Compare commits
	
		
			2 Commits
		
	
	
		
			5463e52ff6
			...
			9dad2b4885
		
	
	| Author | SHA1 | Date | 
|---|---|---|
| 
							
							
								 | 
						9dad2b4885 | |
| 
							
							
								 | 
						6014b7be48 | 
| 
						 | 
				
			
			@ -3,3 +3,5 @@
 | 
			
		|||
int DTWfreqDistance(struct data_frame *df);
 | 
			
		||||
 | 
			
		||||
int DTWvolDistance(struct data_frame *df);
 | 
			
		||||
 | 
			
		||||
int DTWfreqvolDistance(struct data_frame *df);
 | 
			
		||||
| 
						 | 
				
			
			@ -1,3 +1,4 @@
 | 
			
		|||
int *getRandoms(int lower, int upper, int count);
 | 
			
		||||
long double distance(struct Point* A, struct Point* B);
 | 
			
		||||
long double distance(struct Point *A, struct Point *B);
 | 
			
		||||
bool Kmeans2(struct data_frame *df);
 | 
			
		||||
long double distance2(struct centroid *A, struct Point *B);
 | 
			
		||||
| 
						 | 
				
			
			@ -76,6 +76,7 @@ gboolean attack_detect_freq(struct data_frame *df)
 | 
			
		|||
                    printf("avg freq: %Lf\n", temp->AVERAGE_OF_FREQUENCY);
 | 
			
		||||
                    return TRUE;
 | 
			
		||||
                }
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            previous = temp;
 | 
			
		||||
            temp = temp->next;
 | 
			
		||||
| 
						 | 
				
			
			@ -174,6 +175,7 @@ gboolean attack_detect_vol(struct data_frame *df)
 | 
			
		|||
                    printf("avg vol: %Lf\n", temp->AVERAGE_OF_VOLTAGE);
 | 
			
		||||
                    return TRUE;
 | 
			
		||||
                }
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            previous = temp;
 | 
			
		||||
            temp = temp->next;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -137,6 +137,7 @@ int DTWfreqDistance(struct data_frame *df)
 | 
			
		|||
                    free(DTW);
 | 
			
		||||
                    temp->count_track1 = 1;
 | 
			
		||||
                }
 | 
			
		||||
                return temp->result;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            previous = temp;
 | 
			
		||||
| 
						 | 
				
			
			@ -154,7 +155,6 @@ int DTWfreqDistance(struct data_frame *df)
 | 
			
		|||
            previous->next = bring;
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
        return temp->result;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -293,6 +293,7 @@ int DTWvolDistance(struct data_frame *df)
 | 
			
		|||
                    free(DTW);
 | 
			
		||||
                    temp->count_track1 = 1;
 | 
			
		||||
                }
 | 
			
		||||
                return temp->result;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            previous = temp;
 | 
			
		||||
| 
						 | 
				
			
			@ -310,7 +311,6 @@ int DTWvolDistance(struct data_frame *df)
 | 
			
		|||
            previous->next = bring;
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
        return temp->result;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -13,12 +13,23 @@ struct Point
 | 
			
		|||
    long double minDist; // default infinite dist to nearest cluster
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct centroid
 | 
			
		||||
{
 | 
			
		||||
    long double x, y;
 | 
			
		||||
    long double max_radius;
 | 
			
		||||
    unsigned long long int count;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct Kmeans2
 | 
			
		||||
{
 | 
			
		||||
    int idcode;
 | 
			
		||||
    int count;
 | 
			
		||||
    struct Point *P;
 | 
			
		||||
    struct Kmeans2 *next;
 | 
			
		||||
    struct centroid *C;
 | 
			
		||||
    int no_of_clusters;
 | 
			
		||||
    int isIntialized;
 | 
			
		||||
    bool result;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct Kmeans2 *head_of_kmeans2 = NULL;
 | 
			
		||||
| 
						 | 
				
			
			@ -28,6 +39,11 @@ long double distance(struct Point *A, struct Point *B)
 | 
			
		|||
    return (((A->x - B->x) * (A->x - B->x)) + ((A->y - B->y) * (A->y - B->y)));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
long double distance2(struct centroid *A, struct Point *B)
 | 
			
