working on shared mem

This commit is contained in:
ItsMAX0112 2024-11-02 16:54:07 +05:30
parent 49d5eb2c94
commit 0e52435d9b
6 changed files with 664 additions and 108 deletions

5
lab4/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
/tijsrc
/sidWala
/subhashWala

0
lab4/images/1_out.ppm Normal file
View File

View File

@ -12,6 +12,7 @@
#include<sys/mman.h> #include<sys/mman.h>
#include<sys/stat.h> #include<sys/stat.h>
#include<fcntl.h> #include<fcntl.h>
#include<semaphore.h>
using namespace std; using namespace std;
@ -23,13 +24,45 @@ int main(int argc, char *argv[]) {
// exit(0); // exit(0);
// } // }
// struct image_t *input_image = read_ppm_file(argv[1]); // struct image_t *input_image = read_ppm_file(argv[1]);
// struct image_t *smoothened_image = S1_smoothen(input_image);
char buf; const char *shm1_name = "/shm_parent_child";
const char *shm2_name = "/shm_child_grandchild";
const char *sem1_name = "/sem_parent_child";
const char *sem2_name = "/sem_child_grandchild";
int shm_fd = shm_open(shm1_name, O_CREAT | O_RDWR, 0666);
if (shm_fd == -1) {
perror("shm_open");
return 1;
}
// Resize the shared memory object to the desired size
if (ftruncate(shm_fd, size) == -1) {
perror("ftruncate");
return 1;
}
// Map the shared memory object into the process address space
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {
perror("mmap");
return 1;
}
sem_t *sem_parent_child = sem_open(sem1_name, O_CREAT, 0666, 0); // Initially locked (0)
sem_t *sem_child_grandchild = sem_open(sem2_name, O_CREAT, 0666, 0); // Initially locked (0)
if (sem_parent_child == SEM_FAILED || sem_child_grandchild == SEM_FAILED) {
perror("sem_open failed");
exit(EXIT_FAILURE);
}
// size_t size = input_image->height * input_image->width * 3 * sizeof(uint8_t);
size_t size = 1024;
pid_t CHILD; pid_t CHILD;
CHILD = fork(); CHILD = fork();
if (CHILD == -1) { if (CHILD == -1) {
perror("fork failed!"); perror("fork failed!");
@ -39,32 +72,20 @@ int main(int argc, char *argv[]) {
// Parent Process // Parent Process
if(CHILD != 0){ if(CHILD != 0){
const char *name = "/parent-child"; char buffer[1024] = {'p', 'a', 'c', 'k', 'e', 't', '\0'};
int shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666); buffer[7] = '\0';
if (shm_fd == -1) {
perror("shm_open");
return 1;
}
// Set the size of the shared memory region
// size_t size = smoothened_image->height * smoothened_image->width * 3;
size_t size = 1024;
// Resize the shared memory object to the desired size
if (ftruncate(shm_fd, size) == -1) {
perror("ftruncate");
return 1;
}
// Map the shared memory object into the process address space
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {
perror("mmap");
return 1;
}
// Write data to the shared memory // Write data to the shared memory
sprintf((char *)ptr, "...PACKET..."); for(int i = 1; i < 5; i++){
// printf("parent writing to shm\n");
buffer[6] = '0' + i;
memcpy(ptr, buffer, 1024); // Copy 1024 bytes to shared memory
// Optional: Print what is being written to shared memory for verification
printf("P - Writing to shared memory: %s\n", (char *)ptr);
sem_post(sem_parent_child);
sem_wait(sem_child_grandchild);
}
// Unmap the shared memory object // Unmap the shared memory object
if (munmap(ptr, size) == -1) { if (munmap(ptr, size) == -1) {
@ -78,21 +99,13 @@ int main(int argc, char *argv[]) {
return 1; return 1;
} }
// Unlink the shared memory object sem_close(sem_parent_child);
