
Computer Architecture Laboratory

Assignment 6

Add caches to the simulated memory system.

• Add one cache between the IF stage and the main memory. Let us call
this the “level 1 instruction cache” or the L1i-cache.

• Add one cache between the MA stage and the main memory. Let us call
this the “level 1 data cache” or the L1d-cache.

The configurations of the caches are as follows:

Cache size 16B 128B 512B 1kB
Latency 1 cycle 2 cycles 3 cycles 4 cycles
Line Size 4B

Associativity 2
Write Policy Write Through

Perform the following analyses:

1. First fix the size of the L1d-cache at 1kB. Vary the size of the L1i-cache

from 16B to 1kB (remember to change latency accordingly), and study the
performance (instructions per cycle). Plot your results for the different
benchmarks.

2. Now fix the size of the L1i-cache at 1 kB. Vary the size of the L1d-cache

from 16B to 1kB, and plot your results for the different benchmarks.

3. In your report, correlate the nature of the benchmark to the observed plot.

4. Create a toy-benchmark that shows significant performance improvement
when the L1i-cache is increased from 16B to 128B. Assume favorable L1d-
cache size.

5. Create a toy-benchmark that shows significant performance improvement
when the L1d-cache is increased from 16B to 128B. Assume favorable
L1i-cache size.

Note: Implement a single “Cache” class in the processor/memorysystem

package. The L1i-cache and the L1d-cache must be objects of this class.

1



Tips

• Implement a separate “CacheLine” class. It will have, among other fields,
an integer array field named data, and an integer field named tag.

• In the Cache class, instantiate an array of CacheLine’s of size equal to the
number of lines required.

• In the Cache class, have a function: cacheRead(int address). This
function is called when the pipeline makes a read (load) request. This
function takes an address as an argument. If the line corresponding to
this address is present in the cache, it returns the corresponding 4B value
to the pipeline. If the line corresponding to this address is not present, it
calls the handleCacheMiss() function.

• In the Cache class, have a function: cacheWrite(int address, int value).
This function is called when the pipeline makes a write (store) request.
This function takes an address and a value as arguments. If the line corre-
sponding to this address is present in the cache, the value is written to the
line, the line written to the main memory, and (in parallel) the pipeline is
informed that the store has completed. If the line corresponding to this
address is not present, it calls the handleCacheMiss() function.

• In the Cache class, have a function: handleCacheMiss(int address).
This function requests the main memory for the given line.

• In the Cache class, have a function: handleResponse(). This function
handles the response from the lower level in the memory system (in our
case, the main memory). The response is a cache line. This line has to be
placed in the appropriate position in the cache. If there is a read request
waiting for this line, the pipeline must be given the value. If there is a
write request waiting, the value is written to the line, the line written to
the main memory, and (in parallel) the pipeline is informed that the store
has completed.

• Note: the function descriptions given above are merely to get you started.
You will have to modify the function prototypes as you see fit.

• Don’t forget: the hashes still have to match!

2