		||||
{
 | 
			
		||||
    return (((A->x - B->x) * (A->x - B->x)) + ((A->y - B->y) * (A->y - B->y)));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int *getRandoms(int lower, int upper, int count)
 | 
			
		||||
{
 | 
			
		||||
    srand(time(0));
 | 
			
		||||
| 
						 | 
				
			
			@ -70,8 +86,10 @@ bool Kmeans2(struct data_frame *df)
 | 
			
		|||
        head_of_kmeans2 = (struct Kmeans2 *)malloc(sizeof(struct Kmeans2));
 | 
			
		||||
        head_of_kmeans2->idcode = to_intconvertor(df->idcode);
 | 
			
		||||
        head_of_kmeans2->count = 0;
 | 
			
		||||
        head_of_kmeans2->isIntialized = 0;
 | 
			
		||||
        head_of_kmeans2->next = NULL;
 | 
			
		||||
        head_of_kmeans2->P = NULL;
 | 
			
		||||
        head_of_kmeans2->result = true;
 | 
			
		||||
        return true;
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
| 
						 | 
				
			
			@ -82,12 +100,135 @@ bool Kmeans2(struct data_frame *df)
 | 
			
		|||
        {
 | 
			
		||||
            if (temp->idcode == to_intconvertor(df->idcode))
 | 
			
		||||
            {
 | 
			
		||||
                printf("count: %d\n",temp->count);
 | 
			
		||||
                printf("count: %d\n", temp->count);
 | 
			
		||||
                if (temp->count == 0)
 | 
			
		||||
                {
 | 
			
		||||
                    if (temp->isIntialized == 0)
 | 
			
		||||
                        temp->P = (struct Point *)malloc(sizeof(struct Point) * 500);
 | 
			
		||||
                    else
 | 
			
		||||
                        temp->P = (struct Point *)malloc(sizeof(struct Point) * 100);
 | 
			
		||||
                }
 | 
			
		||||
                if (temp->count != 500)
 | 
			
		||||
                if (temp->isIntialized == 1 && temp->count != 100)
 | 
			
		||||
                {
 | 
			
		||||
                    float CURR_FREQ;
 | 
			
		||||
                    if (df->dpmu[0]->fmt->freq == '0')
 | 
			
		||||
                    {
 | 
			
		||||
                        CURR_FREQ = 50 + to_intconvertor(df->dpmu[0]->freq) * 1e-3;
 | 
			
		||||
                    }
 | 
			
		||||
                    else
 | 
			
		||||
                    {
 | 
			
		||||
                        CURR_FREQ = decode_ieee_single(df->dpmu[0]->freq);
 | 
			
		||||
                    }
 | 
			
		||||
                    float CURR_vol;
 | 
			
		||||
                    if (df->dpmu[0]->fmt->phasor == '0')
 | 
			
		||||
                    {
 | 
			
		||||
                        if (df->dpmu[0]->fmt->polar == '0')
 | 
			
		||||
                        {
 | 
			
		||||
                            unsigned char s1[2];
 | 
			
		||||
                            unsigned char s2[2];
 | 
			
		||||
                            strncpy(s1, df->dpmu[0]->phasors[0], 2);
 | 
			
		||||
                            strncpy(s2, df->dpmu[0]->phasors[0] + 2, 2);
 | 
			
		||||
                            long double v1 = to_intconvertor(s1);
 | 
			
		||||
                            long double v2 = to_intconvertor(s2);
 | 
			
		||||
                            CURR_vol = sqrt((v1 * v1) + (v2 * v2));
 | 
			
		||||
                        }
 | 
			
		||||
                        else
 | 
			
		||||
                        {
 | 
			
		||||
                            unsigned char s1[2];
 | 
			
		||||
                            strncpy(s1, df->dpmu[0]->phasors[0], 2);
 | 
			
		||||
                            CURR_vol = to_intconvertor(s1);
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                    else
 | 
			