// if (shm_unlink(name) == -1) { sem_close(sem_child_grandchild);
// perror("shm_unlink");
// return 1;
// }
printf("parent writing to shm\n");
wait(NULL); /* Wait for child */ wait(NULL); /* Wait for child */
} }
// Child process // Child process
else if (CHILD == 0) { /* Child reads from pipe */ else if (CHILD == 0) { /* Child reads from pipe */
pid_t GRAND_CHILD = fork(); pid_t GRAND_CHILD = fork();
if (GRAND_CHILD == -1) { if (GRAND_CHILD == -1) {
@ -102,28 +115,12 @@ int main(int argc, char *argv[]) {
// Child Process // Child Process
if(GRAND_CHILD != 0){ if(GRAND_CHILD != 0){
// close(pipe1[1]); /* Close unused write end for s1_s2 pipe */ int shm_fd = shm_open(shm1_name, O_CREAT | O_RDWR, 0666);
// close(pipe2[0]); /* Close unused read end for s2_s3 pipe */
// char to_print[] = "C : x\n";
// while (read(pipe1[0], &buf, 1) > 0)
// {
// printf("child reading from pipe\n");
// to_print[4] = buf;
// write(STDOUT_FILENO, &to_print, strlen(to_print));
// }
printf("Child reading from shm...\n");
const char *name = "/parent-child";
int shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);
if (shm_fd == -1) { if (shm_fd == -1) {
perror("shm_open"); perror("shm_open");
return 1; return 1;
} }
// Set the size of the shared memory region
size_t size = 1024;
// Resize the shared memory object to the desired size // Resize the shared memory object to the desired size
if (ftruncate(shm_fd, size) == -1) { if (ftruncate(shm_fd, size) == -1) {
perror("ftruncate"); perror("ftruncate");
@ -137,40 +134,12 @@ int main(int argc, char *argv[]) {
return 1; return 1;
} }
sleep(2); int shm2_fd = shm_open(shm2_name, O_CREAT | O_RDWR, 0666);
// Print the contents of the shared memory
char *packet = (char *)ptr;
printf("Shared memory contents: %s\n", packet);
char buffer[1024];
strncpy(buffer, packet, 1024);
// Unmap the shared memory object
if (munmap(ptr, size) == -1) {
perror("munmap");
return 1;
}
// Close the shared memory file descriptor
if (close(shm_fd) == -1) {
perror("close");
return 1;
}
printf("child writing to shm\n");
const char *name2 = "/child-grandchild";
int shm2_fd = shm_open(name2, O_CREAT | O_RDWR, 0666);
if (shm2_fd == -1) { if (shm2_fd == -1) {
perror("shm_open"); perror("shm_open");
return 1; return 1;
} }
// Set the size of the shared memory region
// size_t size = smoothened_image->height * smoothened_image->width * 3;
// size_t size = 1024;
// Resize the shared memory object to the desired size // Resize the shared memory object to the desired size
if (ftruncate(shm2_fd, size) == -1) { if (ftruncate(shm2_fd, size) == -1) {
perror("ftruncate"); perror("ftruncate");
@ -184,8 +153,30 @@ int main(int argc, char *argv[]) {
return 1; return 1;
} }
// Write data to the shared memory for(int i=0; i<5; i++){
sprintf((char *)ptr2, buffer, 1024); // printf("Child reading from shm1 and writing to shm2...\n");
sem_wait(sem_parent_child);
// Print the contents of the shared memory
char *packet = (char *)ptr;
printf("C - Shared memory contents: %s\n", packet);
// char buffer[1024];
// strncpy(buffer, (char *)ptr, 1024);
memcpy(ptr2, ptr, 1024);
sem_post(sem_child_grandchild); // Signal parent
}
// Unmap the shared memory object
if (munmap(ptr, size) == -1) {
perror("munmap");
return 1;
}
// Close the shared memory file descriptor
if (close(shm_fd) == -1) {
perror("close");
return 1;
}
// printf("child writing to shm\n");
// Unmap the shared memory object // Unmap the shared memory object
