lab 3 halway
This commit is contained in:
parent
5bd1211f9e
commit
0361dedfab
|
@ -0,0 +1,390 @@
|
||||||
|
#include <iostream>
|
||||||
|
#include <fstream>
|
||||||
|
#include <cstring>
|
||||||
|
#include <unistd.h>
|
||||||
|
#include <chrono>
|
||||||
|
#include <sstream>
|
||||||
|
#include <string>
|
||||||
|
#include <bits/stdc++.h>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
struct process_detail {
|
||||||
|
//cpu_burst_times[0] is arrival time
|
||||||
|
int pid;
|
||||||
|
vector<int> burst_times;
|
||||||
|
int in_cpu1;
|
||||||
|
int in_cpu2;
|
||||||
|
int current_burst_index;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct clock{
|
||||||
|
int push_signal; //boolean
|
||||||
|
int timer;
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
vector<process_detail> processes;
|
||||||
|
queue<process_detail*> ready_queue_fifo;
|
||||||
|
vector<process_detail*> waiting;
|
||||||
|
process_detail* CPU1 = NULL;
|
||||||
|
process_detail* CPU2 = NULL;
|
||||||
|
|
||||||
|
ofstream output_file("cpu_times.txt");
|
||||||
|
|
||||||
|
// ------------------------------------- THE FIFO ---------------------------------------
|
||||||
|
void fifo() {
|
||||||
|
// Clock initialized to 0
|
||||||
|
struct clock time;
|
||||||
|
memset(&time, 0, sizeof(struct clock));
|
||||||
|
time.timer = 0;
|
||||||
|
time.push_signal = 5;
|
||||||
|
int process_count = processes.size();
|
||||||
|
int completed_processes = 0;
|
||||||
|
string out_string1 = "";
|
||||||
|
string out_string2 = "";
|
||||||
|
|
||||||
|
while(completed_processes < process_count) {
|
||||||
|
|
||||||
|
// Breaking from the infinite loop
|
||||||
|
for (int i = 0; i < process_count; ++i) {
|
||||||
|
if (processes[i].burst_times[processes[i].current_burst_index] == -2) {
|
||||||
|
completed_processes++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Managing arrival times
|
||||||
|
for (int i = 0; i < process_count; ++i) {
|
||||||
|
if(processes[i].in_cpu1 != 1 || processes[i].in_cpu2 != 1) {
|
||||||
|
if(time.timer == processes[i].burst_times[0]) {
|
||||||
|
ready_queue_fifo.push(&processes[i]);
|
||||||
|
processes[i].current_burst_index++;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Managing waiting queue
|
||||||
|
for (int j = 0; j < waiting.size(); ++j) {
|
||||||
|
if (waiting[j] != NULL) {
|
||||||
|
if (waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
|
||||||
|
ready_queue_fifo.push(waiting[j]);
|
||||||
|
waiting[j]->current_burst_index++;
|
||||||
|
waiting[j] = NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (CPU1 == NULL && !ready_queue_fifo.empty()) {
|
||||||
|
// Assign the first process from the ready queue to the CPU
|
||||||
|
CPU1 = ready_queue_fifo.front();
|
||||||
|
CPU1->in_cpu1 = 1;
|
||||||
|
// Record in_time when the process enters the CPU
|
||||||
|
out_string1 = "P" + to_string(CPU1->pid+1) + ",1 " + to_string(time.timer);
|
||||||
|
// output_file << "P" << CPU1->pid + 1 << ",1 " << time.timer;
|
||||||
|
ready_queue_fifo.pop();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (CPU2 == NULL && !ready_queue_fifo.empty()) {
|
||||||
|
// Assign the first process from the ready queue to the CPU
|
||||||
|
CPU2 = ready_queue_fifo.front();
|
||||||
|
CPU2->in_cpu2 = 1;
|
||||||
|
// Record in_time when the process enters the CPU
|
||||||
|
// output_file << endl;
|
||||||
|
out_string2 = "P" + to_string(CPU2->pid+1) + ",2 " + to_string(time.timer);
|
||||||
|
// output_file << "P" << CPU2->pid + 1 << ",2 " << time.timer;
|
||||||
|
ready_queue_fifo.pop();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check CPU1
