OS-Labs/lab3/scheduler.cpp

528 lines
14 KiB
C++

#include <iostream>
#include <fstream>
#include <cstring>
#include <unistd.h>
#include <chrono>
#include <sstream>
#include <string>
#include <bits/stdc++.h>
using namespace std;
struct process_detail {
//cpu_burst_times[0] is arrival time
int pid;
vector<int> burst_times;
int in_cpu;
int current_burst_index;
};
struct clock{
int push_signal; //boolean
int timer;
};
vector<process_detail> processes;
queue<process_detail*> ready_queue_fifo;
struct process_detail* CPU = NULL;
vector<process_detail*> waiting;
ofstream output_file("cpu_times.txt");
// -------------------------------------- THE FIFO --------------------------------------------------
void fifo() {
//clock initialized to 0
struct clock time;
memset(&time, 0, sizeof(struct clock));
time.timer = 0;
time.push_signal = 0;
int process_count = processes.size();
int completed_processes = 0;
while(completed_processes < process_count){
// ready queue, waiting queue, cpu in check, ready queue subtraction, waiting queue subtraction
// breaking from the infinite loop
for(int i = 0; i < process_count; ++i) {
if(processes[i].burst_times[processes[i].current_burst_index] == -2) {
completed_processes++;
}
}
//managing arrival times
for(int i = 0; i < process_count; ++i) {
//if process not in cpu
if(processes[i].in_cpu != 1) {
if(time.timer == processes[i].burst_times[0]) {
ready_queue_fifo.push(&processes[i]);
processes[i].current_burst_index++;
}
}
}
// managing waiting queue
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue_fifo.push(waiting[j]);
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
}
}
if(CPU == NULL && !ready_queue_fifo.empty()) {
CPU = ready_queue_fifo.front();
CPU->in_cpu = 1;
// Record in_time when the process enters the CPU
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1 ) / 2<< " " << time.timer;
ready_queue_fifo.pop();
}
if(CPU != NULL){
//check cpu_burst complete
for(int i = 0; i < process_count; ++i) {
if(processes[i].in_cpu == 1) {
if(CPU->burst_times[processes[i].current_burst_index] == 0){
// Record out_time when the process exits the CPU
output_file << " " << time.timer << endl;
CPU->in_cpu = 0;
CPU->current_burst_index++;
waiting.push_back(CPU); // process added to waiting queue
if(!ready_queue_fifo.empty()) {
CPU = ready_queue_fifo.front(); // process added to CPU
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer; // New entry time
ready_queue_fifo.pop();
}
else {
CPU = NULL;
}
}
}
}
}
if(CPU != NULL) {
CPU->burst_times[CPU->current_burst_index]--;
}
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
waiting[j]->burst_times[waiting[j]->current_burst_index]--; // reducing the io burst till it reaches 0
}
}
}
time.timer++;
}
output_file.close();
return;
}
// ----------------------------------------- The Shortest Job Fist -------------------------------------------
// Custom comparator for the priority queue
struct Compare {
bool operator()(process_detail* a, process_detail* b) {
// Compare the elements in the vector at the given indices
return a->burst_times[a->current_burst_index] > b->burst_times[b->current_burst_index];
}
};
priority_queue<process_detail*, vector<process_detail*>, Compare> ready_queue;
void sjf() {
//clock initialized to 0
struct clock time;
memset(&time, 0, sizeof(struct clock));
time.timer = 0;
time.push_signal = 0;
int process_count = processes.size();
int completed_processes = 0;
while(completed_processes < process_count){
// ready queue, waiting queue, cpu in check, ready queue subtraction, waiting queue subtraction
// breaking from the infinite loop
for(int i = 0; i < process_count; ++i) {
if(processes[i].burst_times[processes[i].current_burst_index] == -2) {
completed_processes++;
}
}
//managing arrival times
for(int i = 0; i < process_count; ++i) {
//if process not in cpu
if(processes[i].in_cpu != 1) {
if(time.timer == processes[i].burst_times[0]) {
ready_queue.push(&processes[i]);
processes[i].current_burst_index++;
}
}
}
// managing waiting queue
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue.push(waiting[j]);
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
}
}
if(CPU == NULL && !ready_queue.empty()) {
CPU = ready_queue.top();
CPU->in_cpu = 1;
// Record in_time when the process enters the CPU
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer;
ready_queue.pop();
}
else if(CPU != NULL){
//check cpu_burst complete
for(int i = 0; i < process_count; ++i) {
if(processes[i].in_cpu == 1) {
if(CPU->burst_times[processes[i].current_burst_index] == 0){
// Record out_time when the process exits the CPU
output_file << " " << time.timer << endl;
CPU->in_cpu = 0;
CPU->current_burst_index++;
waiting.push_back(CPU); // process added to waiting queue
if(!ready_queue.empty()) {
CPU = ready_queue.top(); // process added to CPU
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer; // New entry time
ready_queue.pop();
}
else {
CPU = NULL;
}
}
}
}
}
if(CPU != NULL) {
// reducing the cpu burst till it reaches 0
CPU->burst_times[CPU->current_burst_index]--;
}
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
// reducing the io burst till it reaches 0
waiting[j]->burst_times[waiting[j]->current_burst_index]--;
}
}
}
time.timer++;
}
output_file.close();
return;
}
// ------------------------------------Pre-emptive shortest job --------------------------------------------
void pre_sjf() {
//clock initialized to 0
struct clock time;
memset(&time, 0, sizeof(struct clock));
time.timer = 0;
time.push_signal = 0;
int process_count = processes.size();
int completed_processes = 0;
while(completed_processes < process_count){
// ready queue, waiting queue, cpu in check, ready queue subtraction, waiting queue subtraction
// breaking from the infinite loop
for(int i = 0; i < process_count; ++i) {
if(processes[i].burst_times[processes[i].current_burst_index] == -2) {
completed_processes++;
}
}
//managing arrival times
for(int i = 0; i < process_count; ++i) {
//if process not in cpu
if(processes[i].in_cpu != 1) {
if(time.timer == processes[i].burst_times[0]) {
ready_queue.push(&processes[i]);
if(CPU != NULL) {
ready_queue.push(CPU);
CPU->in_cpu = 0;
output_file << " " << time.timer << endl;
CPU = ready_queue.top();
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer; // New entry time
ready_queue.pop();
}
processes[i].current_burst_index++;
}
}
}
// managing waiting queue
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue.push(waiting[j]);
if(CPU != NULL) {
ready_queue.push(CPU);
CPU->in_cpu = 0;
output_file << " " << time.timer << endl;
CPU = ready_queue.top();
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer; // New entry time
ready_queue.pop();
}
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
}
}
if(CPU == NULL && !ready_queue.empty()) {
CPU = ready_queue.top();
CPU->in_cpu = 1;
// Record in_time when the process enters the CPU
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer;
ready_queue.pop();
}
else if(CPU != NULL){
//check cpu_burst complete
for(int i = 0; i < process_count; ++i) {
if(processes[i].in_cpu == 1) {
if(CPU->burst_times[processes[i].current_burst_index] == 0){
// Record out_time when the process exits the CPU
output_file << " " << time.timer << endl;
CPU->in_cpu = 0;
CPU->current_burst_index++;
waiting.push_back(CPU); // process added to waiting queue
if(!ready_queue.empty()) {
CPU = ready_queue.top(); // process added to CPU
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer; // New entry time
ready_queue.pop();
}
else {
CPU = NULL;
}
}
}
}
}
if(CPU != NULL) {
// reducing the cpu burst till it reaches 0
CPU->burst_times[CPU->current_burst_index]--;
}
