python
This commit is contained in:
parent
9dad2b4885
commit
add08468a5
|
@ -4,8 +4,8 @@
|
||||||
|
|
||||||
import csv
|
import csv
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import random
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from sklearn import preprocessing
|
|
||||||
x=[]
|
x=[]
|
||||||
y=[]
|
y=[]
|
||||||
x1=[]
|
x1=[]
|
||||||
|
@ -17,14 +17,14 @@ with open('kmeans.csv', mode ='r') as file:
|
||||||
for lines in csvFile:
|
for lines in csvFile:
|
||||||
#print(lines)
|
#print(lines)
|
||||||
if(int(lines[2])==0):
|
if(int(lines[2])==0):
|
||||||
x.append(float(lines[0]))
|
x.append(float(lines[0])+random.randrange(0,9,1)*0.01)
|
||||||
y.append(float(lines[1]))
|
y.append(float(lines[1])+random.randrange(0,9,2)*0.01)
|
||||||
elif(int(lines[2])==1):
|
elif(int(lines[2])==1):
|
||||||
x1.append(float(lines[0]))
|
x1.append(float(lines[0])+random.randrange(0,9,3)*0.01)
|
||||||
y1.append(float(lines[1]))
|
y1.append(float(lines[1])+random.randrange(0,9,1)*0.01)
|
||||||
else:
|
else:
|
||||||
x2.append(float(lines[0]))
|
x2.append(float(lines[0])+random.randrange(0,9,2)*0.01)
|
||||||
y2.append(float(lines[1]))
|
y2.append(float(lines[1])+random.randrange(0,9,3)*0.01)
|
||||||
|
|
||||||
x.append(50.284426)
|
x.append(50.284426)
|
||||||
y.append(65451.237705)
|
y.append(65451.237705)
|
||||||
|
@ -33,15 +33,15 @@ y1.append(65476.164948)
|
||||||
x2.append(50.302515)
|
x2.append(50.302515)
|
||||||
y2.append(65464.320755)
|
y2.append(65464.320755)
|
||||||
|
|
||||||
x_array = np.array(x+x1+x2)
|
x_arr = np.array(x)
|
||||||
y_array = np.array(y+y1+y2)
|
y_arr = np.array(y)
|
||||||
# x1_array = np.array(x1)
|
x1_arr = np.array(x1)
|
||||||
# y1_array = np.array(y1)
|
y1_arr = np.array(y1)
|
||||||
# x2_array = np.array(x2)
|
x2_arr = np.array(x2)
|
||||||
# y2_array = np.array(y2)
|
y2_arr = np.array(y2)
|
||||||
|
|
||||||
x_arr = preprocessing.normalize([x_array])
|
# x_arr = preprocessing.normalize([x_array])
|
||||||
y_arr = preprocessing.normalize([y_array])
|
# y_arr = preprocessing.normalize([y_array])
|
||||||
|
|
||||||
# x1_arr = preprocessing.normalize([x1_array])
|
# x1_arr = preprocessing.normalize([x1_array])
|
||||||
# y1_arr = preprocessing.normalize([y1_array])
|
# y1_arr = preprocessing.normalize([y1_array])
|
||||||
|
@ -49,8 +49,12 @@ y_arr = preprocessing.normalize([y_array])
|
||||||
# x2_arr = preprocessing.normalize([x2_array])
|
# x2_arr = preprocessing.normalize([x2_array])
|
||||||
# y2_arr = preprocessing.normalize([y2_array])
|
# y2_arr = preprocessing.normalize([y2_array])
|
||||||
|
|
||||||
plt.scatter(x_arr, y_arr)
|
plt.scatter(x_arr, y_arr,)
|
||||||
# plt.scatter(x1_arr, y1_arr)
|
plt.scatter(x1_arr, y1_arr)
|
||||||
# plt.scatter(x2_arr, y2_arr)
|
plt.scatter(x2_arr, y2_arr)
|
||||||
|
plt.xlabel("Frequency in Hz")
|
||||||
|
plt.ylabel("Voltage in Volts")
|
||||||
|
plt.title("K-means Clustering")
|
||||||
|
plt.legend(["A","B","C"])
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
Loading…
Reference in New Issue