|
||||||
|
if(CPU1 != NULL) {
|
||||||
|
//check cpu_burst complete
|
||||||
|
for(int i = 0; i < process_count; ++i) {
|
||||||
|
if(processes[i].in_cpu1 == 1) {
|
||||||
|
if(CPU1->burst_times[processes[i].current_burst_index] == 0){
|
||||||
|
// Record out_time when the process exits the CPU
|
||||||
|
out_string1 += " " + to_string(time.timer);
|
||||||
|
output_file << out_string1 << endl;
|
||||||
|
// output_file << " " << time.timer << endl;
|
||||||
|
CPU1->in_cpu1 = 0;
|
||||||
|
CPU1->current_burst_index++;
|
||||||
|
waiting.push_back(CPU1); // process added to waiting queue
|
||||||
|
if(!ready_queue_fifo.empty()) {
|
||||||
|
CPU1 = ready_queue_fifo.front(); // process added to CPU
|
||||||
|
CPU1->in_cpu1 = 1;
|
||||||
|
// output_file << "P" << CPU1->pid+1 << ",1" << " " << time.timer; // New entry time
|
||||||
|
out_string1 = "P" + to_string(CPU1->pid+1) + ",1 " + to_string(time.timer);
|
||||||
|
ready_queue_fifo.pop();
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
CPU1 = NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(CPU2 != NULL) {
|
||||||
|
//check cpu_burst complete
|
||||||
|
for(int i = 0; i < process_count; ++i) {
|
||||||
|
if(processes[i].in_cpu2 == 1) {
|
||||||
|
if(CPU2->burst_times[processes[i].current_burst_index] == 0){
|
||||||
|
// Record out_time when the process exits the CPU
|
||||||
|
out_string2 += " " + to_string(time.timer);
|
||||||
|
output_file << out_string2 << endl;
|
||||||
|
// output_file << " " << time.timer << endl;
|
||||||
|
CPU2->in_cpu2 = 0;
|
||||||
|
CPU2->current_burst_index++;
|
||||||
|
waiting.push_back(CPU2); // process added to waiting queue
|
||||||
|
if(!ready_queue_fifo.empty()) {
|
||||||
|
CPU2 = ready_queue_fifo.front(); // process added to CPU
|
||||||
|
CPU2->in_cpu2 = 1;
|
||||||
|
out_string2 = "P" + to_string(CPU2->pid+1) + ",2 " + to_string(time.timer);
|
||||||
|
// output_file << "P" << CPU2->pid+1 << ",2" << " " << time.timer; // New entry time
|
||||||
|
ready_queue_fifo.pop();
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
CPU2 = NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(CPU1 != NULL) {
|
||||||
|
CPU1->burst_times[CPU1->current_burst_index]--;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(CPU2 != NULL) {
|
||||||
|
CPU2->burst_times[CPU2->current_burst_index]--;
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int j = 0; j < waiting.size(); ++j) {
|
||||||
|
if(waiting[j] != NULL) {
|
||||||
|
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
|
||||||
|
waiting[j]->burst_times[waiting[j]->current_burst_index]--; // reducing the io burst till it reaches 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Increment the timer
|
||||||
|
time.timer++;
|
||||||
|
}
|
||||||
|
output_file.close();
|
||||||
|
return;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// ----------------------------------------THE Shortest Job First----------------------------------
|
||||||
|
// Custom comparator for the priority queue
|
||||||
|
struct Compare {
|
||||||
|
bool operator()(process_detail* a, process_detail* b) {
|
||||||
|
// Compare the elements in the vector at the given indices
|
||||||
|
return a->burst_times[a->current_burst_index] > b->burst_times[b->current_burst_index];
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
priority_queue<process_detail*, vector<process_detail*>, Compare> ready_queue;
|
||||||
|
|
||||||
|
void sjf() {
|
||||||
|
// Clock initialized to 0
|
||||||
|
struct clock time;
|
||||||
|
memset(&time, 0, sizeof(struct clock));
|
||||||
|
time.timer = 0;
|
||||||
|
time.push_signal = 5;
