forked from 170010011/fr
9551 lines
234 KiB
Python
9551 lines
234 KiB
Python
# Docstrings for generated ufuncs
|
|
#
|
|
# The syntax is designed to look like the function add_newdoc is being
|
|
# called from numpy.lib, but in this file add_newdoc puts the
|
|
# docstrings in a dictionary. This dictionary is used in
|
|
# _generate_pyx.py to generate the docstrings for the ufuncs in
|
|
# scipy.special at the C level when the ufuncs are created at compile
|
|
# time.
|
|
from typing import Dict
|
|
|
|
docdict: Dict[str, str] = {}
|
|
|
|
|
|
def get(name):
|
|
return docdict.get(name)
|
|
|
|
|
|
def add_newdoc(name, doc):
|
|
docdict[name] = doc
|
|
|
|
|
|
add_newdoc("_sf_error_test_function",
|
|
"""
|
|
Private function; do not use.
|
|
""")
|
|
|
|
add_newdoc("sph_harm",
|
|
r"""
|
|
sph_harm(m, n, theta, phi)
|
|
|
|
Compute spherical harmonics.
|
|
|
|
The spherical harmonics are defined as
|
|
|
|
.. math::
|
|
|
|
Y^m_n(\theta,\phi) = \sqrt{\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!}}
|
|
e^{i m \theta} P^m_n(\cos(\phi))
|
|
|
|
where :math:`P_n^m` are the associated Legendre functions; see `lpmv`.
|
|
|
|
Parameters
|
|
----------
|
|
m : array_like
|
|
Order of the harmonic (int); must have ``|m| <= n``.
|
|
n : array_like
|
|
Degree of the harmonic (int); must have ``n >= 0``. This is
|
|
often denoted by ``l`` (lower case L) in descriptions of
|
|
spherical harmonics.
|
|
theta : array_like
|
|
Azimuthal (longitudinal) coordinate; must be in ``[0, 2*pi]``.
|
|
phi : array_like
|
|
Polar (colatitudinal) coordinate; must be in ``[0, pi]``.
|
|
|
|
Returns
|
|
-------
|
|
y_mn : complex float
|
|
The harmonic :math:`Y^m_n` sampled at ``theta`` and ``phi``.
|
|
|
|
Notes
|
|
-----
|
|
There are different conventions for the meanings of the input
|
|
arguments ``theta`` and ``phi``. In SciPy ``theta`` is the
|
|
azimuthal angle and ``phi`` is the polar angle. It is common to
|
|
see the opposite convention, that is, ``theta`` as the polar angle
|
|
and ``phi`` as the azimuthal angle.
|
|
|
|
Note that SciPy's spherical harmonics include the Condon-Shortley
|
|
phase [2]_ because it is part of `lpmv`.
|
|
|
|
With SciPy's conventions, the first several spherical harmonics
|
|
are
|
|
|
|
.. math::
|
|
|
|
Y_0^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{1}{\pi}} \\
|
|
Y_1^{-1}(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{2\pi}}
|
|
e^{-i\theta} \sin(\phi) \\
|
|
Y_1^0(\theta, \phi) &= \frac{1}{2} \sqrt{\frac{3}{\pi}}
|
|
\cos(\phi) \\
|
|
Y_1^1(\theta, \phi) &= -\frac{1}{2} \sqrt{\frac{3}{2\pi}}
|
|
e^{i\theta} \sin(\phi).
|
|
|
|
References
|
|
----------
|
|
.. [1] Digital Library of Mathematical Functions, 14.30.
|
|
https://dlmf.nist.gov/14.30
|
|
.. [2] https://en.wikipedia.org/wiki/Spherical_harmonics#Condon.E2.80.93Shortley_phase
|
|
""")
|
|
|
|
add_newdoc("_ellip_harm",
|
|
"""
|
|
Internal function, use `ellip_harm` instead.
|
|
""")
|
|
|
|
add_newdoc("_ellip_norm",
|
|
"""
|
|
Internal function, use `ellip_norm` instead.
|
|
""")
|
|
|
|
add_newdoc("_lambertw",
|
|
"""
|
|
Internal function, use `lambertw` instead.
|
|
""")
|
|
|
|
add_newdoc("voigt_profile",
|
|
r"""
|
|
voigt_profile(x, sigma, gamma, out=None)
|
|
|
|
Voigt profile.
|
|
|
|
The Voigt profile is a convolution of a 1-D Normal distribution with
|
|
standard deviation ``sigma`` and a 1-D Cauchy distribution with half-width at
|
|
half-maximum ``gamma``.
|
|
|
|
If ``sigma = 0``, PDF of Cauchy distribution is returned.
|
|
Conversely, if ``gamma = 0``, PDF of Normal distribution is returned.
|
|
If ``sigma = gamma = 0``, the return value is ``Inf`` for ``x = 0``, and ``0`` for all other ``x``.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument
|
|
sigma : array_like
|
|
The standard deviation of the Normal distribution part
|
|
gamma : array_like
|
|
The half-width at half-maximum of the Cauchy distribution part
|
|
out : ndarray, optional
|
|
Optional output array for the function values
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
The Voigt profile at the given arguments
|
|
|
|
Notes
|
|
-----
|
|
It can be expressed in terms of Faddeeva function
|
|
|
|
.. math:: V(x; \sigma, \gamma) = \frac{Re[w(z)]}{\sigma\sqrt{2\pi}},
|
|
.. math:: z = \frac{x + i\gamma}{\sqrt{2}\sigma}
|
|
|
|
where :math:`w(z)` is the Faddeeva function.
|
|
|
|
See Also
|
|
--------
|
|
wofz : Faddeeva function
|
|
|
|
References
|
|
----------
|
|
.. [1] https://en.wikipedia.org/wiki/Voigt_profile
|
|
|
|
""")
|
|
|
|
add_newdoc("wrightomega",
|
|
r"""
|
|
wrightomega(z, out=None)
|
|
|
|
Wright Omega function.
|
|
|
|
Defined as the solution to
|
|
|
|
.. math::
|
|
|
|
\omega + \log(\omega) = z
|
|
|
|
where :math:`\log` is the principal branch of the complex logarithm.