if (munmap(ptr2, size) == -1) { if (munmap(ptr2, size) == -1) {
@ -199,61 +190,65 @@ int main(int argc, char *argv[]) {
return 1; return 1;
} }
shm_unlink(shm1_name);
sem_close(sem_parent_child);
sem_close(sem_child_grandchild);
wait(NULL); wait(NULL);
exit(EXIT_SUCCESS); exit(EXIT_SUCCESS);
} }
// GrandChild Process // GrandChild Process
else if (GRAND_CHILD == 0) { /* GrandChild reads from pipe */ else if (GRAND_CHILD == 0) { /* GrandChild reads from pipe */
int shm2_fd = shm_open(shm2_name, O_CREAT | O_RDWR, 0666);
printf("Grandchild reading from shm...\n"); if (shm2_fd == -1) {
const char *name = "/child-grandchild";
int shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);
if (shm_fd == -1) {
perror("shm_open"); perror("shm_open");
return 1; return 1;
} }
// Set the size of the shared memory region
size_t size = 1024;
// Resize the shared memory object to the desired size // Resize the shared memory object to the desired size
if (ftruncate(shm_fd, size) == -1) { if (ftruncate(shm2_fd, size) == -1) {
perror("ftruncate"); perror("ftruncate");
return 1; return 1;
} }
// Map the shared memory object into the process address space // Map the shared memory object into the process address space
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0); void *ptr2 = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, shm2_fd, 0);
if (ptr == MAP_FAILED) { if (ptr2 == MAP_FAILED) {
perror("mmap"); perror("mmap");
return 1; return 1;
} }
sleep(2); for(int i=0; i<5; i++){
sem_wait(sem_child_grandchild);
// Print the contents of the shared memory // Print the contents of the shared memory
printf("Shared memory contents: %s\n", (char *)ptr); // printf("Grandchild reading from shm...\n");
printf("GC - Shared memory contents: %s\n", (char *)ptr2);
}
// Unmap the shared memory object // Unmap the shared memory object
if (munmap(ptr, size) == -1) { if (munmap(ptr2, size) == -1) {
perror("munmap"); perror("munmap");
return 1; return 1;
} }
// Close the shared memory file descriptor // Close the shared memory file descriptor
if (close(shm_fd) == -1) { if (close(shm2_fd) == -1) {
perror("close"); perror("close");
return 1; return 1;
} }
exit(EXIT_SUCCESS); shm_unlink(shm2_name);
sem_close(sem_parent_child);
sem_close(sem_child_grandchild);
exit(EXIT_SUCCESS);
} }
} }
sem_close(sem_parent_child);
sem_close(sem_child_grandchild);
sem_unlink(sem1_name);
sem_unlink(sem2_name);
cout << "success" << endl; cout << "success" << endl;
return 0; return 0;
} }

View File

@ -0,0 +1,283 @@
#include <iostream>
#include "important.h"
#include <cstdint>
#include <chrono>
#include <fstream>
using namespace std;
struct image_t *S1_smoothen(struct image_t *input_image)
{
// cout << input_image->width << input_image->height << " " << input_image->image_pixels << endl;
int width = input_image->width;
int height = input_image->height;
// memory allocation
struct image_t *smoother = new struct image_t;
smoother->height = height;
smoother->width = width;
smoother->image_pixels = new uint8_t **[height];
for (int i = 0; i < height; i++)
{
smoother->image_pixels[i] = new uint8_t *[width];
for (int j = 0; j < width; j++)
smoother->image_pixels[i][j] = new uint8_t[3];
}
for (int i = 1; i < height - 1; i++)
{
for (int j = 1; j < width - 1; j++)
{
for (int k = 0; k < 3; k++)
{
// image->image_pixels[i][j][k] = val;
// edge cases
if (i == 0 && j == 0)
{ // i-1 and j - 1 doesnt exist