		||||
                    {
 | 
			
		||||
                        if (df->dpmu[0]->fmt->polar == '0')
 | 
			
		||||
                        {
 | 
			
		||||
                            unsigned char s1[4];
 | 
			
		||||
                            unsigned char s2[4];
 | 
			
		||||
                            strncpy(s1, df->dpmu[0]->phasors[0], 4);
 | 
			
		||||
                            strncpy(s2, df->dpmu[0]->phasors[0] + 2, 4);
 | 
			
		||||
                            long double v1 = decode_ieee_single(s1);
 | 
			
		||||
                            long double v2 = decode_ieee_single(s2);
 | 
			
		||||
                            CURR_vol = sqrt((v1 * v1) + (v2 * v2));
 | 
			
		||||
                        }
 | 
			
		||||
                        else
 | 
			
		||||
                        {
 | 
			
		||||
                            unsigned char s1[4];
 | 
			
		||||
                            strncpy(s1, df->dpmu[0]->phasors[0], 4);
 | 
			
		||||
                            CURR_vol = decode_ieee_single(s1);
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                    temp->P[temp->count].x = CURR_FREQ;
 | 
			
		||||
                    temp->P[temp->count].y = CURR_vol;
 | 
			
		||||
                    temp->P[temp->count].cluster = -1;
 | 
			
		||||
                    temp->P[temp->count].minDist = __DBL_MAX__;
 | 
			
		||||
                    temp->count++;
 | 
			
		||||
 | 
			
		||||
                    bool result = false;
 | 
			
		||||
                    for (int i = 0; i < temp->no_of_clusters; i++)
 | 
			
		||||
                    {
 | 
			
		||||
                        long double dist = distance2(&temp->C[i], &temp->P[temp->count - 1]);
 | 
			
		||||
                        if (dist <= temp->C[i].max_radius && dist < temp->P[temp->count - 1].minDist)
 | 
			
		||||
                        {
 | 
			
		||||
                            temp->P[temp->count - 1].cluster = i;
 | 
			
		||||
                            temp->P[temp->count - 1].minDist = dist;
 | 
			
		||||
                            result = true;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                    if (result == false)
 | 
			
		||||
                        temp->P[temp->count - 1].cluster = -1;
 | 
			
		||||
                    temp->result = result;
 | 
			
		||||
                }
 | 
			
		||||
                else if (temp->isIntialized == 1)
 | 
			
		||||
                {
 | 
			
		||||
                    int *nPoints = (int *)malloc(sizeof(int) * temp->no_of_clusters);
 | 
			
		||||
                    long double *Sumx = (long double *)malloc(sizeof(long double) * temp->no_of_clusters);
 | 
			
		||||
                    long double *Sumy = (long double *)malloc(sizeof(long double) * temp->no_of_clusters);
 | 
			
		||||
 | 
			
		||||
                    for (int i = 0; i < temp->no_of_clusters; i++)
 | 
			
		||||
                    {
 | 
			
		||||
                        nPoints[i] = 0;
 | 
			
		||||
                        Sumx[i] = 0;
 | 
			
		||||
                        Sumy[i] = 0;
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    for (int i = 0; i < 100; i++)
 | 
			
		||||
                    {
 | 
			
		||||
                        if (temp->P[i].cluster != -1)
 | 
			
		||||
                        {
 | 
			
		||||
                            nPoints[temp->P[i].cluster]++;
 | 
			
		||||
                            Sumx[temp->P[i].cluster] += temp->P[i].x;
 | 
			
		||||
                            Sumy[temp->P[i].cluster] += temp->P[i].y;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    for (int i = 0; i < temp->no_of_clusters; i++)
 | 
			
		||||
                    {
 | 
			
		||||
                        temp->C[i].x = ((temp->C[i].count * temp->C[i].x) + Sumx[i]) / (temp->C[i].count + nPoints[i]);
 | 
			
		||||
                        temp->C[i].y = ((temp->C[i].count * temp->C[i].y) + Sumx[i]) / (temp->C[i].count + nPoints[i]);
 | 
			
		||||
                        temp->C[i].count += nPoints[i];
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    for (int i = 0; i < temp->no_of_clusters; i++)
 | 
			
		||||
                    {
 | 
			
		||||
                        for (int j = 0; j < 100; j++)
 | 
			
		||||
                        {
 | 
			
		||||
                            if (temp->P[j].cluster == i)
 | 
			
		||||
                            {
 | 
			
		||||
                                long double dist = distance2(&temp->C[i], &temp->P[j]);
 | 
			
		||||
                                if (temp->C[i].max_radius < dist)
 | 
			
		||||
                                    temp->C[i].max_radius = dist;
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    temp->count = 0;
 | 
			