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Points at which to evaluate the Wright Omega function
|
|
|
|
Returns
|
|
-------
|
|
omega : ndarray
|
|
Values of the Wright Omega function
|
|
|
|
Notes
|
|
-----
|
|
.. versionadded:: 0.19.0
|
|
|
|
The function can also be defined as
|
|
|
|
.. math::
|
|
|
|
\omega(z) = W_{K(z)}(e^z)
|
|
|
|
where :math:`K(z) = \lceil (\Im(z) - \pi)/(2\pi) \rceil` is the
|
|
unwinding number and :math:`W` is the Lambert W function.
|
|
|
|
The implementation here is taken from [1]_.
|
|
|
|
See Also
|
|
--------
|
|
lambertw : The Lambert W function
|
|
|
|
References
|
|
----------
|
|
.. [1] Lawrence, Corless, and Jeffrey, "Algorithm 917: Complex
|
|
Double-Precision Evaluation of the Wright :math:`\omega`
|
|
Function." ACM Transactions on Mathematical Software,
|
|
2012. :doi:`10.1145/2168773.2168779`.
|
|
|
|
""")
|
|
|
|
|
|
add_newdoc("agm",
|
|
"""
|
|
agm(a, b)
|
|
|
|
Compute the arithmetic-geometric mean of `a` and `b`.
|
|
|
|
Start with a_0 = a and b_0 = b and iteratively compute::
|
|
|
|
a_{n+1} = (a_n + b_n)/2
|
|
b_{n+1} = sqrt(a_n*b_n)
|
|
|
|
a_n and b_n converge to the same limit as n increases; their common
|
|
limit is agm(a, b).
|
|
|
|
Parameters
|
|
----------
|
|
a, b : array_like
|
|
Real values only. If the values are both negative, the result
|
|
is negative. If one value is negative and the other is positive,
|
|
`nan` is returned.
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
The arithmetic-geometric mean of `a` and `b`.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import agm
|
|
>>> a, b = 24.0, 6.0
|
|
>>> agm(a, b)
|
|
13.458171481725614
|
|
|
|
Compare that result to the iteration:
|
|
|
|
>>> while a != b:
|
|
... a, b = (a + b)/2, np.sqrt(a*b)
|
|
... print("a = %19.16f b=%19.16f" % (a, b))
|
|
...
|
|
a = 15.0000000000000000 b=12.0000000000000000
|
|
a = 13.5000000000000000 b=13.4164078649987388
|
|
a = 13.4582039324993694 b=13.4581390309909850
|
|
a = 13.4581714817451772 b=13.4581714817060547
|
|
a = 13.4581714817256159 b=13.4581714817256159
|
|
|
|
When array-like arguments are given, broadcasting applies:
|
|
|
|
>>> a = np.array([[1.5], [3], [6]]) # a has shape (3, 1).
|
|
>>> b = np.array([6, 12, 24, 48]) # b has shape (4,).
|
|
>>> agm(a, b)
|
|
array([[ 3.36454287, 5.42363427, 9.05798751, 15.53650756],
|
|
[ 4.37037309, 6.72908574, 10.84726853, 18.11597502],
|
|
[ 6. , 8.74074619, 13.45817148, 21.69453707]])
|
|
""")
|
|
|
|
add_newdoc("airy",
|
|
r"""
|
|
airy(z)
|
|
|
|
Airy functions and their derivatives.
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Real or complex argument.
|
|
|
|
Returns
|
|
-------
|
|
Ai, Aip, Bi, Bip : ndarrays
|
|
Airy functions Ai and Bi, and their derivatives Aip and Bip.
|
|
|
|
Notes
|
|
-----
|
|
The Airy functions Ai and Bi are two independent solutions of
|
|
|
|
.. math:: y''(x) = x y(x).
|
|
|
|
For real `z` in [-10, 10], the computation is carried out by calling
|
|
the Cephes [1]_ `airy` routine, which uses power series summation
|
|
for small `z` and rational minimax approximations for large `z`.
|
|
|
|
Outside this range, the AMOS [2]_ `zairy` and `zbiry` routines are
|
|
employed. They are computed using power series for :math:`|z| < 1` and
|
|
the following relations to modified Bessel functions for larger `z`
|
|
(where :math:`t \equiv 2 z^{3/2}/3`):
|
|
|
|
.. math::
|
|
|
|
Ai(z) = \frac{1}{\pi \sqrt{3}} K_{1/3}(t)
|
|
|
|
Ai'(z) = -\frac{z}{\pi \sqrt{3}} K_{2/3}(t)
|
|
|
|
Bi(z) = \sqrt{\frac{z}{3}} \left(I_{-1/3}(t) + I_{1/3}(t) \right)
|
|
|
|
Bi'(z) = \frac{z}{\sqrt{3}} \left(I_{-2/3}(t) + I_{2/3}(t)\right)
|
|
|
|
See also
|
|
--------
|
|
airye : exponentially scaled Airy functions.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
.. [2] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
|
|
Examples
|
|
--------
|
|
Compute the Airy functions on the interval [-15, 5].
|
|
|
|
>>> from scipy import special
|
|
>>> x = np.linspace(-15, 5, 201)
|
|
>>> ai, aip, bi, bip = special.airy(x)
|
|
|
|
Plot Ai(x) and Bi(x).
