
Parallel Applications
Laboratory 4
Deadline: 2 weeks

This assignment will help us learn and evaluate
(i) two ways of writing parallel applications – using threads and using processes,
(ii) two ways of doing inter-process communication – using shared memory and using pipes,
(iii) two ways of doing process synchronization – using atomic operations and using
semaphores.

Part I: Baseline application without any parallelism
This part is easy. Use your submission from laboratory 1. Update the makefile as indicated in
the instructions below.

Part II
Now suppose you have a processor with three cores. You want to use all of them to make your
application finish faster. You can do this by having the first core do S1. As pixels get ready, they
are passed to the second core (don’t wait for the S1 of the whole image to be completed before
communicating to S2). The second core does S2 and passes its results to the third core. The
third core does S3 and the file writing. Do this in the following ways:

1. S1, S2, and S3 are performed by 3 different processes that communicate via pipes (or
fifos) (further reading on pipes)

2. S1, S2, and S3 are performed by 3 different processes that communicate via shared
memory. Synchronization is done using atomic operations.

3. S1, S2, and S3 are performed by 3 different threads of the same process. They
communicate through the process’ address space itself. Synchronization is done using
semaphores.

● Devise a method to prove in each parallel case that the pixels were received as sent, in
the sent order. Describe the method in your report.

● Study the run-time and speed-up of each of the approaches and discuss.
○ It is likely that the file reading and writing times dominate, and so the speed-up

obtained by using three cores is negligible. So we will modify our experiment to
make it compute-intensive, instead of IO-intensive. Read the image only once,
but perform the transformation 1000 times. That is, S1, S2, and S3 are done
1000 times each. The results of the first run of S1 are used by the first run of S2,
and the results of the first run of S2 are used by the first run of S3. For the

https://man7.org/linux/man-pages/man2/pipe.2.html
https://man7.org/linux/man-pages/man7/fifo.7.html
https://man7.org/linux/man-pages/man7/pipe.7.html
https://man7.org/linux/man-pages/man7/shm_overview.7.html
https://man7.org/linux/man-pages/man7/shm_overview.7.html
https://cplusplus.com/reference/atomic/atomic_flag/test_and_set/
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man7/sem_overview.7.html


second run of S1, it uses the same input image that has already been read into
memory. The results of the second run of S1 are used by the second run of S2,
and so on. The results of the 1000th run of S3 are written to the file.

● Discuss the relative ease/ difficulty of implementing/ debugging each approach.

Submit a single zip file with the source code (organized into multiple folders, one for each
question), a makefile, an input ppm image, and a report.

● make part1 should compile the Part I version of the code and run it, creating the file
output_part1.ppm

● make part2_1 should compile the multi-process, pipe version of the code and run it,
creating the file output_part2_1.ppm

● make part2_2 should compile the multi-process, atomic operation version of the code
and run it, creating the file output_part2_2.ppm

● make part2_3 should compile the multi-thread, semaphore version of the code and run it,
creating the file output_part2_3.ppm