		||||
                    free(temp->P);
 | 
			
		||||
                    free(Sumx);
 | 
			
		||||
                    free(Sumy);
 | 
			
		||||
                    free(nPoints);
 | 
			
		||||
                }
 | 
			
		||||
                if (temp->count != 500 && temp->isIntialized == 0)
 | 
			
		||||
                {
 | 
			
		||||
                    float CURR_FREQ;
 | 
			
		||||
                    if (df->dpmu[0]->fmt->freq == '0')
 | 
			
		||||
| 
						 | 
				
			
			@ -143,7 +284,7 @@ bool Kmeans2(struct data_frame *df)
 | 
			
		|||
                    temp->P[temp->count].minDist = __DBL_MAX__;
 | 
			
		||||
                    temp->count++;
 | 
			
		||||
                }
 | 
			
		||||
                else
 | 
			
		||||
                else if (temp->isIntialized == 0)
 | 
			
		||||
                {
 | 
			
		||||
                    int no_of_clusters = 5;
 | 
			
		||||
                    int epochs = 20;
 | 
			
		||||
| 
						 | 
				
			
			@ -199,33 +340,68 @@ bool Kmeans2(struct data_frame *df)
 | 
			
		|||
                            Centroids[i].y = Sumy[i] / nPoints[i];
 | 
			
		||||
                        }
 | 
			
		||||
 | 
			
		||||
                        if (epochs == 0)
 | 
			
		||||
                        {
 | 
			
		||||
                            int count_centroids = 0;
 | 
			
		||||
                            for (int i = 0; i < no_of_clusters; i++)
 | 
			
		||||
                            {
 | 
			
		||||
                                if (!isnanl(Centroids[i].x))
 | 
			
		||||
                                    count_centroids++;
 | 
			
		||||
                            }
 | 
			
		||||
 | 
			
		||||
                            temp->no_of_clusters = count_centroids;
 | 
			
		||||
                            temp->C = (struct centroid *)malloc(sizeof(struct centroid) * count_centroids);
 | 
			
		||||
                            int track = 0;
 | 
			
		||||
                            for (int i = 0; i < no_of_clusters; i++)
 | 
			
		||||
                            {
 | 
			
		||||
                                if (!isnanl(Centroids[i].x))
 | 
			
		||||
                                {
 | 
			
		||||
                                    temp->C[track].x = Centroids[i].x;
 | 
			
		||||
                                    temp->C[track].y = Centroids[i].y;
 | 
			
		||||
                                    temp->C[track].max_radius = 0;
 | 
			
		||||
                                    temp->C[track].count = nPoints[i];
 | 
			
		||||
                                    for (int j = 0; j < 500; j++)
 | 
			
		||||
                                    {
 | 
			
		||||
                                        if (temp->P[j].cluster == i)
 | 
			
		||||
                                        {
 | 
			
		||||
                                            long double dist = distance2(&temp->C[track], &temp->P[j]);
 | 
			
		||||
                                            if (temp->C[track].max_radius < dist)
 | 
			
		||||
                                                temp->C[track].max_radius = dist;
 | 
			
		||||
                                        }
 | 
			
		||||
                                    }
 | 
			
		||||
                                    track++;
 | 
			
		||||
                                }
 | 
			
		||||
                            }
 | 
			
		||||
                        }
 | 
			
		||||
 | 
			
		||||
                        free(nPoints);
 | 
			
		||||
                        free(Sumx);
 | 
			
		||||
                        free(Sumy);
 | 
			
		||||
                    }
 | 
			
		||||
                    temp->count = 0;
 | 
			
		||||
                    FILE *fp;
 | 
			
		||||
                    fp = fopen("kmeans.txt", "a");
 | 
			
		||||
                    // FILE *fp;
 | 
			
		||||
                    // fp = fopen("kmeans.txt", "a");
 | 
			
		||||
 | 
			
		||||
                    for (int i = 0; i < 500; i++)
 | 
			
		||||
                    {
 | 
			
		||||
                        fprintf(fp, "%Lf, %Lf, %d\n", temp->P[i].x, temp->P[i].y, temp->P[i].cluster);
 | 
			
