rr still left for part1

This commit is contained in:
Jai Sharma Sharma 2024-09-21 05:54:36 +05:30
parent 97d0d231e1
commit 5bd1211f9e
1 changed files with 390 additions and 76 deletions

View File

@ -23,24 +23,15 @@ struct clock{
}; };
//// operator overloading
//struct CompareHeight {
// bool operator()(struct process_detail p1, struct process_detail p2)
// {
// // return "true" if "p1" is ordered
// // before "p2", for example:
// return p1.height < p2.height;
// }
//};
vector<process_detail> processes; vector<process_detail> processes;
queue<process_detail*> ready_queue_fifo; queue<process_detail*> ready_queue_fifo;
vector<process_detail*> waiting;
struct process_detail* CPU = NULL; struct process_detail* CPU = NULL;
vector<process_detail*> waiting;
ofstream output_file("cpu_times.txt"); ofstream output_file("cpu_times.txt");
// -------------------------------------- THE FIFO --------------------------------------------------
void fifo() { void fifo() {
//clock initialized to 0 //clock initialized to 0
@ -53,9 +44,11 @@ void fifo() {
while(completed_processes < process_count){ while(completed_processes < process_count){
// ready queue, waiting queue, cpu in check, ready queue subtraction, waiting queue subtraction
// breaking from the infinite loop // breaking from the infinite loop
for(int i = 0; i < process_count; ++i) { for(int i = 0; i < process_count; ++i) {
if(processes[i].burst_times[processes[i].current_burst_index] == -1) { if(processes[i].burst_times[processes[i].current_burst_index] == -2) {
completed_processes++; completed_processes++;
} }
} }
@ -71,79 +64,410 @@ void fifo() {
} }
} }
//THE FIFO RULE // managing waiting queue
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue_fifo.push(waiting[j]);
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
}
}
if(CPU == NULL && !ready_queue_fifo.empty()) { if(CPU == NULL && !ready_queue_fifo.empty()) {
CPU = ready_queue_fifo.front(); CPU = ready_queue_fifo.front();
CPU->in_cpu = 1; CPU->in_cpu = 1;
// Record in_time when the process enters the CPU // Record in_time when the process enters the CPU
CPU->burst_times[CPU->current_burst_index]--; output_file << "P" << CPU->pid+1 << ",1" << " " << time.timer;
output_file << "P" << CPU->pid+1 << " " << time.timer;
ready_queue_fifo.pop(); ready_queue_fifo.pop();
} }
// else if(CPU == NULL && ready_queue_fifo.empty()) {
// // removing form waiting list
// for(int j = 0; j < waiting.size(); ++j) {
// if(waiting[j] != NULL) {
// if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
// ready_queue_fifo.push(waiting[j]);
// waiting[j]->current_burst_index++;
// waiting[j] = NULL;
// }
// else waiting[j]->burst_times[waiting[j]->current_burst_index]--; // reducing the io burst till it reaches 0
// }
// } else if(CPU != NULL){
// time.push_signal++;
// }
else {
// removing form waiting list
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue_fifo.push(waiting[j]);
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
else waiting[j]->burst_times[waiting[j]->current_burst_index]--; // reducing the io burst till it reaches 0
}
}
//check cpu_burst complete //check cpu_burst complete
for(int i = 0; i < process_count; ++i) { for(int i = 0; i < process_count; ++i) {
if(processes[i].in_cpu == 1 && CPU != NULL) { if(processes[i].in_cpu == 1) {
if(CPU->burst_times[processes[i].current_burst_index] == 0){ if(CPU->burst_times[processes[i].current_burst_index] == 0){
// Record out_time when the process exits the CPU // Record out_time when the process exits the CPU
output_file << " " << time.timer << endl; output_file << " " << time.timer << endl;
// time.push_signal = time.push_signal + CPU->burst_times[processes[i].current_burst_index] ;
CPU->in_cpu = 0; CPU->in_cpu = 0;
CPU->current_burst_index++; CPU->current_burst_index++;
