
Computer Architecture Laboratory

ToyRISC Specification

1 Specification

1.1 Memory Model

The memory space is of 256kB. Each word is 4 bytes long, and the memory is
word-addressable. That is, a total of 216 words may be stored. These include
the program instructions, the static data, and the stack.

1.2 Register

There are a total of 32 registers: x0 to x31. Each register is 4 bytes wide.

Table 1: Registers in the custom ISA

Register Purpose
x0 Zero Register
x1 Stack Pointer
x2 Frame Pointer

x3 to x30 General purpose
x31 Special behavior, according to particular instruction
PC Program Counter

Encoding

32 registers require 5 bits for encoding. x0 is encoded as 00000, x1 as 00001,
and so on.

1.3 Instruction Formats

Table 2 lists the 3 instruction formats in our custom ISA.

1.3.1 Arithmetic Instructions

Table 3 lists the different arithmetic instructions.

1.3.2 Memory Instructions

Table 4 lists the different memory instructions in our custom ISA.

1

Table 2: Instruction formats in the custom ISA

R3-Type
opcode rs1 rs2 rd unused

5 bits 5 bits 5 bits 5 bits 12 bits

R2I-Type
opcode rs1 rd immediate

5 bits 5 bits 5 bits 17 bits

RI-Type
opcode rd immediate

5 bits 5 bits 22 bits

Table 3: Arithmetic instructions in the custom ISA

Operation Opcode Format Description
add 00000 R3-Type rd = rs1 + rs2

addi 00001 R2I-Type rd = rs1 + imm

sub 00010 R3-Type rd = rs1 - rs2
subi 00011 R2I-Type rd = rs1 - imm
mul 00100 R3-Type rd = rs1 * rs2

muli 00101 R2I-Type rd = rs1 * imm

div 00110 R3-Type rd = rs1 / rs2

divi 00111 R2I-Type rd = rs1 / imm

and 01000 R3-Type rd = rs1 & rs2

andi 01001 R2I-Type rd = rs1 & imm

or 01010 R3-Type rd = rs1 | rs2
ori 01011 R2I-Type rd = rs1 | imm
xor 01100 R3-Type rd = rs1 (xor) rs2
xori 01101 R2I-Type rd = rs1 (xor) imm
slt 01110 R3-Type rd = 1 if rs1 < rs2, 0 otherwise
slti 01111 R2I-Type rd = 1 if rs1 < imm, 0 otherwise
sll 10000 R3-Type rd = rs1 logically left shifted by rs2 bits
slli 10001 R2I-Type rd = rs1 logically left shifted by imm bits
srl 10010 R3-Type rd = rs1 logically right shifted by rs2 bits
srli 10011 R2I-Type rd = rs1 logically right shifted by imm bits
sra 10100 R3-Type rd = rs1 arithmetically right shifted by rs2 bits
srai 10101 R2I-Type rd = rs1 arithmetically right shifted by imm bits

Note: If the result is greater than 32 bits, the higher bits (63 to 32) are stored in x31. In
case of division operation, the remainder is stored in x31. In case of shift operations, the
bits shifted out are stored in x31.
Note: imm values are placed in sourceOperand2 in ParsedProgram

1.3.3 Control Flow Instructions

Table 5 lists the different control instructions in our custom ISA.
Control flow instructions are slightly more involved. The assembly notation,

and the corresponding binary code have a subtle but important difference.

2

Table 4: Memory instructions in the custom ISA

Operation Opcode Format Description
load 10110 R2I-Type rd = word at [rs1 + imm]
store 10111 R2I-Type word at [rd + imm] = rs1

Note: imm values can be specified as label or absolute value
Note: imm values are placed in sourceOperand2 in ParsedProgram

Table 5: Control Flow instructions in the custom ISA

Operation Opcode Format Description
jmp 11000 RI-Type PC = PC + rd + imm

beq 11001 R2I-Type If rs1 = rd, PC = PC + imm

bne 11010 R2I-Type If rs1 6= rd, PC = PC + imm

blt 11011 R2I-Type If rs1 < rd, PC = PC + imm

bgt 11100 R2I-Type If rs1 > rd, PC = PC + imm

Note: for jmp, while writing the assembly program, we follow the convention
that either rd or imm is used. In machine code, the unused one is set to zero.
In ParsedProgram, the used one is placed in the destinationOperand field of
the Instruction class.
Note: in ParsedProgram, for conditional branches, the two registers that are
compared are placed in sourceOperand1 and sourceOperand2. The imm value
is placed in destinationOperand.

1.3.4 Special Instruction: end

The end instruction is used to indicate the end of the program.

