
Computer Architecture Laboratory

Assignment 5

Upgrade the simulator to a discrete event simulator.

Inputs and Outputs

The inputs and outputs stay the same. The inputs are the configuration file, the
path where the statistics file is to be created, and the object file. The output is
the statistics file. Report throughput in terms of instructions per cycle in the
statistics file.

New Source Files

Place the new source files: Element.java, Event.java, EventQueue.java,
ExecutionCompleteEvent.java, MemoryReadEvent.java, MemoryResponseEvent.java,
MemoryWriteEvent.java in the generic package.

Updation of Simulator.java

• Add the following data member to the class: static EventQueue eventQueue;.

• Add the following line to the constructor: eventQueue = new EventQueue();.

• Update the loop in simulate() to look like this:

whi l e (not end o f s imu la t i on)
{

performRW
performMA
performEX
eventQueue . processEvents () ;
performOF
performIF
increment c l o ck by 1

}

• Add this function to the class:

pub l i c s t a t i c EventQueue getEventQueue ()
{

re turn eventQueue ;
}

1

Discrete Event Simulator Model

An event is a tuple of the form: <event time, event type, requesting element,

processing element, payload>. The event queue is a list of events ordered
by time. An event is said to “fire” when the current clock cycle is equal
to the event time. When this happens, the handleEvent() function of the
processing element is invoked. Handling of an event may in turn lead to
more events being generated, for the same clock cycle, or for some future clock
cycle.

Decide which units you wish to work using events, and which directly through
function calls from the main loop. For all units that you believe will recieve
events, make them implement the Element interface. This will then require you
to implement a handleEvent() function for that unit.

You may create more Event classes, or modify the existing ones.

Example

Below is a brief illustration of the Instruction Fetch stage. It is by no means
complete. It is only to give you the basic idea.

pub l i c void performIF ()
{

i f (IF EnableLatch . i s I F e n a b l e ())
{

i f (IF EnableLatch . i s IF busy ())
{

re turn ;
}

Simulator . getEventQueue () . addEvent (
new MemoryReadEvent (

Clock . getCurrentTime () + Conf igurat ion . mainMemoryLatency ,
th i s ,
c on ta in ingProce s so r . getMainMemory () ,
c on ta in ingProce s so r . g e t R e g i s t e r F i l e () . getProgramCounter ())) ;

IF EnableLatch . se t IF busy (t rue) ;
}

}

@Override
pub l i c void handleEvent (Event e) {

i f (IF OF Latch . isOF busy ())
{

e . setEventTime (Clock . getCurrentTime () + 1) ;
S imulator . getEventQueue () . addEvent (e) ;

}
e l s e
{

MemoryResponseEvent event = (MemoryResponseEvent) e ;
IF OF Latch . s e t I n s t r u c t i o n (event . getValue ()) ;

2

IF OF Latch . setOF enable (t rue) ;
IF EnableLatch . se t IF busy (f a l s e) ;

}
}

Below is the code snippet from the MainMemory.java class.

@Override
pub l i c void handleEvent (Event e) {

i f (e . getEventType () == EventType . MemoryRead)
{

MemoryReadEvent event = (MemoryReadEvent) e ;
S imulator . getEventQueue () . addEvent (

new MemoryResponseEvent (
Clock . getCurrentTime () ,
th i s ,
event . getRequest ingElement () ,
getWord (event . getAddressToReadFrom ()))) ;

}
}

Functionalities to be Implemented

• Modeling the latency of the main memory

– This should reflect in both instruction fetches and load/ store oper-
ations

• Modeling the latencies of different functional units: ALU, multiplier, di-
vider, etc.

To Be Submitted

• A zip of the source files. They have to pass the test cases given for the
previous assignment.

• A report that contains a table with

– the number of cycles taken by each benchmark program,

– the throughput in terms of instructions per cycle.

Comment on your observations. Correlate with the nature of the bench-
marks.

3