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
// reducing the io burst till it reaches 0
waiting[j]->burst_times[waiting[j]->current_burst_index]--;
}
}
}
time.timer++;
}
output_file.close();
return;
}
// ------------------------------------------- Round Robin --------------------------------------------------
// vector<process_detail*> waiting;
void round_robin() {
//clock initialized to 0
struct clock time;
memset(&time, 0, sizeof(struct clock));
time.timer = 0;
time.push_signal = 0;
int process_count = processes.size();
// memset(&waiting, 0, process_count);
int completed_processes = 0;
int time_quantum = 5;
int current_quantum = 0;
while(completed_processes < process_count){
// ready queue, waiting queue, cpu in check, ready queue subtraction, waiting queue subtraction
// breaking from the infinite loop
for(int i = 0; i < process_count; ++i) {
if(processes[i].burst_times[processes[i].current_burst_index] == -2) {
completed_processes++;
}
}
//managing arrival times
for(int i = 0; i < process_count; ++i) {
//if process not in cpu
if(processes[i].in_cpu != 1) {
if(time.timer == processes[i].burst_times[0]) {
ready_queue_fifo.push(&processes[i]);
processes[i].current_burst_index++;
}
}
}
// managing waiting queue
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue_fifo.push(waiting[j]);
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
}
}
if(CPU == NULL && !ready_queue_fifo.empty()) {
CPU = ready_queue_fifo.front();
CPU->in_cpu = 1;
// Record in_time when the process enters the CPU
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer;
ready_queue_fifo.pop();
current_quantum = time_quantum;
}
else if(CPU != NULL){
//check cpu_burst complete
for(int i = 0; i < process_count; ++i) {
if(processes[i].in_cpu == 1) {
if(CPU->burst_times[processes[i].current_burst_index] == 0 || current_quantum == 0){
// Record out_time when the process exits the CPU
output_file << " " << time.timer << endl;
CPU->in_cpu = 0;
if(CPU->burst_times[processes[i].current_burst_index] == 0) CPU->current_burst_index++;
if(current_quantum == 0) ready_queue_fifo.push(CPU);
waiting.push_back(CPU); // process added to waiting queue
if(!ready_queue_fifo.empty()) {
CPU = ready_queue_fifo.front(); // process added to CPU
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << "," << (CPU->current_burst_index + 1) / 2 << " " << time.timer; // New entry time
ready_queue_fifo.pop();
current_quantum = time_quantum;
}
else {
CPU = NULL;
}
}
}
}
}
if(CPU != NULL) {
CPU->burst_times[CPU->current_burst_index]--;
current_quantum--;
}
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
waiting[j]->burst_times[waiting[j]->current_burst_index]--; // reducing the io burst till it reaches 0
}
}
}
time.timer++;
}
output_file.close();
return;
}
int main(int argc, char **argv) {
if(argc != 3)
{
cout <<"usage: ./scheduler.out <path-to-workload-file> <scheduler_algorithm>\nprovided arguments:\n";
for(int i = 0; i < argc; i++)
cout << argv[i] << "\n";
return -1;
}
char *file_to_search_in = argv[1];
char *scheduler_algorithm = argv[2];
ifstream file(file_to_search_in, ios::binary);
// ifstream file("process1.dat", ios::binary);
string buffer;
int pid = 0;
while(getline(file, buffer)) {
if(buffer[0] == '<'){
continue;
}
istringstream iss(buffer);
string word;
struct process_detail pd;
memset(&pd,0,sizeof(struct process_detail));
pd.pid = pid++;
pd.current_burst_index = 0;
while(iss>>word){
pd.burst_times.push_back(stoi(word));
}
processes.push_back(pd);
}
map<string, int> temp;
temp["fifo"] = 1;
temp["sjf"] = 2;
temp["pre_sjf"] = 3;
temp["rr"] = 4;
string temp1 = scheduler_algorithm;
// string temp1 = "rr";
switch(temp[temp1]){
case 1:
fifo();
break;
case 2:
sjf();
break;
case 3:
pre_sjf();
break;
case 4:
round_robin();
break;
default:
cout << "enter fifo or sjf or pre_sjf or rr" << endl;
}
return 0;
}