Table 6: End instruction

Assembly Notation
Operation Description

end terminate execution
Binary Code

Operation Opcode Format Description
end 11101 RI-Type rd and imm are unused

1.4 Address Space Layout

Addresses 0 to Nd correspond to the static data. Addresses Nd to Nt correspond
to the text segment or the code segment. These lines contain the instructions of
the program – Nt−Nd instructions, one instruction per line. The stack grows in
the reverse direction – the top of the stack has a lower address than the bottom.
The stack begin growing from address 216 − 1 onwards.

3

Table 7: Address space layout

address 0

static data segment
1
.
.

Nd

Nd + 1

text / code segment
.
.
.

Nt

local variables

x1: stack pointer

x2: frame pointer
old frame pointer

return address

function arguments

caller saved registers

local variables

. .

. .
216 − 2
216 − 1

1.5 Function Calling Convention

All function arguments are passed through the stack. Return values are also
passed through the stack.

Caller Behavior

• The caller function first pushes onto the stack all registers whose values it
wishes to preserve for use after the function call.

Pushing a value means decrementing the stack pointer by one, and then
performing a store to the address pointed to by the stack pointer. Simi-
larly, popping a value means performing a load from the address pointed

4

to by the stack pointer, and then incrementing the stack pointer by one.
Note that the typical behavior is explained – you may optimize the number
of additions and subtractions.

• It then pushes all the arguments onto the stack.

• It then pushes the return address (address of the instruction following the
jump to the function).

• It sets the stack pointer x1 to point to the top of the stack.

• It then performs the jump.

• Once the called function returns, it finds the return values in the addresses
starting from the stack pointer x1 (address smaller than x1).

• It then pops out all the register values it had earlier preserved.

Callee Behavior

• The callee first pushes x2 onto the stack.

• It then updates the value of the frame pointer: x2 takes the value of x1
subtracted by 1.

• It then performs its work. To access the arguments, it does so relatively
based on the value of the frame pointer x2. As part of its work, it may per-
form further memory operations in the stack space, but only in addresses
strictly lesser than the frame pointer x2.

• Once it is done with its work, it copies x2 to x1.

• It pops out the earlier stored value of x2 into x2.

• It then pushes all the values to be returned onto the stack.

• It then jumps to the return address, which is accessed using the stack
pointer x1.

Note

Be very meticulous in updating the value of the frame pointer and the stack
pointer.

2 Example Assembly Programs

2.1 Adding Two Numbers

The syntax will be described using the following example program, written in
our custom ISA, to add two numbers ‘123’ and ‘234’ and place the result in a
certain register location:

5

. data
a :

123
234

. t ex t
main :

load %x0 , $a , %x4
addi %x0 , 1 , %x3
load %x3 , $a , %x5
add %x4 , %x5 , %x6
end

• “.data” is a directive used to signify the beginning of the global data
segment.

• “a” and “main” are descriptive names for memory addresses. Here a

refers to memory address 0, main refers to memory address 2. They are
not essential – their only purpose is to make writing, understanding and
reasoning about assembly programs easier.

• Global data are simply listed one after the other (after the .data direc-
tive). Value 123 is stored at memory address 0, value 234 at address
1.

• “.text” is a directive used to signify the beginning of the text or the code
segment.

• “main” is a special name. It indicates where the execution will com-
mence from (program counter will be set to this value when the program
is loaded).

• Destination operands are always written last. load %x0, $a, %x4 de-
notes a load operation that writes the read value to register x4.

• In instructions, named addresses are prefixed by a “$”. load $a denotes
a load operation that reads from memory address 0 (recall that a refers
to address 0).

• Registers are prefixed by a “%”. load %x0, $a, %x4 denotes a load op-
eration that writes the read value to register x4.

• Immediate values are written simply.

• end is a special instruction type used to denote the end of the program.

2.2 Linear Search

Consider the following program to search for number in an array a of size n. If
found, ‘1’ is written to x10. Else, ‘-1’ is written.

6

. data
a :

5
6
30
24
10
7

n :
6

number :
88
. t ex t

main :
add %x0 , %x0 , %x3
load %x0 , $n , %x6
load %x0 , $number , %x5

loop :
load %x3 , $a , %x4
beq %x4 , %x5 , s u c c e s s
addi %x3 , 1 , %x3
bgt %x3 , %x6 , endl
jmp loop

s u c c e s s :
addi %x0 , 1 , %x10
end

endl :
sub i %x0 , 1 , %x10
end

7

	Specification
	Memory Model
	Register
	Instruction Formats
	Arithmetic Instructions
	Memory Instructions
	Control Flow Instructions
	Special Instruction: end

	Address Space Layout
	Function Calling Convention

	Example Assembly Programs
	Adding Two Numbers
	Linear Search