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> plt.plot(x, ai, 'r', label='Ai(x)')
|
|
>>> plt.plot(x, bi, 'b--', label='Bi(x)')
|
|
>>> plt.ylim(-0.5, 1.0)
|
|
>>> plt.grid()
|
|
>>> plt.legend(loc='upper left')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("airye",
|
|
"""
|
|
airye(z)
|
|
|
|
Exponentially scaled Airy functions and their derivatives.
|
|
|
|
Scaling::
|
|
|
|
eAi = Ai * exp(2.0/3.0*z*sqrt(z))
|
|
eAip = Aip * exp(2.0/3.0*z*sqrt(z))
|
|
eBi = Bi * exp(-abs(2.0/3.0*(z*sqrt(z)).real))
|
|
eBip = Bip * exp(-abs(2.0/3.0*(z*sqrt(z)).real))
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Real or complex argument.
|
|
|
|
Returns
|
|
-------
|
|
eAi, eAip, eBi, eBip : array_like
|
|
Exponentially scaled Airy functions eAi and eBi, and their derivatives
|
|
eAip and eBip
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the AMOS [1]_ routines `zairy` and `zbiry`.
|
|
|
|
See also
|
|
--------
|
|
airy
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
|
|
Examples
|
|
--------
|
|
We can compute exponentially scaled Airy functions and their derivatives:
|
|
|
|
>>> from scipy.special import airye
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> z = np.linspace(0, 50, 500)
|
|
>>> eAi, eAip, eBi, eBip = airye(z)
|
|
>>> f, ax = plt.subplots(2, 1, sharex=True)
|
|
>>> for ind, data in enumerate([[eAi, eAip, ["eAi", "eAip"]],
|
|
... [eBi, eBip, ["eBi", "eBip"]]]):
|
|
... ax[ind].plot(z, data[0], "-r", z, data[1], "-b")
|
|
... ax[ind].legend(data[2])
|
|
... ax[ind].grid(True)
|
|
>>> plt.show()
|
|
|
|
We can compute these using usual non-scaled Airy functions by:
|
|
|
|
>>> from scipy.special import airy
|
|
>>> Ai, Aip, Bi, Bip = airy(z)
|
|
>>> np.allclose(eAi, Ai * np.exp(2.0 / 3.0 * z * np.sqrt(z)))
|
|
True
|
|
>>> np.allclose(eAip, Aip * np.exp(2.0 / 3.0 * z * np.sqrt(z)))
|
|
True
|
|
>>> np.allclose(eBi, Bi * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z)))))
|
|
True
|
|
>>> np.allclose(eBip, Bip * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z)))))
|
|
True
|
|
|
|
Comparing non-scaled and exponentially scaled ones, the usual non-scaled
|
|
function quickly underflows for large values, whereas the exponentially
|
|
scaled function does not.
|
|
|
|
>>> airy(200)
|
|
(0.0, 0.0, nan, nan)
|
|
>>> airye(200)
|
|
(0.07501041684381093, -1.0609012305109042, 0.15003188417418148, 2.1215836725571093)
|
|
|
|
""")
|
|
|
|
add_newdoc("bdtr",
|
|
r"""
|
|
bdtr(k, n, p)
|
|
|
|
Binomial distribution cumulative distribution function.
|
|
|
|
Sum of the terms 0 through `floor(k)` of the Binomial probability density.
|
|
|
|
.. math::
|
|
\mathrm{bdtr}(k, n, p) = \sum_{j=0}^{\lfloor k \rfloor} {{n}\choose{j}} p^j (1-p)^{n-j}
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
Number of successes (double), rounded down to the nearest integer.
|
|
n : array_like
|
|
Number of events (int).
|
|
p : array_like
|
|
Probability of success in a single event (float).
|
|
|
|
Returns
|
|
-------
|
|
y : ndarray
|
|
Probability of `floor(k)` or fewer successes in `n` independent events with
|
|
success probabilities of `p`.
|
|
|
|
Notes
|
|
-----
|
|
The terms are not summed directly; instead the regularized incomplete beta
|
|
function is employed, according to the formula,
|
|
|
|
.. math::
|
|
\mathrm{bdtr}(k, n, p) = I_{1 - p}(n - \lfloor k \rfloor, \lfloor k \rfloor + 1).
|
|
|
|
Wrapper for the Cephes [1]_ routine `bdtr`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("bdtrc",
|
|
r"""
|
|
bdtrc(k, n, p)
|
|
|
|
Binomial distribution survival function.
|
|
|
|
Sum of the terms `floor(k) + 1` through `n` of the binomial probability
|
|
density,
|
|
|
|
.. math::
|
|
\mathrm{bdtrc}(k, n, p) = \sum_{j=\lfloor k \rfloor +1}^n {{n}\choose{j}} p^j (1-p)^{n-j}
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
Number of successes (double), rounded down to nearest integer.
|
|
n : array_like
|
|
Number of events (int)
|
|
p : array_like
|
|
Probability of success in a single event.
|
|
|
|
Returns
|
|
-------
|
|
y : ndarray
|
|
Probability of `floor(k) + 1` or more successes in `n` independent
|
|
events with success probabilities of `p`.
|
|
|
|
See also
|
|
--------
|
|
bdtr
|
|
betainc
|
|
|
|
Notes
|
|
-----
|
|
The terms are not summed directly; instead the regularized incomplete beta
|
|
function is employed, according to the formula,
|
|
|
|
.. math::
|
|
\mathrm{bdtrc}(k, n, p) = I_{p}(\lfloor k \rfloor + 1, n - \lfloor k \rfloor).
|
|
|
|
Wrapper for the Cephes [1]_ routine `bdtrc`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("bdtri",
|
|
r"""
|
|
bdtri(k, n, y)
|
|
|
|
Inverse function to `bdtr` with respect to `p`.
|
|
|
|
Finds the event probability `p` such that the sum of the terms 0 through
|
|
`k` of the binomial probability density is equal to the given cumulative
|
|
probability `y`.
