tests/test_Lattice.py

158 lines
6.9 KiB
Python
Raw Normal View History

import random
import pytest
import numpy as np
2020-07-01 01:13:57 +05:30
from damask import Rotation
from damask import Symmetry
2020-07-01 01:13:57 +05:30
def in_FZ(system,rho):
"""Non-vectorized version of 'in_FZ'."""
rho_abs = abs(rho)
if system == 'cubic':
return np.sqrt(2.0)-1.0 >= rho_abs[0] \
and np.sqrt(2.0)-1.0 >= rho_abs[1] \
and np.sqrt(2.0)-1.0 >= rho_abs[2] \
and 1.0 >= rho_abs[0] + rho_abs[1] + rho_abs[2]
elif system == 'hexagonal':
return 1.0 >= rho_abs[0] and 1.0 >= rho_abs[1] and 1.0 >= rho_abs[2] \
and 2.0 >= np.sqrt(3)*rho_abs[0] + rho_abs[1] \
and 2.0 >= np.sqrt(3)*rho_abs[1] + rho_abs[0] \
and 2.0 >= np.sqrt(3) + rho_abs[2]
elif system == 'tetragonal':
return 1.0 >= rho_abs[0] and 1.0 >= rho_abs[1] \
and np.sqrt(2.0) >= rho_abs[0] + rho_abs[1] \
and np.sqrt(2.0) >= rho_abs[2] + 1.0
elif system == 'orthorhombic':
return 1.0 >= rho_abs[0] and 1.0 >= rho_abs[1] and 1.0 >= rho_abs[2]
else:
return np.all(np.isfinite(rho_abs))
def in_disorientation_SST(system,rho):
"""Non-vectorized version of 'in_Disorientation_SST'."""
epsilon = 0.0
if system == 'cubic':
return rho[0] >= rho[1]+epsilon and rho[1] >= rho[2]+epsilon and rho[2] >= epsilon
elif system == 'hexagonal':
return rho[0] >= np.sqrt(3)*(rho[1]-epsilon) and rho[1] >= epsilon and rho[2] >= epsilon
elif system == 'tetragonal':
return rho[0] >= rho[1]-epsilon and rho[1] >= epsilon and rho[2] >= epsilon
elif system == 'orthorhombic':
return rho[0] >= epsilon and rho[1] >= epsilon and rho[2] >= epsilon
else:
return True
def in_SST(system,vector,proper = False):
"""Non-vectorized version of 'in_SST'."""
if system == 'cubic':
basis = {'improper':np.array([ [-1. , 0. , 1. ],
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
[ 0. , np.sqrt(3.) , 0. ] ]),
'proper':np.array([ [ 0. , -1. , 1. ],
[-np.sqrt(2.) , np.sqrt(2.) , 0. ],
[ np.sqrt(3.) , 0. , 0. ] ]),
}
elif system == 'hexagonal':
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -np.sqrt(3.) , 0. ],
[ 0. , 2. , 0. ] ]),
'proper':np.array([ [ 0. , 0. , 1. ],
[-1. , np.sqrt(3.) , 0. ],
[ np.sqrt(3.) , -1. , 0. ] ]),
}
elif system == 'tetragonal':
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -1. , 0. ],
[ 0. , np.sqrt(2.) , 0. ] ]),
'proper':np.array([ [ 0. , 0. , 1. ],
[-1. , 1. , 0. ],
[ np.sqrt(2.) , 0. , 0. ] ]),
}
elif system == 'orthorhombic':
basis = {'improper':np.array([ [ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.] ]),
'proper':np.array([ [ 0., 0., 1.],
[-1., 0., 0.],
[ 0., 1., 0.] ]),
}
else:
return True
v = np.array(vector,dtype=float)
if proper:
theComponents = np.around(np.dot(basis['improper'],v),12)
inSST = np.all(theComponents >= 0.0)
if not inSST:
theComponents = np.around(np.dot(basis['proper'],v),12)
inSST = np.all(theComponents >= 0.0)
else:
v[2] = abs(v[2])
theComponents = np.around(np.dot(basis['improper'],v),12)