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i][j][k] / 4 + input_image->image_pixels[i][j + 1][k] / 4 + input_image->image_pixels[i + 1][j][k] / 4 + input_image->image_pixels[i + 1][j + 1][k] / 4);
}
else if (i == height - 1 && j == 0)
{ // i+1 and j-1 does not exist
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i - 1][j][k] / 4 + input_image->image_pixels[i - 1][j + 1][k] / 4 + input_image->image_pixels[i][j][k] / 4 + input_image->image_pixels[i][j + 1][k] / 4);
}
else if (i == 0 && j == width - 1)
{ // i-1 and j+1 does not exist
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i][j - 1][k] / 4 + input_image->image_pixels[i][j][k] / 4 + input_image->image_pixels[i + 1][j - 1][k] / 4 + input_image->image_pixels[i + 1][j][k] / 4);
}
else if (i == height - 1 && j == width - 1)
{ // i+1 and j+1 does not exist
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i - 1][j - 1][k] / 4 + input_image->image_pixels[i - 1][j][k] / 4 + input_image->image_pixels[i][j - 1][k] / 4 + input_image->image_pixels[i][j][k] / 4);
}
else if (i == 0)
{ // i - 1 does not exist
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i][j - 1][k] / 6 + input_image->image_pixels[i][j][k] / 6 + input_image->image_pixels[i][j + 1][k] / 6 + input_image->image_pixels[i + 1][j - 1][k] / 6 + input_image->image_pixels[i + 1][j][k] / 6 + input_image->image_pixels[i + 1][j + 1][k] / 6);
}
else if (j == 0)
{ // j -1 does not exist
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i - 1][j][k] / 6 + input_image->image_pixels[i - 1][j + 1][k] / 6 + input_image->image_pixels[i][j][k] / 6 + input_image->image_pixels[i][j + 1][k] / 6 + input_image->image_pixels[i + 1][j][k] / 6 + input_image->image_pixels[i + 1][j + 1][k] / 6);
}
else if (i == height - 1)
{ // i+1 does not exist
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i - 1][j - 1][k] / 6 + input_image->image_pixels[i - 1][j][k] / 6 + input_image->image_pixels[i - 1][j + 1][k] / 6 + input_image->image_pixels[i][j - 1][k] / 6 + input_image->image_pixels[i][j][k] / 6 + input_image->image_pixels[i][j + 1][k] / 6);
}
else if (j == width - 1)
{ // j + 1 does not exist
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i - 1][j - 1][k] / 6 + input_image->image_pixels[i - 1][j][k] / 6 + input_image->image_pixels[i][j - 1][k] / 6 + input_image->image_pixels[i][j][k] / 6 + input_image->image_pixels[i + 1][j - 1][k] / 6 + input_image->image_pixels[i + 1][j][k] / 6);
}
else
{
smoother->image_pixels[i][j][k] = (input_image->image_pixels[i - 1][j - 1][k] / 9 + input_image->image_pixels[i - 1][j][k] / 9 + input_image->image_pixels[i - 1][j + 1][k] / 9 + input_image->image_pixels[i][j - 1][k] / 9 + input_image->image_pixels[i][j][k] / 9 + input_image->image_pixels[i][j + 1][k] / 9 + input_image->image_pixels[i + 1][j - 1][k] / 9 + input_image->image_pixels[i + 1][j][k] / 9 + input_image->image_pixels[i + 1][j + 1][k] / 9);
}
}
}
}
return smoother;
}
struct image_t *S2_find_details(struct image_t *input_image, struct image_t *smoothened_image)
{
// TODO
int width = input_image->width;
int height = input_image->height;
struct image_t *details = new struct image_t;
details->height = height;
details->width = width;
details->image_pixels = new uint8_t **[height];
for (int i = 0; i < height; i++)
{
details->image_pixels[i] = new uint8_t *[width];
for (int j = 0; j < width; j++)
details->image_pixels[i][j] = new uint8_t[3];
}