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
Number of successes (float), rounded down to the nearest integer.
|
|
n : array_like
|
|
Number of events (float)
|
|
y : array_like
|
|
Cumulative probability (probability of `k` or fewer successes in `n`
|
|
events).
|
|
|
|
Returns
|
|
-------
|
|
p : ndarray
|
|
The event probability such that `bdtr(\lfloor k \rfloor, n, p) = y`.
|
|
|
|
See also
|
|
--------
|
|
bdtr
|
|
betaincinv
|
|
|
|
Notes
|
|
-----
|
|
The computation is carried out using the inverse beta integral function
|
|
and the relation,::
|
|
|
|
1 - p = betaincinv(n - k, k + 1, y).
|
|
|
|
Wrapper for the Cephes [1]_ routine `bdtri`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("bdtrik",
|
|
"""
|
|
bdtrik(y, n, p)
|
|
|
|
Inverse function to `bdtr` with respect to `k`.
|
|
|
|
Finds the number of successes `k` such that the sum of the terms 0 through
|
|
`k` of the Binomial probability density for `n` events with probability
|
|
`p` is equal to the given cumulative probability `y`.
|
|
|
|
Parameters
|
|
----------
|
|
y : array_like
|
|
Cumulative probability (probability of `k` or fewer successes in `n`
|
|
events).
|
|
n : array_like
|
|
Number of events (float).
|
|
p : array_like
|
|
Success probability (float).
|
|
|
|
Returns
|
|
-------
|
|
k : ndarray
|
|
The number of successes `k` such that `bdtr(k, n, p) = y`.
|
|
|
|
See also
|
|
--------
|
|
bdtr
|
|
|
|
Notes
|
|
-----
|
|
Formula 26.5.24 of [1]_ is used to reduce the binomial distribution to the
|
|
cumulative incomplete beta distribution.
|
|
|
|
Computation of `k` involves a search for a value that produces the desired
|
|
value of `y`. The search relies on the monotonicity of `y` with `k`.
|
|
|
|
Wrapper for the CDFLIB [2]_ Fortran routine `cdfbin`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
.. [2] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
|
|
""")
|
|
|
|
add_newdoc("bdtrin",
|
|
"""
|
|
bdtrin(k, y, p)
|
|
|
|
Inverse function to `bdtr` with respect to `n`.
|
|
|
|
Finds the number of events `n` such that the sum of the terms 0 through
|
|
`k` of the Binomial probability density for events with probability `p` is
|
|
equal to the given cumulative probability `y`.
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
Number of successes (float).
|
|
y : array_like
|
|
Cumulative probability (probability of `k` or fewer successes in `n`
|
|
events).
|
|
p : array_like
|
|
Success probability (float).
|
|
|
|
Returns
|
|
-------
|
|
n : ndarray
|
|
The number of events `n` such that `bdtr(k, n, p) = y`.
|
|
|
|
See also
|
|
--------
|
|
bdtr
|
|
|
|
Notes
|
|
-----
|
|
Formula 26.5.24 of [1]_ is used to reduce the binomial distribution to the
|
|
cumulative incomplete beta distribution.
|
|
|
|
Computation of `n` involves a search for a value that produces the desired
|
|
value of `y`. The search relies on the monotonicity of `y` with `n`.
|
|
|
|
Wrapper for the CDFLIB [2]_ Fortran routine `cdfbin`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
.. [2] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
""")
|
|
|
|
add_newdoc("binom",
|
|
"""
|
|
binom(n, k)
|
|
|
|
Binomial coefficient
|
|
|
|
See Also
|
|
--------
|
|
comb : The number of combinations of N things taken k at a time.
|
|
|
|
""")
|
|
|
|
add_newdoc("btdtria",
|
|
r"""
|
|
btdtria(p, b, x)
|
|
|
|
Inverse of `btdtr` with respect to `a`.
|
|
|
|
This is the inverse of the beta cumulative distribution function, `btdtr`,
|
|
considered as a function of `a`, returning the value of `a` for which
|
|
`btdtr(a, b, x) = p`, or
|
|
|
|
.. math::
|
|
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
Cumulative probability, in [0, 1].
|
|
b : array_like
|
|
Shape parameter (`b` > 0).
|
|
x : array_like
|
|
The quantile, in [0, 1].
|
|
|
|
Returns
|
|
-------
|
|
a : ndarray
|
|
The value of the shape parameter `a` such that `btdtr(a, b, x) = p`.
|
|
|
|
See Also
|
|
--------
|
|
btdtr : Cumulative distribution function of the beta distribution.
|
|
btdtri : Inverse with respect to `x`.
|
|
btdtrib : Inverse with respect to `b`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfbet`.