		||||
                    }
 | 
			
		||||
                    fprintf(fp, "\n\n");
 | 
			
		||||
                    // for (int i = 0; i < 500; i++)
 | 
			
		||||
                    // {
 | 
			
		||||
                    //     fprintf(fp, "%Lf, %Lf, %d\n", temp->P[i].x, temp->P[i].y, temp->P[i].cluster);
 | 
			
		||||
                    // }
 | 
			
		||||
                    // fprintf(fp, "\n\n");
 | 
			
		||||
 | 
			
		||||
                    for (int i = 0; i < no_of_clusters; i++)
 | 
			
		||||
                    {
 | 
			
		||||
                        fprintf(fp, "%d : %Lf, %Lf\n", i, Centroids[i].x, Centroids[i].y);
 | 
			
		||||
                    }
 | 
			
		||||
                    // for (int i = 0; i < no_of_clusters; i++)
 | 
			
		||||
                    // {
 | 
			
		||||
                    //     fprintf(fp, "%d : %Lf, %Lf\n", i, Centroids[i].x, Centroids[i].y);
 | 
			
		||||
                    // }
 | 
			
		||||
 | 
			
		||||
                    fprintf(fp, "\n\n");
 | 
			
		||||
                    // fprintf(fp, "\n\n");
 | 
			
		||||
 | 
			
		||||
                    fclose(fp);
 | 
			
		||||
                    // fclose(fp);
 | 
			
		||||
 | 
			
		||||
                    free(Centroids);
 | 
			
		||||
                    free(temp->P);
 | 
			
		||||
                    temp->isIntialized = 1;
 | 
			
		||||
                }
 | 
			
		||||
                return true;
 | 
			
		||||
                return temp->result;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            previous = temp;
 | 
			
		||||
| 
						 | 
				
			
			@ -237,7 +413,9 @@ bool Kmeans2(struct data_frame *df)
 | 
			
		|||
            bring->idcode = to_intconvertor(df->idcode);
 | 
			
		||||
            bring->count = 0;
 | 
			
		||||
            bring->next = NULL;
 | 
			
		||||
            bring->isIntialized = 0;
 | 
			
		||||
            bring->P = NULL;
 | 
			
		||||
            bring->result = true;
 | 
			
		||||
            previous->next = bring;
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -129,13 +129,13 @@ gboolean update_images(gpointer* pars){
 | 
			
		|||
                }
 | 
			
		||||
            }else if(curr_measurement == 3){
 | 
			
		||||
                if(algorithm==0 && dimmension == 0){
 | 
			
		||||
                    if (!attack_detect_vol(df)){
 | 
			
		||||
                    if (!attack_detect_freq(df)){
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_red_image);
 | 
			
		||||
                    }else{
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_green_image);
 | 
			
		||||
                    }
 | 
			
		||||
                }else if (algorithm==0 && dimmension == 1){
 | 
			
		||||
                    if (!attack_detect_freq(df)){
 | 
			
		||||
                    if (!attack_detect_vol(df)){
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_red_image);
 | 
			
		||||
                    }else{
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_green_image);
 | 
			
		||||
| 
						 | 
				
			
			@ -161,19 +161,23 @@ gboolean update_images(gpointer* pars){
 | 
			
		|||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_green_image);
 | 
			
		||||
                    }
 | 
			
		||||
                }else if (algorithm==2 && dimmension == 0){
 | 
			
		||||
                    if(!DTWvolDistance(df)){
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_red_image);
 | 
			
		||||
                    }else{
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_green_image);
 | 
			
		||||
                    }
 | 
			
		||||
                }else if (algorithm==2 && dimmension == 1){
 | 
			
		||||
                    if(!DTWfreqDistance(df)){
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_red_image);
 | 
			
		||||
                    }else{
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_green_image);
 | 
			
		||||
                    }
 | 
			
		||||
                }else if (algorithm==2 && dimmension == 1){
 | 
			
		||||
                    if(!DTWvolDistance(df)){
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_red_image);
 | 
			
		||||
                    }else{
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_green_image);
 | 
			
		||||
                    }
 | 
			
		||||
                }else if (algorithm==2 && dimmension == 2){
 | 
			
		||||
 | 
			
		||||
                    if(!DTWfreqvolDistance(df)){
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_red_image);
 | 
			
		||||
                    }else{
 | 
			
		||||
                        vis_ptr->last_image = osm_gps_map_image_add(parameters->util_map,lat, lon, parameters->g_green_image);
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue