DAMASK_EICMD/processing/post/addSchmidfactors.py

371 lines
11 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,re,sys,math
from optparse import OptionParser
CoverA=1.587
slipnormal_temp = [ # This is the real slip system information for hex aka titanium for now.
[0,0,0,1],
[0,0,0,1],
[0,0,0,1],
[0,1,-1,0],
[-1,0,1,0],
[1,-1,0,0],
[0,1,-1,1],
[-1,1,0,1],
[-1,0,1,1],
[0,-1,1,1],
[1,-1,0,1],
[1,0,-1,1],
[0,1,-1,1],
[0,1,-1,1],
[-1,1,0,1],
[-1,1,0,1],
[-1,0,1,1],
[-1,0,1,1],
[0,-1,1,1],
[0,-1,1,1],
[1,-1,0,1],
[1,-1,0,1],
[1,0,-1,1],
[1,0,-1,1],
]
slipdirection_temp = [
[2,-1,-1,0],
[-1,2,-1,0],
[-1,-1,2,0],
[2,-1,-1,0],
[-1,2,-1,0],
[-1,-1,2,0],
[2,-1,-1,0],
[1,1,-2,0],
[-1,2,-1,0],
[-2,1,1,0],
[-1,-1,2,0],
[1,-2,1,0],
[-1,2,-1,3],
[1,1,-2,3],
[-2,1,1,3],
[-1,2,-1,3],
[-1,-1,2,3],
[-2,1,1,3],
[1,-2,1,3],
[-1,-1,2,3],
[2,-1,-1,3],
[1,-2,1,3],
[1,1,-2,3],
[2,-1,-1,3],
]
# slip normals and directions according to cpfem implementation
Nslipsystems = {'fcc': 12, 'bcc': 24, 'hex': 24}
slipnormal = { \
'fcc': [
[1,1,1],
[1,1,1],
[1,1,1],
[-1,-1,1],
[-1,-1,1],
[-1,-1,1],
[1,-1,-1],
[1,-1,-1],
[1,-1,-1],
[-1,1,-1],
[-1,1,-1],
[-1,1,-1],
],
'bcc': [
[0,1,1],
[0,1,1],
[0,-1,1],
[0,-1,1],
[1,0,1],
[1,0,1],
[-1,0,1],
[-1,0,1],
[1,1,0],
[1,1,0],
[-1,1,0],
[-1,1,0],
[2,1,1],
[-2,1,1],
[2,-1,1],
[2,1,-1],
[1,2,1],
[-1,2,1],
[1,-2,1],
[1,2,-1],
[1,1,2],
[-1,1,2],
[1,-1,2],
[1,1,-2],
],
'hex': [ # these are dummy numbers and are recalculated based on the above hex real slip systems.
[1,1,0],
[1,1,0],
[1,0,1],
[1,0,1],
[0,1,1],
[0,1,1],
[1,-1,0],
[1,-1,0],
[-1,0,1],
[-1,0,1],
[0,-1,1],
[0,-1,1],
[2,-1,1],
[1,-2,-1],
[1,1,2],
[2,1,1],
[1,2,-1],
[1,-1,2],
[2,1,-1],
[1,2,1],
[1,-1,-2],
[2,-1,-1],
[1,-2,1],
[1,1,-2],
],
}
slipdirection = { \
'fcc': [
[0,1,-1],
[-1,0,1],
[1,-1,0],
[0,-1,-1],
[1,0,1],
[-1,1,0],
[0,-1,1],
[-1,0,-1],
[1,1,0],
[0,1,1],
[1,0,-1],
[-1,-1,0],
],
'bcc': [
[1,-1,1],
[-1,-1,1],
[1,1,1],
[-1,1,1],
[-1,1,1],
[-1,-1,1],
[1,1,1],
[1,-1,1],
[-1,1,1],
[-1,1,-1],
[1,1,1],
[1,1,-1],
[-1,1,1],
[1,1,1],
[1,1,-1],
[1,-1,1],
[1,-1,1],
[1,1,-1],
[1,1,1],
[-1,1,1],
[1,1,-1],
[1,-1,1],
[-1,1,1],
[1,1,1],
],
'hex': [ # these are dummy numbers and are recalculated based on the above hex real slip systems.
[-1,1,1],
[1,-1,1],
[-1,-1,1],
[-1,1,1],
[-1,-1,1],
[1,-1,1],
[1,1,1],
[-1,-1,1],
[1,-1,1],
[1,1,1],
[1,1,1],
[-1,1,1],
[1,1,-1],
[1,1,-1],
[1,1,-1],
[1,-1,-1],
[1,-1,-1],
[1,-1,-1],
[1,-1,1],
[1,-1,1],
[1,-1,1],
[1,1,1],
[1,1,1],
[1,1,1],
],
}
# --------------------------------------------------------------------
def applyEulers(phi1,Phi,phi2,x):
""" transform x given in crystal coordinates to xbar returned in lab coordinates for Euler angles phi1,Phi,phi2 """
eulerRot = [[ math.cos(phi1)*math.cos(phi2) - math.cos(Phi)*math.sin(phi1)*math.sin(phi2), - math.cos(phi1)*math.sin(phi2) - math.cos(Phi)*math.cos(phi2)*math.sin(phi1), math.sin(Phi)*math.sin(phi1)], \
[ math.cos(phi2)*math.sin(phi1) + math.cos(Phi)*math.cos(phi1)*math.sin(phi2), math.cos(Phi)*math.cos(phi1)*math.cos(phi2) - math.sin(phi1)*math.sin(phi2), -math.sin(Phi)*math.cos(phi1)], \
[ math.sin(Phi)*math.sin(phi2), math.sin(Phi)*math.cos(phi2), math.cos(Phi)]]
xbar = [0,0,0]
if len(x) == 3:
for i in range(3):
xbar[i] = sum([eulerRot[i][j]*x[j] for j in range(3)])
return xbar
# --------------------------------------------------------------------
def normalize(x):
norm = math.sqrt(sum([x[i]*x[i] for i in range(len(x))]))
return [x[i]/norm for i in range(len(x))]
# --------------------------------------------------------------------
def crossproduct(x,y):
return [
x[1]*y[2]-y[1]*x[2],
x[2]*y[0]-y[2]*x[0],
x[0]*y[1]-y[0]*x[1],
]
# --------------------------------------------------------------------
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(usage='%prog [options] [file]', description = """
Add columns listing Schmid factors (and optional trace vector of selected system) for given Euler angles.
Column headings need to have names 'phi1', 'Phi', 'phi2'.
$Id$
""")
parser.add_option('-l','--lattice', dest='lattice', choices=('fcc','bcc','hex'), \
help='key for lattice type [%default]')
parser.add_option('-d','--forcedirection', dest='forcedirection', type='int', nargs=3, \
help='force direction in lab coordinates [%default]')
parser.add_option('-n','--stressnormal', dest='stressnormal', type='int', nargs=3, \
help='stress plane normal in lab coordinates [%default]')
parser.add_option('-t','--trace', dest='traceplane', type='int', nargs=3, \
help="normal (in lab coordinates) of plane on which the plane trace of the Schmid factor(s) is reported [%default]")
parser.add_option('-r','--rank', dest='rank', type='int', \
help="report trace of r'th highest Schmid factor [%default]")
parser.set_defaults(lattice = 'fcc')
parser.set_defaults(forcedirection = [0, 0, 1])
parser.set_defaults(stressnormal = None)
parser.set_defaults(traceplane = None)
parser.set_defaults(rank = 0)
(options,filename) = parser.parse_args()
options.forcedirection = normalize(options.forcedirection)
if options.stressnormal:
if abs(sum([options.forcedirection[i] * options.stressnormal[i] for i in range(3)])) < 1e-3:
options.stressnormal = normalize(options.stressnormal)
else:
parser.error('stress plane normal not orthogonal to force direction')
else:
options.stressnormal = options.forcedirection
if options.traceplane:
options.traceplane = normalize(options.traceplane)
options.rank = min(options.rank,Nslipsystems[options.lattice])
# read from standard input unless input file specified
if filename == []:
file = sys.stdin
elif os.path.exists(filename[0]):
file = open(filename[0])
# read data
content = file.readlines()
file.close()
# get labels by either read the first row, or - if keyword header is present - the last line of the header
headerlines = 1
m = re.search('(\d+)\s*head', content[0].lower())
if m:
headerlines = int(m.group(1))+1
labels = content[headerlines-1].split()
data = content[headerlines:]
# Convert 4 Miller indices notation of hex to orthogonal 3 Miller indices notation
if options.lattice=="hex":
for i in range(Nslipsystems[options.lattice]):
slipnormal[options.lattice][i][0]=slipnormal_temp[i][0]
slipnormal[options.lattice][i][1]=(slipnormal_temp[i][0]+2.0*slipnormal_temp[i][1])/math.sqrt(3.0)
slipnormal[options.lattice][i][2]=slipnormal_temp[i][3]/CoverA
slipdirection[options.lattice][i][0]=slipdirection_temp[i][0]*1.5 # direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)] ,
slipdirection[options.lattice][i][1]=(slipdirection_temp[i][0]+2.0*slipdirection_temp[i][1])*(0.5*math.sqrt(3.0))
slipdirection[options.lattice][i][2]=slipdirection_temp[i][3]*CoverA
for i in range(Nslipsystems[options.lattice]):
slipnormal[options.lattice][i]=normalize(slipnormal[options.lattice][i])
slipdirection[options.lattice][i]=normalize(slipdirection[options.lattice][i])
for c in range(len(labels)):
m = re.search('.*([Pp]hi\d*).*', labels[c])
if m:
if m.group(1).lower() == "phi1":
phi1Column = c
elif m.group(1).lower() == "phi":
PhiColumn = c
elif m.group(1).lower() == "phi2":
phi2Column = c
output = '1\theader\n' + \
'\t'.join(map(str,labels)) + \
'\t' + \
'\t'.join(['(%i)S(%i %i %i)[%i %i %i]'%(i+1,
slipnormal[options.lattice][i][0],
slipnormal[options.lattice][i][1],
slipnormal[options.lattice][i][2],
slipdirection[options.lattice][i][0],
slipdirection[options.lattice][i][1],
slipdirection[options.lattice][i][2],
) for i in range(Nslipsystems[options.lattice])])
if options.traceplane:
if options.rank > 0:
output += '\ttrace_x\ttrace_y\ttrace_z\tsystem'
else:
output += '\t' + '\t'.join(['(%i)tx\tty\ttz'%(i+1) for i in range(Nslipsystems[options.lattice])])
output += '\n'
for line in data:
items = line.split()[:len(labels)]
if items == []:
continue
phi1 = math.radians(float(items[phi1Column]))
Phi = math.radians(float(items[PhiColumn]))
phi2 = math.radians(float(items[phi2Column]))
S = [ sum( [applyEulers(phi1,Phi,phi2,normalize( slipnormal[options.lattice][slipsystem]))[i]*options.stressnormal[i] for i in range(3)] ) * \
sum( [applyEulers(phi1,Phi,phi2,normalize(slipdirection[options.lattice][slipsystem]))[i]*options.forcedirection[i] for i in range(3)] ) \
for slipsystem in range(Nslipsystems[options.lattice]) ]
output += '\t'.join(items + map(str,S))
if options.traceplane:
trace = [crossproduct(options.traceplane,applyEulers(phi1,Phi,phi2,normalize(slipnormal[options.lattice][slipsystem]))) \
for slipsystem in range(Nslipsystems[options.lattice]) ]
if options.rank == 0:
output += '\t' + '\t'.join(map(lambda x:'%f\t%f\t%f'%(x[0],x[1],x[2]),trace))
elif options.rank > 0:
SabsSorted = sorted([(abs(S[i]),i) for i in range(len(S))])
output += '\t' + '\t'.join(map(str,trace[SabsSorted[-options.rank][1]])) + '\t%i'%(1+SabsSorted[-options.rank][1])
# for t in [normalize(crossproduct(options.traceplane,applyEulers(phi1,Phi,phi2,normalize(slipnormal[options.lattice][i])))) for i in range(12,24)]:
# print '\t'.join(map(str,t))
# print '\t'.join(map(lambda x: str(-x),t))
# print '\t'.join(['0','0','0'])
# print
output += '\n'
if filename == []:
print output
else:
file = open(filename[0],'w')
file.write(output)
file.close()