140 lines
5.5 KiB
Python
140 lines
5.5 KiB
Python
|
#!/usr/bin/env python
|
||
|
|
||
|
import os,re,sys,math,numpy,string,damask
|
||
|
from optparse import OptionParser, Option
|
||
|
|
||
|
# -----------------------------
|
||
|
class extendableOption(Option):
|
||
|
# -----------------------------
|
||
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
||
|
|
||
|
ACTIONS = Option.ACTIONS + ("extend",)
|
||
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||
|
|
||
|
def take_action(self, action, dest, opt, value, values, parser):
|
||
|
if action == "extend":
|
||
|
lvalue = value.split(",")
|
||
|
values.ensure_value(dest, []).extend(lvalue)
|
||
|
else:
|
||
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
||
|
|
||
|
|
||
|
# --------------------------------------------------------------------
|
||
|
# MAIN
|
||
|
# --------------------------------------------------------------------
|
||
|
|
||
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
||
|
Add column(s) containing eigenvalues and eigenvectors of requested tensor column(s).
|
||
|
|
||
|
""" + string.replace('$Id$','\n','\\n')
|
||
|
)
|
||
|
|
||
|
|
||
|
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
|
||
|
help='heading of columns containing tensor field values')
|
||
|
|
||
|
parser.set_defaults(tensor = [])
|
||
|
|
||
|
(options,filenames) = parser.parse_args()
|
||
|
|
||
|
if len(options.tensor) == 0:
|
||
|
parser.error('no data column specified...')
|
||
|
|
||
|
datainfo = { # list of requested labels per datatype
|
||
|
'tensor': {'len':9,
|
||
|
'label':[]},
|
||
|
}
|
||
|
|
||
|
|
||
|
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
|
||
|
|
||
|
# ------------------------------------------ setup file handles ---------------------------------------
|
||
|
|
||
|
files = []
|
||
|
if filenames == []:
|
||
|
files.append({'name':'STDIN',
|
||
|
'input':sys.stdin,
|
||
|
'output':sys.stdout,
|
||
|
'croak':sys.stderr,
|
||
|
})
|
||
|
else:
|
||
|
for name in filenames:
|
||
|
if os.path.exists(name):
|
||
|
files.append({'name':name,
|
||
|
'input':open(name),
|
||
|
'output':open(name+'_tmp','w'),
|
||
|
'croak':sys.stdout,
|
||
|
})
|
||
|
|
||
|
# ------------------------------------------ loop over input files ---------------------------------------
|
||
|
|
||
|
for file in files:
|
||
|
if file['name'] != 'STDIN': file['croak'].write(file['name']+'\n')
|
||
|
|
||
|
|
||
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
||
|
table.head_read() # read ASCII header info
|
||
|
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||
|
'\t' + ' '.join(sys.argv[1:]))
|
||
|
|
||
|
active = {}
|
||
|
column = {}
|
||
|
head = []
|
||
|
|
||
|
for datatype,info in datainfo.items():
|
||
|
for label in info['label']:
|
||
|
key = {True :'1_%s',
|
||
|
False:'%s' }[info['len']>1]%label
|
||
|
if key not in table.labels:
|
||
|
file['croak'].write('column %s not found...\n'%key)
|
||
|
else:
|
||
|
if datatype not in active: active[datatype] = []
|
||
|
if datatype not in column: column[datatype] = {}
|
||
|
active[datatype].append(label)
|
||
|
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
||
|
table.labels_append(['%i_eigval(%s)'%(i+1,label)
|
||
|
for i in xrange(3)]) # extend ASCII header with new labels
|
||
|
table.labels_append(['%i_eigvec(%s)'%(i+1,label)
|
||
|
for i in xrange(9)]) # extend ASCII header with new labels
|
||
|
|
||
|
# ------------------------------------------ assemble header ---------------------------------------
|
||
|
|
||
|
table.head_write()
|
||
|
|
||
|
# ------------------------------------------ process data ---------------------------------------
|
||
|
|
||
|
while table.data_read(): # read next data line of ASCII table
|
||
|
|
||
|
for datatype,labels in active.items(): # loop over vector,tensor
|
||
|
for label in labels: # loop over all requested norms
|
||
|
tensor = numpy.array(map(float,table.data[column[datatype][label]:
|
||
|
column[datatype][label]+datainfo[datatype]['len']])).reshape((datainfo[datatype]['len']//3,3))
|
||
|
(u,v) = numpy.linalg.eig(tensor)
|
||
|
table.data_append(list(u))
|
||
|
table.data_append(list(v.transpose().reshape(datainfo[datatype]['len'])))
|
||
|
|
||
|
table.data_write() # output processed line
|
||
|
|
||
|
# ------------------------------------------ output result ---------------------------------------
|
||
|
|
||
|
table.output_flush() # just in case of buffered ASCII table
|
||
|
|
||
|
try:
|
||
|
file['output'].close() # close output ASCII table
|
||
|
except:
|
||
|
pass
|
||
|
try:
|
||
|
file['croak'].close() # stop croaking
|
||
|
except:
|
||
|
pass
|
||
|
try:
|
||
|
file['input'].close() # close input ASCII table
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
if file['name'] != 'STDIN':
|
||
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|