// CPU->burst_times[CPU->current_burst_index]--;
waiting.push_back(CPU); // process added to waiting queue waiting.push_back(CPU); // process added to waiting queue
if(!ready_queue_fifo.empty()) { if(!ready_queue_fifo.empty()) {
CPU = ready_queue_fifo.front(); // process added to CPU CPU = ready_queue_fifo.front(); // process added to CPU
CPU->in_cpu = 1; CPU->in_cpu = 1;
// CPU->burst_times[CPU->current_burst_index]--; output_file << "P" << CPU->pid+1 << ",1" << " " << time.timer; // New entry time
output_file << "P" << CPU->pid+1 << " " << time.timer; // New entry time
ready_queue_fifo.pop(); ready_queue_fifo.pop();
} }
else { else {
CPU = NULL; CPU = NULL;
} }
} }
else CPU->burst_times[CPU->current_burst_index]--;
} }
} }
} }
if(CPU != NULL) {
CPU->burst_times[CPU->current_burst_index]--;
}
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
waiting[j]->burst_times[waiting[j]->current_burst_index]--; // reducing the io burst till it reaches 0
}
}
}
time.timer++; time.timer++;
// completed_processes++;
} }
output_file.close(); output_file.close();
cout << "fifo" << endl;
return; return;
} }
// ----------------------------------------- The Shortest Job Fist -------------------------------------------
// Custom comparator for the priority queue
struct Compare {
bool operator()(process_detail* a, process_detail* b) {
// Compare the elements in the vector at the given indices
return a->burst_times[a->current_burst_index] > b->burst_times[b->current_burst_index];
}
};
priority_queue<process_detail*, vector<process_detail*>, Compare> ready_queue;
void sjf() {
//clock initialized to 0
struct clock time;
memset(&time, 0, sizeof(struct clock));
time.timer = 0;
time.push_signal = 0;
int process_count = processes.size();
int completed_processes = 0;
while(completed_processes < process_count){
// ready queue, waiting queue, cpu in check, ready queue subtraction, waiting queue subtraction
// breaking from the infinite loop
for(int i = 0; i < process_count; ++i) {
if(processes[i].burst_times[processes[i].current_burst_index] == -2) {
completed_processes++;
}
}
//managing arrival times
for(int i = 0; i < process_count; ++i) {
//if process not in cpu
if(processes[i].in_cpu != 1) {
if(time.timer == processes[i].burst_times[0]) {
ready_queue.push(&processes[i]);
processes[i].current_burst_index++;
}
}
}
// managing waiting queue
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue.push(waiting[j]);
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
}
}
if(CPU == NULL && !ready_queue.empty()) {
CPU = ready_queue.top();
CPU->in_cpu = 1;
// Record in_time when the process enters the CPU
output_file << "P" << CPU->pid+1 << ",1" << " " << time.timer;
ready_queue.pop();
}
else if(CPU != NULL){
//check cpu_burst complete
for(int i = 0; i < process_count; ++i) {
if(processes[i].in_cpu == 1) {
if(CPU->burst_times[processes[i].current_burst_index] == 0){
// Record out_time when the process exits the CPU
output_file << " " << time.timer << endl;
CPU->in_cpu = 0;
CPU->current_burst_index++;
waiting.push_back(CPU); // process added to waiting queue
if(!ready_queue.empty()) {
CPU = ready_queue.top(); // process added to CPU
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << ",1" << " " << time.timer; // New entry time
ready_queue.pop();
}
else {
CPU = NULL;
}
}
}
}
}
if(CPU != NULL) {
// reducing the cpu burst till it reaches 0
CPU->burst_times[CPU->current_burst_index]--;
}
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
// reducing the io burst till it reaches 0
waiting[j]->burst_times[waiting[j]->current_burst_index]--;
}
}
}
time.timer++;
}
output_file.close();
return;
}
// ------------------------------------Pre-emptive shortest job --------------------------------------------
void pre_sjf() {
//clock initialized to 0
struct clock time;
memset(&time, 0, sizeof(struct clock));
time.timer = 0;
time.push_signal = 0;
int process_count = processes.size();
int completed_processes = 0;
while(completed_processes < process_count){
// ready queue, waiting queue, cpu in check, ready queue subtraction, waiting queue subtraction
// breaking from the infinite loop
for(int i = 0; i < process_count; ++i) {
if(processes[i].burst_times[processes[i].current_burst_index] == -2) {
completed_processes++;
}
}
//managing arrival times
for(int i = 0; i < process_count; ++i) {
//if process not in cpu
if(processes[i].in_cpu != 1) {
if(time.timer == processes[i].burst_times[0]) {
ready_queue.push(&processes[i]);
if(CPU != NULL) {
ready_queue.push(CPU);
CPU->in_cpu = 0;
output_file << " " << time.timer << endl;
CPU = ready_queue.top();
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << ",1" << " " << time.timer; // New entry time
ready_queue.pop();
}
processes[i].current_burst_index++;
}
}
}
// managing waiting queue
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue.push(waiting[j]);
if(CPU != NULL) {
ready_queue.push(CPU);
CPU->in_cpu = 0;
output_file << " " << time.timer << endl;
CPU = ready_queue.top();
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << ",1" << " " << time.timer; // New entry time
ready_queue.pop();
}
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
}
}
if(CPU == NULL && !ready_queue.empty()) {
CPU = ready_queue.top();
CPU->in_cpu = 1;
// Record in_time when the process enters the CPU
output_file << "P" << CPU->pid+1 << ",1" << " " << time.timer;
ready_queue.pop();
}
else if(CPU != NULL){
//check cpu_burst complete
for(int i = 0; i < process_count; ++i) {
if(processes[i].in_cpu == 1) {
if(CPU->burst_times[processes[i].current_burst_index] == 0){
// Record out_time when the process exits the CPU
output_file << " " << time.timer << endl;
CPU->in_cpu = 0;
CPU->current_burst_index++;
waiting.push_back(CPU); // process added to waiting queue
if(!ready_queue.empty()) {
CPU = ready_queue.top(); // process added to CPU
CPU->in_cpu = 1;
output_file << "P" << CPU->pid+1 << ",1" << " " << time.timer; // New entry time
ready_queue.pop();
}
else {
CPU = NULL;
}
}
}
}
}
if(CPU != NULL) {
// reducing the cpu burst till it reaches 0
CPU->burst_times[CPU->current_burst_index]--;
}
for(int j = 0; j < waiting.size(); ++j) {
if(waiting[j] != NULL) {
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
// reducing the io burst till it reaches 0
waiting[j]->burst_times[waiting[j]->current_burst_index]--;
}
}
}
time.timer++;
}
output_file.close();
return;
}
// ------------------------------------------- Round Robin --------------------------------------------------
void round_robin() {
// Clock initialized to 0
struct clock time;
memset(&time, 0, sizeof(struct clock));
time.timer = 0;
time.push_signal = 5;
int process_count = processes.size();
int completed_processes = 0;
int time_quantum = 2; // Define a time quantum for Round Robin
// To keep track of the remaining quantum for the current process
int current_quantum = 0;
while (completed_processes < process_count) {
// Ready queue, waiting queue, CPU in check, ready queue subtraction, waiting queue subtraction
// Breaking from the loop
for (int i = 0; i < process_count; ++i) {
if (processes[i].burst_times[processes[i].current_burst_index] == -2) {
completed_processes++;
}
}
// Managing arrival times
for (int i = 0; i < process_count; ++i) {
// If process not in CPU
if (processes[i].in_cpu != 1) {
if (time.timer == processes[i].burst_times[0]) {
ready_queue_fifo.push(&processes[i]);
processes[i].current_burst_index++;
}
}
}
// Managing waiting queue
for (int j = 0; j < waiting.size(); ++j) {
if (waiting[j] != NULL) {
if (waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
ready_queue_fifo.push(waiting[j]);
waiting[j]->current_burst_index++;
waiting[j] = NULL;
}
}
}
if (CPU == NULL && !ready_queue_fifo.empty()) {
// Assign the first process from the ready queue to the CPU
CPU = ready_queue_fifo.front();
CPU->in_cpu = 1;
// Record in_time when the process enters the CPU
output_file << "P" << CPU->pid + 1 << ",1 " << time.timer;
ready_queue_fifo.pop();
current_quantum = time_quantum; // Reset the time quantum for the new process
}
else if (CPU != NULL) {
// Check if CPU burst is complete or quantum expired
if (CPU->burst_times[CPU->current_burst_index] == 0 || current_quantum == 0) {
// Record out_time when the process exits the CPU
output_file << " " << time.timer << endl;
CPU->in_cpu = 0;
CPU->current_burst_index++;
// If the process still has bursts left, move it to the waiting queue
if (CPU->burst_times[CPU->current_burst_index] > 0) {
waiting.push_back(CPU);
}
// Assign the next process from the ready queue to the CPU
if (!ready_queue_fifo.empty()) {
CPU = ready_queue_fifo.front();
CPU->in_cpu = 1;
output_file << "P" << CPU->pid + 1 << ",1 " << time.timer; // New entry time
ready_queue_fifo.pop();
current_quantum = time_quantum; // Reset the time quantum for the new process
}
else {
CPU = NULL;
}
}
}
if (CPU != NULL) {
// Decrement the burst time of the process currently in the CPU
CPU->burst_times[CPU->current_burst_index]--;
current_quantum--; // Decrement the quantum counter
// If quantum is exhausted but burst isn't finished, preempt the process
if (current_quantum == 0 && CPU->burst_times[CPU->current_burst_index] > 0) {
ready_queue_fifo.push(CPU); // Re-add the process to the ready queue
CPU->in_cpu = 0;
CPU = NULL; // Preempt the process from the CPU
}
}
// Reduce the IO burst times of the processes in the waiting queue
for (int j = 0; j < waiting.size(); ++j) {
if (waiting[j] != NULL) {
if (waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
waiting[j]->burst_times[waiting[j]->current_burst_index]--; // Reducing the IO burst until it reaches 0
}
}
}
time.timer++;
}
output_file.close();
return;
}
int main(int argc, char **argv) { int main(int argc, char **argv) {
if(argc != 3) if(argc != 3)
@ -158,7 +482,6 @@ int main(int argc, char **argv) {
char *scheduler_algorithm = argv[2]; char *scheduler_algorithm = argv[2];
ifstream file(file_to_search_in, ios::binary); ifstream file(file_to_search_in, ios::binary);
// ifstream file("process1.dat", ios::binary);
string buffer; string buffer;
int pid = 0; int pid = 0;
@ -174,44 +497,35 @@ int main(int argc, char **argv) {
pd.current_burst_index = 0; pd.current_burst_index = 0;
while(iss>>word){ while(iss>>word){
// if(i == 0){
// pd.cpu_burst_times.push_back(stoi(word));
// }
// else if(i % 2 == 0){
// pd.io_burst_times.push_back(stoi(word));
// }
// else if(i % 2 == 1){
// }
pd.burst_times.push_back(stoi(word)); pd.burst_times.push_back(stoi(word));
// i++;
// cout << stoi(word) << endl;
} }
processes.push_back(pd); processes.push_back(pd);
} }
map<string, int> temp; map<string, int> temp;
temp["fifo"] = 1; temp["fifo"] = 1;
string temp1 = scheduler_algorithm; temp["sjf"] = 2;
// string temp1 = "fifo"; temp["pre_sjf"] = 3;
temp["rr"] = 4;
string temp1 = scheduler_algorithm;
switch(temp[temp1]){ switch(temp[temp1]){
case 1: case 1:
fifo(); fifo();
break; break;
case 2:
sjf();
break;
case 3:
pre_sjf();
break;
case 4:
round_robin();
break;
default: default:
cout << "enter fifo" << endl; cout << "enter fifo or sjf or pre_sjf or rr" << endl;
} }
// cout << processes[0].in_cpu << endl;
// cout << processes[0].current_burst_index << endl;
// cout << processes[1].in_cpu << endl;
// cout << processes[1].current_burst_index << endl;
// cout << ready_queue_fifo.front()->pid << endl;
// ready_queue_fifo.pop();
// cout << ready_queue_fifo.front()->pid << endl;
return 0; return 0;
} }