292 lines
12 KiB
Fortran
292 lines
12 KiB
Fortran
|
!********************************************************************
|
||
|
! Material subroutine for MSC.Marc Version 0.1
|
||
|
!
|
||
|
! written by F. Roters, P. Eisenlohr, L. Hantcherli, W.A. Counts
|
||
|
! MPI fuer Eisenforschung, Duesseldorf
|
||
|
!
|
||
|
! last modified: 28.10.2008
|
||
|
!********************************************************************
|
||
|
! Usage:
|
||
|
! - choose material as hypela2
|
||
|
! - set statevariable 2 to index of material
|
||
|
! - set statevariable 3 to index of texture
|
||
|
! - choose output of user variables if desired
|
||
|
! - make sure the file "mattex.mpie" exists in the working
|
||
|
! directory
|
||
|
! - use nonsymmetric option for solver (e.g. direct
|
||
|
! profile or multifrontal sparse, the latter seems
|
||
|
! to be faster!)
|
||
|
! - in case of ddm a symmetric solver has to be used
|
||
|
!********************************************************************
|
||
|
! Marc subroutines used:
|
||
|
! - hypela2
|
||
|
! - plotv
|
||
|
! - quit
|
||
|
!********************************************************************
|
||
|
! Marc common blocks included:
|
||
|
! - concom: lovl, ncycle, inc, incsub
|
||
|
! - creeps: timinc
|
||
|
!********************************************************************
|
||
|
!
|
||
|
include "prec.f90" ! uses nothing else
|
||
|
include "debug.f90" ! uses prec
|
||
|
include "math.f90" ! uses prec
|
||
|
include "IO.f90" ! uses prec, debug, math
|
||
|
include "FEsolving.f90" ! uses prec, IO
|
||
|
include "mesh.f90" ! uses prec, IO, math, FEsolving
|
||
|
include "lattice.f90" ! uses prec, math
|
||
|
include "constitutive.f90" ! uses prec, IO, math, lattice, mesh, debug
|
||
|
include "crystallite.f90" ! uses prec, debug, constitutive, mesh, math, IO
|
||
|
include "CPFEM.f90" ! uses prec, math, mesh, constitutive, FEsolving, debug, lattice, IO, crystallite
|
||
|
!
|
||
|
!
|
||
|
SUBROUTINE hypela2(d,g,e,de,s,t,dt,ngens,n,nn,kcus,matus,ndi,&
|
||
|
nshear,disp,dispt,coord,ffn,frotn,strechn,eigvn,ffn1,&
|
||
|
frotn1,strechn1,eigvn1,ncrd,itel,ndeg,ndm,&
|
||
|
nnode,jtype,lclass,ifr,ifu)
|
||
|
!********************************************************************
|
||
|
! This is the Marc material routine
|
||
|
!********************************************************************
|
||
|
!
|
||
|
! ************* user subroutine for defining material behavior **************
|
||
|
!
|
||
|
!
|
||
|
! CAUTION : Due to calculation of the Deformation gradients, Stretch Tensors and
|
||
|
! Rotation tensors at previous and current states, the analysis can be
|
||
|
! computationally expensive. Please use the user subroutine -> hypela
|
||
|
! if these kinematic quantities are not needed in the constitutive model
|
||
|
!
|
||
|
!
|
||
|
! IMPORTANT NOTES :
|
||
|
!
|
||
|
! (1) F,R,U are only available for continuum and membrane elements (not for
|
||
|
! shells and beams).
|
||
|
!
|
||
|
! (2) For total Lagrangian formulation use the -> 'Elasticity,1' card(=
|
||
|
! total Lagrange with large disp) in the parameter section of input deck.
|
||
|
! For updated Lagrangian formulation use the -> 'Plasticity,3' card(=
|
||
|
! update+finite+large disp+constant d) in the parameter section of
|
||
|
! input deck.
|
||
|
!
|
||
|
!
|
||
|
! d stress strain law to be formed
|
||
|
! g change in stress due to temperature effects
|
||
|
! e total elastic strain
|
||
|
! de increment of strain
|
||
|
! s stress - should be updated by user
|
||
|
! t state variables (comes in at t=n, must be updated
|
||
|
! to have state variables at t=n+1)
|
||
|
! dt increment of state variables
|
||
|
! ngens size of stress - strain law
|
||
|
! n element number
|
||
|
! nn integration point number
|
||
|
! kcus(1) layer number
|
||
|
! kcus(2) internal layer number
|
||
|
! matus(1) user material identification number
|
||
|
! matus(2) internal material identification number
|
||
|
! ndi number of direct components
|
||
|
! nshear number of shear components
|
||
|
! disp incremental displacements
|
||
|
! dispt displacements at t=n (at assembly, lovl=4) and
|
||
|
! displacements at t=n+1 (at stress recovery, lovl=6)
|
||
|
! coord coordinates
|
||
|
! ncrd number of coordinates
|
||
|
! ndeg number of degrees of freedom
|
||
|
! itel dimension of F and R, either 2 or 3
|
||
|
! nnode number of nodes per element
|
||
|
! jtype element type
|
||
|
! lclass element class
|
||
|
! ifr set to 1 if R has been calculated
|
||
|
! ifu set to 1 if strech has been calculated
|
||
|
!
|
||
|
! at t=n :
|
||
|
!
|
||
|
! ffn deformation gradient
|
||
|
! frotn rotation tensor
|
||
|
! strechn square of principal stretch ratios, lambda(i)
|
||
|
! eigvn(i,j) i principal direction components for j eigenvalues
|
||
|
!
|
||
|
! at t=n+1 :
|
||
|
!
|
||
|
! ffn1 deformation gradient
|
||
|
! frotn1 rotation tensor
|
||
|
! strechn1 square of principal stretch ratios, lambda(i)
|
||
|
! eigvn1(i,j) i principal direction components for j eigenvalues
|
||
|
!
|
||
|
! The following operation obtains U (stretch tensor) at t=n+1 :
|
||
|
!
|
||
|
! call scla(un1,0.d0,itel,itel,1)
|
||
|
! do 3 k=1,3
|
||
|
! do 2 i=1,3
|
||
|
! do 1 j=1,3
|
||
|
! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k)
|
||
|
!1 continue
|
||
|
!2 continue
|
||
|
!3 continue
|
||
|
!
|
||
|
use prec, only: pReal,pInt, ijaco
|
||
|
use FEsolving
|
||
|
use CPFEM, only: CPFEM_general
|
||
|
use math, only: invnrmMandel
|
||
|
!
|
||
|
implicit none
|
||
|
!
|
||
|
! ** Start of generated type statements **
|
||
|
real(pReal) coord, d, de, disp, dispt, dt, e, eigvn, eigvn1, ffn, ffn1
|
||
|
real(pReal) frotn, frotn1, g
|
||
|
integer(pInt) ifr, ifu, itel, jtype, kcus, lclass, matus, n, ncrd, ndeg
|
||
|
integer(pInt) ndi, ndm, ngens, nn, nnode, nshear
|
||
|
real(pReal) s, strechn, strechn1, t
|
||
|
! ** End of generated type statements **
|
||
|
!
|
||
|
dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,*),s(*), n(2),coord(ncrd,*),disp(ndeg,*),matus(2),dispt(ndeg,*),ffn(itel,*),&
|
||
|
frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*),kcus(2),&
|
||
|
lclass(2)
|
||
|
!
|
||
|
! Marc common blocks are in fixed format so they have to be reformated to free format (f90)
|
||
|
! Beware of changes in newer Marc versions -- these are from 2005r3
|
||
|
! concom is needed for inc, subinc, ncycle, lovl
|
||
|
include "concom_f90"
|
||
|
! creeps is needed for timinc (time increment)
|
||
|
include "creeps_f90"
|
||
|
!
|
||
|
integer(pInt) computationMode,i
|
||
|
!
|
||
|
if (inc == 0) then
|
||
|
cycleCounter = 4
|
||
|
else
|
||
|
if (theCycle > ncycle .or. theInc /= inc) cycleCounter = 0 ! reset counter for each cutback or new inc
|
||
|
if (theCycle /= ncycle .or. theLovl /= lovl) then
|
||
|
cycleCounter = cycleCounter+1 ! ping pong
|
||
|
outdatedFFN1 = .false.
|
||
|
endif
|
||
|
endif
|
||
|
if (cptim > theTime .or. theInc /= inc) then ! reached convergence
|
||
|
lastIncConverged = .true.
|
||
|
outdatedByNewInc = .true.
|
||
|
endif
|
||
|
|
||
|
if (mod(cycleCounter,2) /= 0) computationMode = 4 ! recycle
|
||
|
if (mod(cycleCounter,4) == 2) computationMode = 3 ! collect
|
||
|
if (mod(cycleCounter,4) == 0) computationMode = 2 ! compute
|
||
|
if (computationMode == 4 .and. ncycle == 0 .and. .not. lastIncConverged) &
|
||
|
computationMode = 6 ! recycle but restore known good consistent tangent
|
||
|
if (computationMode == 4 .and. lastIncConverged) then
|
||
|
computationMode = 5 ! recycle and record former consistent tangent
|
||
|
lastIncConverged = .false.
|
||
|
endif
|
||
|
if (computationMode == 2 .and. outdatedByNewInc) then
|
||
|
computationMode = 1 ! compute and age former results
|
||
|
outdatedByNewInc = .false.
|
||
|
endif
|
||
|
if (computationMode == 2 .and. outdatedFFN1) then
|
||
|
computationMode = 4 ! return odd results to force new vyvle
|
||
|
endif
|
||
|
|
||
|
|
||
|
theTime = cptim ! record current starting time
|
||
|
theInc = inc ! record current increment number
|
||
|
theCycle = ncycle ! record current cycle count
|
||
|
theLovl = lovl ! record current lovl
|
||
|
|
||
|
call CPFEM_general(computationMode,ffn,ffn1,t(1),timinc,n(1),nn,s,mod(cycleCounter-4,4_pInt*ijaco)==0,d,ngens)
|
||
|
|
||
|
|
||
|
! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13
|
||
|
! Marc: 11, 22, 33, 12, 23, 13
|
||
|
forall(i=1:ngens) d(1:ngens,i) = invnrmMandel(i)*d(1:ngens,i)*invnrmMandel(1:ngens)
|
||
|
s(1:ngens) = s(1:ngens)*invnrmMandel(1:ngens)
|
||
|
if(symmetricSolver) d(1:ngens,1:ngens) = 0.5_pReal*(d(1:ngens,1:ngens)+transpose(d(1:ngens,1:ngens)))
|
||
|
return
|
||
|
|
||
|
END SUBROUTINE
|
||
|
!
|
||
|
|
||
|
SUBROUTINE plotv(v,s,sp,etot,eplas,ecreep,t,m,nn,layer,ndi,nshear,jpltcd)
|
||
|
!********************************************************************
|
||
|
! This routine sets user defined output variables for Marc
|
||
|
!********************************************************************
|
||
|
!
|
||
|
! select a variable contour plotting (user subroutine).
|
||
|
!
|
||
|
! v variable
|
||
|
! s (idss) stress array
|
||
|
! sp stresses in preferred direction
|
||
|
! etot total strain (generalized)
|
||
|
! eplas total plastic strain
|
||
|
! ecreep total creep strain
|
||
|
! t current temperature
|
||
|
! m element number
|
||
|
! nn integration point number
|
||
|
! layer layer number
|
||
|
! ndi (3) number of direct stress components
|
||
|
! nshear (3) number of shear stress components
|
||
|
!
|
||
|
!********************************************************************
|
||
|
use prec, only: pReal,pInt
|
||
|
use CPFEM, only: CPFEM_results, CPFEM_Nresults
|
||
|
use constitutive, only: constitutive_maxNresults
|
||
|
use mesh, only: mesh_FEasCP
|
||
|
implicit none
|
||
|
!
|
||
|
real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*)
|
||
|
real(pReal) v, t(*)
|
||
|
integer(pInt) m, nn, layer, ndi, nshear, jpltcd
|
||
|
!
|
||
|
! assign result variable
|
||
|
v=CPFEM_results(mod(jpltcd-1_pInt, CPFEM_Nresults+constitutive_maxNresults)+1_pInt,&
|
||
|
(jpltcd-1_pInt)/(CPFEM_Nresults+constitutive_maxNresults)+1_pInt,&
|
||
|
nn, mesh_FEasCP('elem', m))
|
||
|
return
|
||
|
END SUBROUTINE
|
||
|
!
|
||
|
!
|
||
|
! subroutine utimestep(timestep,timestepold,icall,time,timeloadcase)
|
||
|
!********************************************************************
|
||
|
! This routine modifies the addaptive time step of Marc
|
||
|
!********************************************************************
|
||
|
! use prec, only: pReal,pInt
|
||
|
! use CPFEM, only : CPFEM_timefactor_max
|
||
|
! implicit none
|
||
|
!
|
||
|
! real(pReal) timestep, timestepold, time,timeloadcase
|
||
|
! integer(pInt) icall
|
||
|
!
|
||
|
! user subroutine for modifying the time step in auto step
|
||
|
!
|
||
|
! timestep : the current time step as suggested by marc
|
||
|
! to be modified in this routine
|
||
|
! timestepold : the current time step before it was modified by marc
|
||
|
! icall : =1 for setting the initial time step
|
||
|
! =2 if this routine is called during an increment
|
||
|
! =3 if this routine is called at the beginning
|
||
|
! of the increment
|
||
|
! time : time at the start of the current increment
|
||
|
! timeloadcase: time period of the current load case
|
||
|
!
|
||
|
! it is in general not recommended to increase the time step
|
||
|
! during the increment.
|
||
|
! this routine is called right after the time step has (possibly)
|
||
|
! been updated by marc.
|
||
|
!
|
||
|
! user coding
|
||
|
! reduce timestep during increment in case mpie_timefactor is too large
|
||
|
! if(icall==2_pInt) then
|
||
|
! if(mpie_timefactor_max>1.25_pReal) then
|
||
|
! timestep=min(timestep,timestepold*0.8_pReal)
|
||
|
! end if
|
||
|
! return
|
||
|
! modify timestep at beginning of new increment
|
||
|
! else if(icall==3_pInt) then
|
||
|
! if(mpie_timefactor_max<=0.8_pReal) then
|
||
|
! timestep=min(timestep,timestepold*1.25_pReal)
|
||
|
! else if (mpie_timefactor_max<=1.0_pReal) then
|
||
|
! timestep=min(timestep,timestepold/mpie_timefactor_max)
|
||
|
! else if (mpie_timefactor_max<=1.25_pReal) then
|
||
|
! timestep=min(timestep,timestepold*1.01_pReal)
|
||
|
! else
|
||
|
! timestep=min(timestep,timestepold*0.8_pReal)
|
||
|
! end if
|
||
|
! end if
|
||
|
! return
|
||
|
! end
|