|
||||||
|
int process_count = processes.size();
|
||||||
|
int completed_processes = 0;
|
||||||
|
string out_string1 = "";
|
||||||
|
string out_string2 = "";
|
||||||
|
|
||||||
|
while(completed_processes < process_count) {
|
||||||
|
|
||||||
|
// Breaking from the infinite loop
|
||||||
|
for (int i = 0; i < process_count; ++i) {
|
||||||
|
if (processes[i].burst_times[processes[i].current_burst_index] == -2) {
|
||||||
|
completed_processes++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Managing arrival times
|
||||||
|
for (int i = 0; i < process_count; ++i) {
|
||||||
|
if(processes[i].in_cpu1 != 1 || processes[i].in_cpu2 != 1) {
|
||||||
|
if(time.timer == processes[i].burst_times[0]) {
|
||||||
|
ready_queue.push(&processes[i]);
|
||||||
|
processes[i].current_burst_index++;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Managing waiting queue
|
||||||
|
for (int j = 0; j < waiting.size(); ++j) {
|
||||||
|
if (waiting[j] != NULL) {
|
||||||
|
if (waiting[j]->burst_times[waiting[j]->current_burst_index] == 0) {
|
||||||
|
ready_queue.push(waiting[j]);
|
||||||
|
waiting[j]->current_burst_index++;
|
||||||
|
waiting[j] = NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (CPU1 == NULL && !ready_queue.empty()) {
|
||||||
|
// Assign the first process from the ready queue to the CPU
|
||||||
|
CPU1 = ready_queue.top();
|
||||||
|
CPU1->in_cpu1 = 1;
|
||||||
|
// Record in_time when the process enters the CPU
|
||||||
|
out_string1 = "P" + to_string(CPU1->pid+1) + ",1 " + to_string(time.timer);
|
||||||
|
// output_file << "P" << CPU1->pid + 1 << ",1 " << time.timer;
|
||||||
|
ready_queue.pop();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (CPU2 == NULL && !ready_queue.empty()) {
|
||||||
|
// Assign the first process from the ready queue to the CPU
|
||||||
|
CPU2 = ready_queue.top();
|
||||||
|
CPU2->in_cpu2 = 1;
|
||||||
|
// Record in_time when the process enters the CPU
|
||||||
|
// output_file << endl;
|
||||||
|
out_string2 = "P" + to_string(CPU2->pid+1) + ",2 " + to_string(time.timer);
|
||||||
|
// output_file << "P" << CPU2->pid + 1 << ",2 " << time.timer;
|
||||||
|
ready_queue.pop();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check CPU1
|
||||||
|
if(CPU1 != NULL) {
|
||||||
|
//check cpu_burst complete
|
||||||
|
for(int i = 0; i < process_count; ++i) {
|
||||||
|
if(processes[i].in_cpu1 == 1) {
|
||||||
|
if(CPU1->burst_times[processes[i].current_burst_index] == 0){
|
||||||
|
// Record out_time when the process exits the CPU
|
||||||
|
out_string1 += " " + to_string(time.timer);
|
||||||
|
output_file << out_string1 << endl;
|
||||||
|
// output_file << " " << time.timer << endl;
|
||||||
|
CPU1->in_cpu1 = 0;
|
||||||
|
CPU1->current_burst_index++;
|
||||||
|
waiting.push_back(CPU1); // process added to waiting queue
|
||||||
|
if(!ready_queue.empty()) {
|
||||||
|
CPU1 = ready_queue.top(); // process added to CPU
|
||||||
|
CPU1->in_cpu1 = 1;
|
||||||
|
// output_file << "P" << CPU1->pid+1 << ",1" << " " << time.timer; // New entry time
|
||||||
|
out_string1 = "P" + to_string(CPU1->pid+1) + ",1 " + to_string(time.timer);
|
||||||
|
ready_queue.pop();
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
CPU1 = NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(CPU2 != NULL) {
|
||||||
|
//check cpu_burst complete
|
||||||
|
for(int i = 0; i < process_count; ++i) {
|
||||||
|
if(processes[i].in_cpu2 == 1) {
|
||||||
|
if(CPU2->burst_times[processes[i].current_burst_index] == 0){
|
||||||
|
// Record out_time when the process exits the CPU
|
||||||
|
out_string2 += " " + to_string(time.timer);