|
|
|
|
The cumulative distribution function `p` is computed using a routine by
|
|
DiDinato and Morris [2]_. Computation of `a` involves a search for a value
|
|
that produces the desired value of `p`. The search relies on the
|
|
monotonicity of `p` with `a`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
|
Algorithm 708: Significant Digit Computation of the Incomplete Beta
|
|
Function Ratios. ACM Trans. Math. Softw. 18 (1993), 360-373.
|
|
|
|
""")
|
|
|
|
add_newdoc("btdtrib",
|
|
r"""
|
|
btdtria(a, p, x)
|
|
|
|
Inverse of `btdtr` with respect to `b`.
|
|
|
|
This is the inverse of the beta cumulative distribution function, `btdtr`,
|
|
considered as a function of `b`, returning the value of `b` for which
|
|
`btdtr(a, b, x) = p`, or
|
|
|
|
.. math::
|
|
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Shape parameter (`a` > 0).
|
|
p : array_like
|
|
Cumulative probability, in [0, 1].
|
|
x : array_like
|
|
The quantile, in [0, 1].
|
|
|
|
Returns
|
|
-------
|
|
b : ndarray
|
|
The value of the shape parameter `b` such that `btdtr(a, b, x) = p`.
|
|
|
|
See Also
|
|
--------
|
|
btdtr : Cumulative distribution function of the beta distribution.
|
|
btdtri : Inverse with respect to `x`.
|
|
btdtria : Inverse with respect to `a`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfbet`.
|
|
|
|
The cumulative distribution function `p` is computed using a routine by
|
|
DiDinato and Morris [2]_. Computation of `b` involves a search for a value
|
|
that produces the desired value of `p`. The search relies on the
|
|
monotonicity of `p` with `b`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
|
Algorithm 708: Significant Digit Computation of the Incomplete Beta
|
|
Function Ratios. ACM Trans. Math. Softw. 18 (1993), 360-373.
|
|
|
|
|
|
""")
|
|
|
|
add_newdoc("bei",
|
|
r"""
|
|
bei(x, out=None)
|
|
|
|
Kelvin function bei.
|
|
|
|
Defined as
|
|
|
|
.. math::
|
|
|
|
\mathrm{bei}(x) = \Im[J_0(x e^{3 \pi i / 4})]
|
|
|
|
where :math:`J_0` is the Bessel function of the first kind of
|
|
order zero (see `jv`). See [dlmf]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the Kelvin function.
|
|
|
|
See Also
|
|
--------
|
|
ber : the corresponding real part
|
|
beip : the derivative of bei
|
|
jv : Bessel function of the first kind
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
|
https://dlmf.nist.gov/10.61
|
|
|
|
Examples
|
|
--------
|
|
It can be expressed using Bessel functions.
|
|
|
|
>>> import scipy.special as sc
|
|
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
|
|
>>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).imag
|
|
array([0.24956604, 0.97229163, 1.93758679, 2.29269032])
|
|
>>> sc.bei(x)
|
|
array([0.24956604, 0.97229163, 1.93758679, 2.29269032])
|
|
|
|
""")
|
|
|
|
add_newdoc("beip",
|
|
r"""
|
|
beip(x, out=None)
|
|
|
|
Derivative of the Kelvin function bei.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
The values of the derivative of bei.
|
|
|
|
See Also
|
|
--------
|
|
bei
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
|
https://dlmf.nist.gov/10#PT5
|
|
|
|
""")
|
|
|
|
add_newdoc("ber",
|
|
r"""
|
|
ber(x, out=None)
|
|
|
|
Kelvin function ber.
|
|
|
|
Defined as
|
|
|
|
.. math::
|
|
|
|
\mathrm{ber}(x) = \Re[J_0(x e^{3 \pi i / 4})]
|
|
|
|
where :math:`J_0` is the Bessel function of the first kind of
|
|
order zero (see `jv`). See [dlmf]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the Kelvin function.
|
|
|
|
See Also
|
|
--------
|
|
bei : the corresponding real part
|
|
berp : the derivative of bei
|
|
jv : Bessel function of the first kind
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
|
https://dlmf.nist.gov/10.61
|
|
|
|
Examples
|
|
--------
|
|
It can be expressed using Bessel functions.
|
|
|
|
>>> import scipy.special as sc
|
|
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
|
|
>>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).real
|
|
array([ 0.98438178, 0.75173418, -0.22138025, -2.56341656])
|
|
>>> sc.ber(x)
|
|
array([ 0.98438178, 0.75173418, -0.22138025, -2.56341656])
|
|
|
|
""")
|
|
|
|
add_newdoc("berp",
|
|
r"""
|
|
berp(x, out=None)
|
|
|
|
Derivative of the Kelvin function ber.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
The values of the derivative of ber.
|
|
|
|
See Also
|
|
--------
|
|
ber
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
|
https://dlmf.nist.gov/10#PT5
|
|
|
|
""")
|
|
|
|
add_newdoc("besselpoly",
|
|
r"""
|
|
besselpoly(a, lmb, nu, out=None)
|
|
|
|
Weighted integral of the Bessel function of the first kind.
|
|
|
|
Computes
|
|
|
|
.. math::
|
|
|
|
\int_0^1 x^\lambda J_\nu(2 a x) \, dx
|
|
|
|
where :math:`J_\nu` is a Bessel function and :math:`\lambda=lmb`,
|
|
:math:`\nu=nu`.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Scale factor inside the Bessel function.
|
|
lmb : array_like
|
|
Power of `x`
|
|
nu : array_like
|
|
Order of the Bessel function.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Value of the integral.
|
|
|
|
""")
|
|
|
|
add_newdoc("beta",
|
|
r"""
|
|
beta(a, b, out=None)
|
|
|
|
Beta function.