for (int i = 1; i < height - 1; i++)
{
for (int j = 1; j < width - 1; j++)
{
for (int k = 0; k < 3; k++)
{
details->image_pixels[i][j][k] = max(0, input_image->image_pixels[i][j][k] - smoothened_image->image_pixels[i][j][k]);
}
}
}
return details;
}
struct image_t *S3_sharpen(struct image_t *input_image, struct image_t *details_image)
{
// TODO
int width = input_image->width;
int height = input_image->height;
int a = 1;
struct image_t *sharp = new struct image_t;
sharp->height = height;
sharp->width = width;
sharp->image_pixels = new uint8_t **[height];
for (int i = 0; i < height; i++)
{
sharp->image_pixels[i] = new uint8_t *[width];
for (int j = 0; j < width; j++)
sharp->image_pixels[i][j] = new uint8_t[3];
}
for (int i = 1; i < height - 1; i++)
{
for (int j = 1; j < width - 1; j++)
{
for (int k = 0; k < 3; k++)
{
sharp->image_pixels[i][j][k] = min(255, input_image->image_pixels[i][j][k] + details_image->image_pixels[i][j][k]) * a;
}
}
}
return sharp; // TODO remove this line when adding your code
}
uint8_t skip_blanks_comments_while_reading(ifstream *read_stream) // returns the byte at the first position after the skipping of the blank space
{
uint8_t val;
while (true)
{
val = read_stream->get();
if (val == '#')
{
while (val != '\n')
{
val = read_stream->get();
}
}
if (val == '\n' || val == ' ' || val == '\t')
{
continue;
}
else if (val != '#')
return val;
}
return val;
}
struct image_t *read_ppm_file(char *path_to_input_file)
{
// cout << "input image file = " << path_to_input_file << "\n";
ifstream read_stream(path_to_input_file, ios::binary | ios::in);
if (read_stream.is_open())
{
struct image_t *image = new struct image_t;
uint8_t val = skip_blanks_comments_while_reading(&read_stream); // 'P'
val = read_stream.get(); //'6'
// width
val = skip_blanks_comments_while_reading(&read_stream);
while (true)
{
if (val == ' ' || val == '\t' || val == '\n')
break;
image->width = image->width * 10 + (val - '0');
val = read_stream.get();
}
// cout << "width = " << image->width << "\n";
// height
val = skip_blanks_comments_while_reading(&read_stream);
while (true)
{
if (val == ' ' || val == '\t' || val == '\n')
break;
image->height = image->height * 10 + (val - '0');
val = read_stream.get();
}
// cout << "height = " << image->height << "\n";
image->image_pixels = new uint8_t **[image->height];
for (int i = 0; i < image->height; i++)
{
image->image_pixels[i] = new uint8_t *[image->width];
for (int j = 0; j < image->width; j++)
image->image_pixels[i][j] = new uint8_t[3];
}
// maxval
val = skip_blanks_comments_while_reading(&read_stream);
while (true)
{
if (val == ' ' || val == '\t' || val == '\n')
break;
val = read_stream.get();
}
// get pixel values
val = skip_blanks_comments_while_reading(&read_stream);
for (int i = 0; i < image->height; i++)
{
for (int j = 0; j < image->width; j++)
{
for (int k = 0; k < 3; k++)
{
image->image_pixels[i][j][k] = val;
val = read_stream.get(); // assuming maxval of <=255
}
}
}
// read_stream.seekg(-1, ios_base::cur);
// read_stream.read(((char*)image->image_pixels), image->height * image->width * 3); //assuming maxval of <=255
read_stream.close();
return image;
}
else
{
cerr << "failed to open file " << path_to_input_file << "\n\n";
exit(1);
}
}
void write_ppm_file(char *path_to_output_file, struct image_t *image)
{
// cout << "output image file = " << path_to_output_file << "\n";
ofstream write_stream(path_to_output_file, ios::binary | ios::out);