|
||||||
|
output_file << out_string2 << endl;
|
||||||
|
// output_file << " " << time.timer << endl;
|
||||||
|
CPU2->in_cpu2 = 0;
|
||||||
|
CPU2->current_burst_index++;
|
||||||
|
waiting.push_back(CPU2); // process added to waiting queue
|
||||||
|
if(!ready_queue.empty()) {
|
||||||
|
CPU2 = ready_queue.top(); // process added to CPU
|
||||||
|
CPU2->in_cpu2 = 1;
|
||||||
|
out_string2 = "P" + to_string(CPU2->pid+1) + ",2 " + to_string(time.timer);
|
||||||
|
// output_file << "P" << CPU2->pid+1 << ",2" << " " << time.timer; // New entry time
|
||||||
|
ready_queue.pop();
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
CPU2 = NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(CPU1 != NULL) {
|
||||||
|
CPU1->burst_times[CPU1->current_burst_index]--;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(CPU2 != NULL) {
|
||||||
|
CPU2->burst_times[CPU2->current_burst_index]--;
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int j = 0; j < waiting.size(); ++j) {
|
||||||
|
if(waiting[j] != NULL) {
|
||||||
|
if(waiting[j]->burst_times[waiting[j]->current_burst_index] != 0) {
|
||||||
|
waiting[j]->burst_times[waiting[j]->current_burst_index]--; // reducing the io burst till it reaches 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Increment the timer
|
||||||
|
time.timer++;
|
||||||
|
}
|
||||||
|
output_file.close();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
|
||||||
|
if(argc != 3)
|
||||||
|
{
|
||||||
|
cout <<"usage: ./scheduler.out <path-to-workload-file> <scheduler_algorithm>\nprovided arguments:\n";
|
||||||
|
for(int i = 0; i < argc; i++)
|
||||||
|
cout << argv[i] << "\n";
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
char *file_to_search_in = argv[1];
|
||||||
|
char *scheduler_algorithm = argv[2];
|
||||||
|
|
||||||
|
ifstream file(file_to_search_in, ios::binary);
|
||||||
|
// ifstream file("temp.dat", ios::binary);
|
||||||
|
string buffer;
|
||||||
|
int pid = 0;
|
||||||
|
|
||||||
|
while(getline(file, buffer)) {
|
||||||
|
if(buffer[0] == '<'){
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
istringstream iss(buffer);
|
||||||
|
string word;
|
||||||
|
struct process_detail pd;
|
||||||
|
memset(&pd,0,sizeof(struct process_detail));
|
||||||
|
pd.pid = pid++;
|
||||||
|
pd.current_burst_index = 0;
|
||||||
|
|
||||||
|
while(iss>>word){
|
||||||
|
pd.burst_times.push_back(stoi(word));
|
||||||
|
}
|
||||||
|
processes.push_back(pd);
|
||||||
|
}
|
||||||
|
|
||||||
|
map<string, int> temp;
|
||||||
|
temp["fifo"] = 1;
|
||||||
|
temp["sjf"] = 2;
|
||||||
|
temp["pre_sjf"] = 3;
|
||||||
|
temp["rr"] = 4;
|
||||||
|
|
||||||
|
string temp1 = scheduler_algorithm;
|
||||||
|
// string temp1 = "fifo";
|
||||||
|
|
||||||
|
switch(temp[temp1]){
|
||||||
|
case 1:
|
||||||
|
fifo();
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
sjf();
|
||||||
|
break;
|
||||||
|
// case 3:
|
||||||
|
// pre_sjf();
|
||||||
|
// break;
|
||||||
|
// case 4:
|
||||||
|
// round_robin();
|
||||||
|
// break;
|
||||||
|
default:
|
||||||
|
cout << "enter fifo or sjf or pre_sjf or rr" << endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
225
lab3/prompt
225
lab3/prompt
|
@ -1,225 +0,0 @@
|
||||||
#include <iostream>
|
|
||||||
#include <fstream>
|
|
||||||
#include <cstring>
|
|
||||||
#include <unistd.h>
|
|
||||||
#include <chrono>
|
|
||||||
#include <sstream>
|
|
||||||
#include <string>
|
|
||||||
#include <bits/stdc++.h>
|
|
||||||
|
|
||||||
using namespace std;
|
|
||||||
|
|
||||||
struct process_detail {
|
|
||||||
//cpu_burst_times[0] is arrival time
|
|
||||||
int pid;
|
|
||||||