|
|
|
|
This function is defined in [1]_ as
|
|
|
|
.. math::
|
|
|
|
B(a, b) = \int_0^1 t^{a-1}(1-t)^{b-1}dt
|
|
= \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},
|
|
|
|
where :math:`\Gamma` is the gamma function.
|
|
|
|
Parameters
|
|
----------
|
|
a, b : array-like
|
|
Real-valued arguments
|
|
out : ndarray, optional
|
|
Optional output array for the function result
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Value of the beta function
|
|
|
|
See Also
|
|
--------
|
|
gamma : the gamma function
|
|
betainc : the incomplete beta function
|
|
betaln : the natural logarithm of the absolute
|
|
value of the beta function
|
|
|
|
References
|
|
----------
|
|
.. [1] NIST Digital Library of Mathematical Functions,
|
|
Eq. 5.12.1. https://dlmf.nist.gov/5.12
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
The beta function relates to the gamma function by the
|
|
definition given above:
|
|
|
|
>>> sc.beta(2, 3)
|
|
0.08333333333333333
|
|
>>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)
|
|
0.08333333333333333
|
|
|
|
As this relationship demonstrates, the beta function
|
|
is symmetric:
|
|
|
|
>>> sc.beta(1.7, 2.4)
|
|
0.16567527689031739
|
|
>>> sc.beta(2.4, 1.7)
|
|
0.16567527689031739
|
|
|
|
This function satisfies :math:`B(1, b) = 1/b`:
|
|
|
|
>>> sc.beta(1, 4)
|
|
0.25
|
|
|
|
""")
|
|
|
|
add_newdoc("betainc",
|
|
r"""
|
|
betainc(a, b, x, out=None)
|
|
|
|
Incomplete beta function.
|
|
|
|
Computes the incomplete beta function, defined as [1]_:
|
|
|
|
.. math::
|
|
|
|
I_x(a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x
|
|
t^{a-1}(1-t)^{b-1}dt,
|
|
|
|
for :math:`0 \leq x \leq 1`.
|
|
|
|
Parameters
|
|
----------
|
|
a, b : array-like
|
|
Positive, real-valued parameters
|
|
x : array-like
|
|
Real-valued such that :math:`0 \leq x \leq 1`,
|
|
the upper limit of integration
|
|
out : ndarray, optional
|
|
Optional output array for the function values
|
|
|
|
Returns
|
|
-------
|
|
array-like
|
|
Value of the incomplete beta function
|
|
|
|
See Also
|
|
--------
|
|
beta : beta function
|
|
betaincinv : inverse of the incomplete beta function
|
|
|
|
Notes
|
|
-----
|
|
The incomplete beta function is also sometimes defined
|
|
without the `gamma` terms, in which case the above
|
|
definition is the so-called regularized incomplete beta
|
|
function. Under this definition, you can get the incomplete
|
|
beta function by multiplying the result of the SciPy
|
|
function by `beta`.
|
|
|
|
References
|
|
----------
|
|
.. [1] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/8.17
|
|
|
|
Examples
|
|
--------
|
|
|
|
Let :math:`B(a, b)` be the `beta` function.
|
|
|
|
>>> import scipy.special as sc
|
|
|
|
The coefficient in terms of `gamma` is equal to
|
|
:math:`1/B(a, b)`. Also, when :math:`x=1`
|
|
the integral is equal to :math:`B(a, b)`.
|
|
Therefore, :math:`I_{x=1}(a, b) = 1` for any :math:`a, b`.
|
|
|
|
>>> sc.betainc(0.2, 3.5, 1.0)
|
|
1.0
|
|
|
|
It satisfies
|
|
:math:`I_x(a, b) = x^a F(a, 1-b, a+1, x)/ (aB(a, b))`,
|
|
where :math:`F` is the hypergeometric function `hyp2f1`:
|
|
|
|
>>> a, b, x = 1.4, 3.1, 0.5
|
|
>>> x**a * sc.hyp2f1(a, 1 - b, a + 1, x)/(a * sc.beta(a, b))
|
|
0.8148904036225295
|
|
>>> sc.betainc(a, b, x)
|
|
0.8148904036225296
|
|
|
|
This functions satisfies the relationship
|
|
:math:`I_x(a, b) = 1 - I_{1-x}(b, a)`:
|
|
|
|
>>> sc.betainc(2.2, 3.1, 0.4)
|
|
0.49339638807619446
|
|
>>> 1 - sc.betainc(3.1, 2.2, 1 - 0.4)
|
|
0.49339638807619446
|
|
|
|
""")
|
|
|
|
add_newdoc("betaincinv",
|
|
r"""
|
|
betaincinv(a, b, y, out=None)
|
|
|
|
Inverse of the incomplete beta function.
|
|
|
|
Computes :math:`x` such that:
|
|
|
|
.. math::
|
|
|
|
y = I_x(a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}
|
|
\int_0^x t^{a-1}(1-t)^{b-1}dt,
|
|
|
|
where :math:`I_x` is the normalized incomplete beta
|
|
function `betainc` and
|
|
:math:`\Gamma` is the `gamma` function [1]_.
|
|
|
|
Parameters
|
|
----------
|
|
a, b : array-like
|
|
Positive, real-valued parameters
|
|
y : array-like
|
|
Real-valued input
|
|
out : ndarray, optional
|
|
Optional output array for function values
|
|
|
|
Returns
|
|
-------
|
|
array-like
|
|
Value of the inverse of the incomplete beta function
|
|
|
|
See Also
|
|
--------
|
|
betainc : incomplete beta function
|
|
gamma : gamma function
|
|
|
|
References
|
|
----------
|
|
.. [1] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/8.17
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
This function is the inverse of `betainc` for fixed
|
|
values of :math:`a` and :math:`b`.