inSST = np.all(theComponents >= 0.0)
return inSST
@pytest.fixture
def set_of_rodrigues(set_of_quaternions):
return Rotation(set_of_quaternions).as_Rodrigues(vector=True)[:200]
class TestSymmetry:
2020-07-01 01:13:57 +05:30
@pytest.mark.parametrize('system',Symmetry.crystal_systems)
def test_in_FZ_vectorize(self,set_of_rodrigues,system):
2020-07-01 02:03:58 +05:30
result = Symmetry(system).in_FZ(set_of_rodrigues.reshape(50,4,3)).reshape(200)
for i,r in enumerate(result):
assert r == in_FZ(system,set_of_rodrigues[i])
2020-07-01 01:13:57 +05:30
@pytest.mark.parametrize('system',Symmetry.crystal_systems)
def test_in_disorientation_SST_vectorize(self,set_of_rodrigues,system):
2020-07-01 02:03:58 +05:30
result = Symmetry(system).in_disorientation_SST(set_of_rodrigues.reshape(50,4,3)).reshape(200)
for i,r in enumerate(result):
assert r == in_disorientation_SST(system,set_of_rodrigues[i])
2020-07-01 01:13:57 +05:30
2020-07-01 02:03:58 +05:30
@pytest.mark.parametrize('proper',[True,False])
@pytest.mark.parametrize('system',Symmetry.crystal_systems)
def test_in_SST_vectorize(self,system,proper):
vecs = np.random.rand(20,4,3)
result = Symmetry(system).in_SST(vecs,proper).reshape(20*4)
for i,r in enumerate(result):
assert r == in_SST(system,vecs.reshape(20*4,3)[i],proper)
2020-07-01 01:13:57 +05:30
@pytest.mark.parametrize('invalid_symmetry',['fcc','bcc','hello'])
2020-05-23 00:12:13 +05:30
def test_invalid_symmetry(self,invalid_symmetry):
with pytest.raises(KeyError):
2020-05-25 19:24:22 +05:30
s = Symmetry(invalid_symmetry) # noqa
def test_equal(self):
2020-06-30 16:25:08 +05:30
symmetry = random.choice(Symmetry.crystal_systems)
2020-05-24 12:36:11 +05:30
print(symmetry)
assert Symmetry(symmetry) == Symmetry(symmetry)
def test_not_equal(self):
2020-06-30 16:25:08 +05:30
symmetries = random.sample(Symmetry.crystal_systems,k=2)
assert Symmetry(symmetries[0]) != Symmetry(symmetries[1])
2020-06-30 16:25:08 +05:30
@pytest.mark.parametrize('system',Symmetry.crystal_systems)
2020-07-01 01:13:57 +05:30
def test_in_FZ(self,system):
assert Symmetry(system).in_FZ(np.zeros(3))
2020-06-30 16:25:08 +05:30
@pytest.mark.parametrize('system',Symmetry.crystal_systems)
2020-07-01 01:13:57 +05:30
def test_in_disorientation_SST(self,system):
assert Symmetry(system).in_disorientation_SST(np.zeros(3))
2020-06-30 16:25:08 +05:30
@pytest.mark.parametrize('system',Symmetry.crystal_systems)
@pytest.mark.parametrize('proper',[True,False])
2020-07-01 01:13:57 +05:30
def test_in_SST(self,system,proper):
assert Symmetry(system).in_SST(np.zeros(3),proper)
2020-07-01 02:03:58 +05:30
@pytest.mark.parametrize('function',['in_FZ','in_disorientation_SST','in_SST'])
2020-05-23 00:12:13 +05:30
def test_invalid_argument(self,function):
2020-05-25 19:24:22 +05:30
s = Symmetry() # noqa
with pytest.raises(ValueError):
eval('s.{}(np.ones(4))'.format(function))