vector<int> burst_times;
|
|
||||||
int in_cpu;
|
|
||||||
int ptr;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct clock{
|
|
||||||
int push_signal; //boolean
|
|
||||||
int timer;
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
//// operator overloading
|
|
||||||
//struct CompareHeight {
|
|
||||||
// bool operator()(struct process_detail p1, struct process_detail p2)
|
|
||||||
// {
|
|
||||||
// // return "true" if "p1" is ordered
|
|
||||||
// // before "p2", for example:
|
|
||||||
// return p1.height < p2.height;
|
|
||||||
// }
|
|
||||||
//};
|
|
||||||
|
|
||||||
|
|
||||||
vector<struct process_detail> processes;
|
|
||||||
vector<struct process_detail> ready_queue;
|
|
||||||
queue<struct process_detail*> ready_queue_fifo;
|
|
||||||
vector<struct process_detail*> waiting;
|
|
||||||
struct process_detail* CPU = NULL;
|
|
||||||
|
|
||||||
void fifo() {
|
|
||||||
|
|
||||||
//clock initialized to 0
|
|
||||||
struct clock time;
|
|
||||||
memset(&time, 0, sizeof(struct clock));
|
|
||||||
int process_count = processes.size();
|
|
||||||
|
|
||||||
//ready queue initialized as process 1 will arrive at time 0
|
|
||||||
ready_queue_fifo.push(&processes[0]);
|
|
||||||
processes[0].ptr++;
|
|
||||||
|
|
||||||
int brk = 0;
|
|
||||||
|
|
||||||
while(true){
|
|
||||||
for(int i = 0; i < process_count; ++i) {
|
|
||||||
if(processes[i].burst_times[processes[i].ptr] == -1) {
|
|
||||||
brk = 1;
|
|
||||||
}
|
|
||||||
else brk = 0;
|
|
||||||
}
|
|
||||||
if(brk) break;
|
|
||||||
|
|
||||||
//managing arrival times
|
|
||||||
for(int i = 1; i < process_count; ++i) {
|
|
||||||
//if process not in cpu
|
|
||||||
if(processes[i].in_cpu != 1) {
|
|
||||||
if(time.timer == processes[i].burst_times[0]) {
|
|
||||||
ready_queue_fifo.push(&processes[i]);
|
|
||||||
processes[i].ptr++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//THE FIFO RULE
|
|
||||||
if(CPU == NULL) {
|
|
||||||
CPU = ready_queue_fifo.front();
|
|
||||||
CPU->in_cpu = 1;
|
|
||||||
ready_queue_fifo.pop();
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
//check cpu_burst complete
|
|
||||||
for(int i = 0; i < process_count; ++i) {
|
|
||||||
if(processes[i].in_cpu == 1) {
|
|
||||||
if(time.push_signal + CPU->burst_times[processes[i].ptr] == time.timer){
|
|
||||||
waiting.push_back(CPU); // process added to waiting queue
|
|
||||||
CPU->in_cpu = 0;
|
|
||||||
CPU = ready_queue_fifo.front(); // process added to CPU
|
|
||||||
CPU->in_cpu = 1;
|
|
||||||
ready_queue_fifo.pop();
|
|
||||||
time.push_signal = time.push_signal + CPU->burst_times[processes[i].ptr] ;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// removing form waiting list
|
|
||||||
|
|
||||||
for(int j = 0; j < waiting.size(); ++j) {
|
|
||||||
if(waiting[j] != NULL) {
|
|
||||||
if(waiting[j]->burst_times[waiting[j]->ptr] == 0) {
|
|
||||||
ready_queue_fifo.push(waiting[j]);
|
|
||||||
waiting[j]->ptr++;
|
|
||||||
waiting[j] = NULL;
|
|
||||||
}
|
|
||||||
else waiting[j]->burst_times[waiting[j]->ptr]--; // reducing the io burst till it reaches 0
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
time.timer++;
|
|
||||||
}
|
|
||||||
|
|
||||||
cout << "fifo" << endl;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
int main(int argc, char **argv) {
|
|
||||||
|
|
||||||
if(argc != 3)
|
|
||||||
{
|
|
||||||
cout <<"usage: ./scheduler.out <path-to-workload-file> <scheduler_algorithm>\nprovided arguments:\n";
|
|
||||||
for(int i = 0; i < argc; i++)
|
|
||||||
cout << argv[i] << "\n";
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
char *file_to_search_in = argv[1];