|
|
|
|
>>> a, b = 1.2, 3.1
|
|
>>> y = sc.betainc(a, b, 0.2)
|
|
>>> sc.betaincinv(a, b, y)
|
|
0.2
|
|
>>>
|
|
>>> a, b = 7.5, 0.4
|
|
>>> x = sc.betaincinv(a, b, 0.5)
|
|
>>> sc.betainc(a, b, x)
|
|
0.5
|
|
|
|
""")
|
|
|
|
add_newdoc("betaln",
|
|
"""
|
|
betaln(a, b)
|
|
|
|
Natural logarithm of absolute value of beta function.
|
|
|
|
Computes ``ln(abs(beta(a, b)))``.
|
|
""")
|
|
|
|
add_newdoc("boxcox",
|
|
"""
|
|
boxcox(x, lmbda)
|
|
|
|
Compute the Box-Cox transformation.
|
|
|
|
The Box-Cox transformation is::
|
|
|
|
y = (x**lmbda - 1) / lmbda if lmbda != 0
|
|
log(x) if lmbda == 0
|
|
|
|
Returns `nan` if ``x < 0``.
|
|
Returns `-inf` if ``x == 0`` and ``lmbda < 0``.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Data to be transformed.
|
|
lmbda : array_like
|
|
Power parameter of the Box-Cox transform.
|
|
|
|
Returns
|
|
-------
|
|
y : array
|
|
Transformed data.
|
|
|
|
Notes
|
|
-----
|
|
|
|
.. versionadded:: 0.14.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import boxcox
|
|
>>> boxcox([1, 4, 10], 2.5)
|
|
array([ 0. , 12.4 , 126.09110641])
|
|
>>> boxcox(2, [0, 1, 2])
|
|
array([ 0.69314718, 1. , 1.5 ])
|
|
""")
|
|
|
|
add_newdoc("boxcox1p",
|
|
"""
|
|
boxcox1p(x, lmbda)
|
|
|
|
Compute the Box-Cox transformation of 1 + `x`.
|
|
|
|
The Box-Cox transformation computed by `boxcox1p` is::
|
|
|
|
y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0
|
|
log(1+x) if lmbda == 0
|
|
|
|
Returns `nan` if ``x < -1``.
|
|
Returns `-inf` if ``x == -1`` and ``lmbda < 0``.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Data to be transformed.
|
|
lmbda : array_like
|
|
Power parameter of the Box-Cox transform.
|
|
|
|
Returns
|
|
-------
|
|
y : array
|
|
Transformed data.
|
|
|
|
Notes
|
|
-----
|
|
|
|
.. versionadded:: 0.14.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import boxcox1p
|
|
>>> boxcox1p(1e-4, [0, 0.5, 1])
|
|
array([ 9.99950003e-05, 9.99975001e-05, 1.00000000e-04])
|
|
>>> boxcox1p([0.01, 0.1], 0.25)
|
|
array([ 0.00996272, 0.09645476])
|
|
""")
|
|
|
|
add_newdoc("inv_boxcox",
|
|
"""
|
|
inv_boxcox(y, lmbda)
|
|
|
|
Compute the inverse of the Box-Cox transformation.
|
|
|
|
Find ``x`` such that::
|
|
|
|
y = (x**lmbda - 1) / lmbda if lmbda != 0
|
|
log(x) if lmbda == 0
|
|
|
|
Parameters
|
|
----------
|
|
y : array_like
|
|
Data to be transformed.
|
|
lmbda : array_like
|
|
Power parameter of the Box-Cox transform.
|
|
|
|
Returns
|
|
-------
|
|
x : array
|
|
Transformed data.
|
|
|
|
Notes
|
|
-----
|
|
|
|
.. versionadded:: 0.16.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import boxcox, inv_boxcox
|
|
>>> y = boxcox([1, 4, 10], 2.5)
|
|
>>> inv_boxcox(y, 2.5)
|
|
array([1., 4., 10.])
|
|
""")
|
|
|
|
add_newdoc("inv_boxcox1p",
|
|
"""
|
|
inv_boxcox1p(y, lmbda)
|
|
|
|
Compute the inverse of the Box-Cox transformation.
|
|
|
|
Find ``x`` such that::
|
|
|
|
y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0
|
|
log(1+x) if lmbda == 0
|
|
|
|
Parameters
|
|
----------
|
|
y : array_like
|
|
Data to be transformed.
|
|
lmbda : array_like
|
|
Power parameter of the Box-Cox transform.
|
|
|
|
Returns
|
|
-------
|
|
x : array
|
|
Transformed data.
|
|
|
|
Notes
|
|
-----
|
|
|
|
.. versionadded:: 0.16.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import boxcox1p, inv_boxcox1p
|
|
>>> y = boxcox1p([1, 4, 10], 2.5)
|
|
>>> inv_boxcox1p(y, 2.5)
|
|
array([1., 4., 10.])
|
|
""")
|
|
|
|
add_newdoc("btdtr",
|
|
r"""
|
|
btdtr(a, b, x)
|
|
|
|
Cumulative distribution function of the beta distribution.
|
|
|
|
Returns the integral from zero to `x` of the beta probability density
|
|
function,
|
|
|
|
.. math::
|
|
I = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
|
|
|
|
where :math:`\Gamma` is the gamma function.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Shape parameter (a > 0).
|
|
b : array_like
|
|
Shape parameter (b > 0).
|
|
x : array_like
|
|
Upper limit of integration, in [0, 1].