if (write_stream.is_open())
{
write_stream.write("P6\n", 3);
std::string width_string = std::to_string(image->width);
// cout << "width = " << width_string << "\n";
write_stream.write(width_string.c_str(), width_string.length());
write_stream.write(" ", 1);
std::string height_string = std::to_string(image->height);
// cout << "height = " << height_string << "\n";
write_stream.write(height_string.c_str(), height_string.length());
write_stream.write("\n255\n", 5);
for (int i = 0; i < image->height; i++)
{
for (int j = 0; j < image->width; j++)
{
for (int k = 0; k < 3; k++)
{
write_stream.put(image->image_pixels[i][j][k]); // assuming maxval of <=255
}
}
}
// write_stream.write(((char*)image->image_pixels), image->height * image->width * 3);
write_stream.close();
}
else
{
cerr << "failed to open file " << path_to_output_file << "\n\n";
exit(1);
}
}

View File

@ -0,0 +1,19 @@
#ifndef IMPORTANT_H
#define IMPORTANT_H
#include <cstdint>
struct image_t
{
int width;
int height;
uint8_t*** image_pixels;
};
struct image_t* S1_smoothen(struct image_t *input_image);
struct image_t* S2_find_details(struct image_t *input_image, struct image_t *smoothened_image);
struct image_t* S3_sharpen(struct image_t *input_image, struct image_t *details_image);
struct image_t* read_ppm_file(char* path_to_input_file);
void write_ppm_file(char* path_to_output_file, struct image_t* image);
#endif

View File

@ -0,0 +1,254 @@
#include "important.h"
#include <iostream>
#include <cstdint>
#include <chrono>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include<sys/mman.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<semaphore.h>
using namespace std;
int main(int argc, char *argv[]) {
// if(argc != 3)
// {
// cout << "usage: ./a.out <path-to-original-image> <path-to-transformed-image>\n\n";
// exit(0);
// }
// struct image_t *input_image = read_ppm_file(argv[1]);
const char *shm1_name = "/shm_parent_child";
const char *shm2_name = "/shm_child_grandchild";
const char *sem1_name = "/sem_parent_child";
const char *sem2_name = "/sem_child_grandchild";
int shm_fd = shm_open(shm1_name, O_CREAT | O_RDWR, 0666);
if (shm_fd == -1) {
perror("shm_open");
return 1;
}
// Resize the shared memory object to the desired size
if (ftruncate(shm_fd, size) == -1) {
perror("ftruncate");
return 1;
}
// Map the shared memory object into the process address space
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {
perror("mmap");
return 1;
}
sem_t *sem_parent_child = sem_open(sem1_name, O_CREAT, 0666, 0); // Initially locked (0)
sem_t *sem_child_grandchild = sem_open(sem2_name, O_CREAT, 0666, 0); // Initially locked (0)
if (sem_parent_child == SEM_FAILED || sem_child_grandchild == SEM_FAILED) {
perror("sem_open failed");
exit(EXIT_FAILURE);
}
// size_t size = input_image->height * input_image->width * 3 * sizeof(uint8_t);
size_t size = 1024;
pid_t CHILD;
CHILD = fork();
if (CHILD == -1) {
perror("fork failed!");
exit(EXIT_FAILURE);
}
// Parent Process
if(CHILD != 0){
char buffer[1024] = {'p', 'a', 'c', 'k', 'e', 't', '\0'};
buffer[7] = '\0';
// Write data to the shared memory
for(int i = 1; i < 5; i++){
// printf("parent writing to shm\n");
buffer[6] = '0' + i;
memcpy(ptr, buffer, 1024); // Copy 1024 bytes to shared memory
// Optional: Print what is being written to shared memory for verification
printf("P - Writing to shared memory: %s\n", (char *)ptr);
sem_post(sem_parent_child);
sem_wait(sem_child_grandchild);