|
|
||||||
char *scheduler_algorithm = argv[2];
|
|
||||||
|
|
||||||
ifstream file(file_to_search_in, ios::binary);
|
|
||||||
string buffer;
|
|
||||||
int pid = 0;
|
|
||||||
|
|
||||||
while(getline(file, buffer)) {
|
|
||||||
if(buffer[0] == '<'){
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
istringstream iss(buffer);
|
|
||||||
string word;
|
|
||||||
struct process_detail pd;
|
|
||||||
memset(&pd,0,sizeof(struct process_detail));
|
|
||||||
pd.pid = pid++;
|
|
||||||
pd.ptr = 0;
|
|
||||||
|
|
||||||
while(iss>>word){
|
|
||||||
// if(i == 0){
|
|
||||||
// pd.cpu_burst_times.push_back(stoi(word));
|
|
||||||
// }
|
|
||||||
// else if(i % 2 == 0){
|
|
||||||
// pd.io_burst_times.push_back(stoi(word));
|
|
||||||
// }
|
|
||||||
// else if(i % 2 == 1){
|
|
||||||
// }
|
|
||||||
pd.burst_times.push_back(stoi(word));
|
|
||||||
// i++;
|
|
||||||
// cout << stoi(word) << endl;
|
|
||||||
}
|
|
||||||
processes.push_back(pd);
|
|
||||||
}
|
|
||||||
|
|
||||||
map<string, int> temp;
|
|
||||||
temp["fifo"] = 1;
|
|
||||||
string temp1 = scheduler_algorithm;
|
|
||||||
|
|
||||||
|
|
||||||
switch(temp[temp1]){
|
|
||||||
case 1:
|
|
||||||
fifo();
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
cout << "enter fifo" << endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
cout << processes[0].in_cpu << endl;
|
|
||||||
cout << processes[0].ptr << endl;
|
|
||||||
|
|
||||||
cout << processes[1].in_cpu << endl;
|
|
||||||
cout << processes[1].ptr << endl;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
I am writing the above code to as an answer for the following question:
|
|
||||||
Process Scheduling
|
|
||||||
Laboratory 3
|
|
||||||
Duration: 3 weeks
|
|
||||||
This assignment will help us learn different process scheduling algorithms and their relative pros
|
|
||||||
and cons.
|
|
||||||
To do this task, you will need to develop a simulator of a scheduler in C / C++. The simulator
|
|
||||||
must take in the following command line arguments: <scheduling-algorithm>
|
|
||||||
<path-to-workload-description-file>. The simulator must produce as output the following metrics:
|
|
||||||
Makespan, Completion Time (average and maximum), and Waiting Time (average and
|
|
||||||
maximum), Run Time of your simulator (not counting I/O). Also, report the schedule itself
|
|
||||||
(choose a nice format which will also help you debug).
|
|
||||||
For all the studies, we will use the workload description files given here. Each row in the file
|
|
||||||
refers to one process. The row format is as follows:
|
|
||||||
<process-arrival-time> <cpu-burst-1-duration> <io-burst-1-duration> <cpu-burst-2-duration>
|
|
||||||
<io-burst-2-duration> … -1
|
|
||||||
For example:
|
|
||||||
0 100 2 200 3 25 -1 indicates arrival time = 0; CPU burst 1 duration = 100; I/O burst 1 duration =
|
|
||||||
2; CPU burst 2 duration = 200; I/O burst 2 duration = 3; CPU burst 3 duration = 25; end of
|
|
||||||
process.
|
|
||||||
Assume that every line ends with -1. A process may have any number of CPU / I/O burst
|
|
||||||
cycles terminated with a -1. There will be any number of processes, terminated by an end of file.
|
|
||||||
The arrival times are in nondecreasing order.
|
|
||||||
Part I
|
|
||||||
Implement the following algorithms:
|
|
||||||
A. First In First Out
|
|
||||||
|
|
||||||
|
|
||||||
Also here is the input file:
|
|
||||||
<html>
|
|
||||||
<body>
|
|
||||||
<pre>
|
|
||||||
0 100 2 -1
|
|
||||||
2 80 2 -1
|
|
||||||
</pre></body></html>
|
|
||||||
|
|
||||||
|
|
||||||
Help me write the appropriate code
|
|
Loading…
Reference in New Issue