iPDC-suite/iPDC/src/Kmeans2.c

204 lines
5.4 KiB
C

#include "parser.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include <stdbool.h>
struct Point
{
long double x, y; // coordinates
int cluster; // no default cluster
long double minDist; // default infinite dist to nearest cluster
};
int count = 0;
struct Point *P;
long double distance(struct Point* A, struct Point* B)
{
return (((A->x - B->x) * (A->x - B->x)) + ((A->y - B->y) * (A->y - B->y)));
}
int *getRandoms(int lower, int upper, int count)
{
srand(time(0));
int *p = (int *)malloc(sizeof(int) * count);
int track = 0;
while (1)
{
if (track == count)
{
return p;
}
int num = (rand() % (upper - lower + 1)) + lower;
if (track == 0)
{
p[track] = num;
track++;
continue;
}
int flag = 0;
for (int j = 0; j <= track - 1; j++)
{
if (num == p[j])
{
flag = 1;
break;
}
}
if (flag == 0)
{
p[track] = num;
track++;
}
}
}
void Kmeans2(struct data_frame *df)
{
printf("count: %d\n",count);
if(count==0)
{
P = (struct Point *)malloc(sizeof(struct Point) * 500);
}
if (count != 500)
{
float CURR_FREQ;
if (df->dpmu[0]->fmt->freq == '0')
{
CURR_FREQ = 50 + to_intconvertor(df->dpmu[0]->freq) * 1e-3;
}
else
{
CURR_FREQ = decode_ieee_single(df->dpmu[0]->freq);
}
float CURR_vol;
if (df->dpmu[0]->fmt->phasor == '0')
{
if (df->dpmu[0]->fmt->polar == '0')
{
unsigned char s1[2];
unsigned char s2[2];
strncpy(s1, df->dpmu[0]->phasors[0], 2);
strncpy(s2, df->dpmu[0]->phasors[0] + 2, 2);
long double v1 = to_intconvertor(s1);
long double v2 = to_intconvertor(s2);
CURR_vol = sqrt((v1 * v1) + (v2 * v2));
}
else
{
unsigned char s1[2];
strncpy(s1, df->dpmu[0]->phasors[0], 2);
CURR_vol = to_intconvertor(s1);
}
}
else
{
if (df->dpmu[0]->fmt->polar == '0')
{
unsigned char s1[4];
unsigned char s2[4];
strncpy(s1, df->dpmu[0]->phasors[0], 4);
strncpy(s2, df->dpmu[0]->phasors[0] + 2, 4);
long double v1 = decode_ieee_single(s1);
long double v2 = decode_ieee_single(s2);
CURR_vol = sqrt((v1 * v1) + (v2 * v2));
}
else
{
unsigned char s1[4];
strncpy(s1, df->dpmu[0]->phasors[0], 4);
CURR_vol = decode_ieee_single(s1);
}
}
P[count].x = CURR_FREQ;
P[count].y = CURR_vol;
P[count].cluster = -1;
P[count].minDist = __DBL_MAX__;
count++;
}
else
{
int no_of_clusters = 5;
int epochs = 20;
int *c = getRandoms(0, 499, no_of_clusters);
struct Point *Centroids = (struct Point *)malloc(sizeof(struct Point) * no_of_clusters);
for (int i = 0; i < no_of_clusters; i++)
{
Centroids[i].x = P[c[i]].x;
Centroids[i].y = P[c[i]].y;
Centroids[i].minDist = __DBL_MAX__;
Centroids[i].cluster = -1;
}
free(c);
while (epochs--)
{
for (int i = 0; i < no_of_clusters; i++)
{
for (int j = 0; j < 500; j++)
{
long double dist = distance(&Centroids[i], &P[j]);
if (P[j].minDist > dist)
{
P[j].minDist = dist;
P[j].cluster = i;
}
}
}
int *nPoints = (int *)malloc(sizeof(int) * no_of_clusters);
long double *Sumx = (long double *)malloc(sizeof(long double) * no_of_clusters);
long double *Sumy = (long double *)malloc(sizeof(long double) * no_of_clusters);
for (int i = 0; i < no_of_clusters; i++)
{
nPoints[i] = 0;
Sumx[i] = 0;
Sumy[i] = 0;
}
for (int i = 0; i < 500; i++)
{
nPoints[P[i].cluster]++;
Sumx[P[i].cluster] += P[i].x;
Sumy[P[i].cluster] += P[i].y;
P[i].minDist = __DBL_MAX__;
}
for (int i = 0; i < no_of_clusters; i++)
{
Centroids[i].x = Sumx[i] / nPoints[i];
Centroids[i].y = Sumy[i] / nPoints[i];
}
free(nPoints);
free(Sumx);
free(Sumy);
}
count = 0;
FILE *fp;
fp = fopen("kmeans.txt","a");
for(int i=0;i<500;i++)
{
fprintf(fp,"%Lf, %Lf, %d\n",P[i].x,P[i].y,P[i].cluster);
}
fprintf(fp,"\n\n");
for(int i=0;i<no_of_clusters;i++)
{
fprintf(fp,"%d : %Lf, %Lf\n",i,Centroids[i].x,Centroids[i].y);
}
fprintf(fp,"\n\n");
fclose(fp);
free(Centroids);
free(P);
}
}