}
// Unmap the shared memory object
if (munmap(ptr, size) == -1) {
perror("munmap");
return 1;
}
// Close the shared memory file descriptor
if (close(shm_fd) == -1) {
perror("close");
return 1;
}
sem_close(sem_parent_child);
sem_close(sem_child_grandchild);
wait(NULL); /* Wait for child */
}
// Child process
else if (CHILD == 0) { /* Child reads from pipe */
pid_t GRAND_CHILD = fork();
if (GRAND_CHILD == -1) {
perror("fork failed!");
exit(EXIT_FAILURE);
}
// Child Process
if(GRAND_CHILD != 0){
int shm_fd = shm_open(shm1_name, O_CREAT | O_RDWR, 0666);
if (shm_fd == -1) {
perror("shm_open");
return 1;
}
// Resize the shared memory object to the desired size
if (ftruncate(shm_fd, size) == -1) {
perror("ftruncate");
return 1;
}
// Map the shared memory object into the process address space
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {
perror("mmap");
return 1;
}
int shm2_fd = shm_open(shm2_name, O_CREAT | O_RDWR, 0666);
if (shm2_fd == -1) {
perror("shm_open");
return 1;
}
// Resize the shared memory object to the desired size
if (ftruncate(shm2_fd, size) == -1) {
perror("ftruncate");
return 1;
}
// Map the shared memory object into the process address space
void *ptr2 = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, shm2_fd, 0);
if (ptr2 == MAP_FAILED) {
perror("mmap");
return 1;
}
for(int i=0; i<5; i++){
// printf("Child reading from shm1 and writing to shm2...\n");
sem_wait(sem_parent_child);
// Print the contents of the shared memory
char *packet = (char *)ptr;
printf("C - Shared memory contents: %s\n", packet);
// char buffer[1024];
// strncpy(buffer, (char *)ptr, 1024);
memcpy(ptr2, ptr, 1024);
sem_post(sem_child_grandchild); // Signal parent
}
// Unmap the shared memory object
if (munmap(ptr, size) == -1) {
perror("munmap");
return 1;
}
// Close the shared memory file descriptor
if (close(shm_fd) == -1) {
perror("close");
return 1;
}
// printf("child writing to shm\n");
// Unmap the shared memory object
if (munmap(ptr2, size) == -1) {
perror("munmap");
return 1;
}
// Close the shared memory file descriptor
if (close(shm2_fd) == -1) {
perror("close");
return 1;
}
shm_unlink(shm1_name);
sem_close(sem_parent_child);
sem_close(sem_child_grandchild);
wait(NULL);
exit(EXIT_SUCCESS);
}
// GrandChild Process
else if (GRAND_CHILD == 0) { /* GrandChild reads from pipe */
int shm2_fd = shm_open(shm2_name, O_CREAT | O_RDWR, 0666);
if (shm2_fd == -1) {
perror("shm_open");
return 1;
}
// Resize the shared memory object to the desired size
if (ftruncate(shm2_fd, size) == -1) {
perror("ftruncate");
return 1;
}
// Map the shared memory object into the process address space
void *ptr2 = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, shm2_fd, 0);
if (ptr2 == MAP_FAILED) {
perror("mmap");
return 1;
}
for(int i=0; i<5; i++){
sem_wait(sem_child_grandchild);
// Print the contents of the shared memory
// printf("Grandchild reading from shm...\n");
printf("GC - Shared memory contents: %s\n", (char *)ptr2);
}
// Unmap the shared memory object
if (munmap(ptr2, size) == -1) {
perror("munmap");
return 1;
}
// Close the shared memory file descriptor
if (close(shm2_fd) == -1) {
perror("close");
return 1;
}
shm_unlink(shm2_name);
sem_close(sem_parent_child);
sem_close(sem_child_grandchild);
exit(EXIT_SUCCESS);
}
}
sem_close(sem_parent_child);
sem_close(sem_child_grandchild);
sem_unlink(sem1_name);
sem_unlink(sem2_name);
cout << "success" << endl;
return 0;
}