|
|
|
|
Returns
|
|
-------
|
|
I : ndarray
|
|
Cumulative distribution function of the beta distribution with
|
|
parameters `a` and `b` at `x`.
|
|
|
|
See Also
|
|
--------
|
|
betainc
|
|
|
|
Notes
|
|
-----
|
|
This function is identical to the incomplete beta integral function
|
|
`betainc`.
|
|
|
|
Wrapper for the Cephes [1]_ routine `btdtr`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("btdtri",
|
|
r"""
|
|
btdtri(a, b, p)
|
|
|
|
The `p`-th quantile of the beta distribution.
|
|
|
|
This function is the inverse of the beta cumulative distribution function,
|
|
`btdtr`, returning the value of `x` for which `btdtr(a, b, x) = p`, or
|
|
|
|
.. math::
|
|
p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Shape parameter (`a` > 0).
|
|
b : array_like
|
|
Shape parameter (`b` > 0).
|
|
p : array_like
|
|
Cumulative probability, in [0, 1].
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
The quantile corresponding to `p`.
|
|
|
|
See Also
|
|
--------
|
|
betaincinv
|
|
btdtr
|
|
|
|
Notes
|
|
-----
|
|
The value of `x` is found by interval halving or Newton iterations.
|
|
|
|
Wrapper for the Cephes [1]_ routine `incbi`, which solves the equivalent
|
|
problem of finding the inverse of the incomplete beta integral.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("cbrt",
|
|
"""
|
|
cbrt(x)
|
|
|
|
Element-wise cube root of `x`.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
`x` must contain real numbers.
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
The cube root of each value in `x`.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import cbrt
|
|
|
|
>>> cbrt(8)
|
|
2.0
|
|
>>> cbrt([-8, -3, 0.125, 1.331])
|
|
array([-2. , -1.44224957, 0.5 , 1.1 ])
|
|
|
|
""")
|
|
|
|
add_newdoc("chdtr",
|
|
r"""
|
|
chdtr(v, x, out=None)
|
|
|
|
Chi square cumulative distribution function.
|
|
|
|
Returns the area under the left tail (from 0 to `x`) of the Chi
|
|
square probability density function with `v` degrees of freedom:
|
|
|
|
.. math::
|
|
|
|
\frac{1}{2^{v/2} \Gamma(v/2)} \int_0^x t^{v/2 - 1} e^{-t/2} dt
|
|
|
|
Here :math:`\Gamma` is the Gamma function; see `gamma`. This
|
|
integral can be expressed in terms of the regularized lower
|
|
incomplete gamma function `gammainc` as
|
|
``gammainc(v / 2, x / 2)``. [1]_
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Degrees of freedom.
|
|
x : array_like
|
|
Upper bound of the integral.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the cumulative distribution function.
|
|
|
|
See Also
|
|
--------
|
|
chdtrc, chdtri, chdtriv, gammainc
|
|
|
|
References
|
|
----------
|
|
.. [1] Chi-Square distribution,
|
|
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It can be expressed in terms of the regularized lower incomplete
|
|
gamma function.
|
|
|
|
>>> v = 1
|
|
>>> x = np.arange(4)
|
|
>>> sc.chdtr(v, x)
|
|
array([0. , 0.68268949, 0.84270079, 0.91673548])
|
|
>>> sc.gammainc(v / 2, x / 2)
|
|
array([0. , 0.68268949, 0.84270079, 0.91673548])
|
|
|
|
""")
|
|
|
|
add_newdoc("chdtrc",
|
|
r"""
|
|
chdtrc(v, x, out=None)
|
|
|
|
Chi square survival function.
|
|
|
|
Returns the area under the right hand tail (from `x` to infinity)
|
|
of the Chi square probability density function with `v` degrees of
|
|
freedom:
|
|
|
|
.. math::
|
|
|
|
\frac{1}{2^{v/2} \Gamma(v/2)} \int_x^\infty t^{v/2 - 1} e^{-t/2} dt
|
|
|
|
Here :math:`\Gamma` is the Gamma function; see `gamma`. This
|
|
integral can be expressed in terms of the regularized upper
|
|
incomplete gamma function `gammaincc` as
|
|
``gammaincc(v / 2, x / 2)``. [1]_
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Degrees of freedom.
|
|
x : array_like
|
|
Lower bound of the integral.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the survival function.
|
|
|
|
See Also
|
|
--------
|
|
chdtr, chdtri, chdtriv, gammaincc
|
|
|
|
References
|
|
----------
|
|
.. [1] Chi-Square distribution,
|
|
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It can be expressed in terms of the regularized upper incomplete
|
|
gamma function.
|
|
|
|
>>> v = 1
|
|
>>> x = np.arange(4)
|
|
>>> sc.chdtrc(v, x)
|
|
array([1. , 0.31731051, 0.15729921, 0.08326452])
|
|
>>> sc.gammaincc(v / 2, x / 2)
|
|
array([1. , 0.31731051, 0.15729921, 0.08326452])
|
|
|
|
""")
|
|
|
|
add_newdoc("chdtri",
|
|
"""
|
|
chdtri(v, p, out=None)
|
|
|
|
Inverse to `chdtrc` with respect to `x`.
|
|
|
|
Returns `x` such that ``chdtrc(v, x) == p``.
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Degrees of freedom.
|
|
p : array_like
|
|
Probability.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
x : scalar or ndarray
|
|
Value so that the probability a Chi square random variable
|
|
with `v` degrees of freedom is greater than `x` equals `p`.
|
|
|
|
See Also
|
|
--------
|
|
chdtrc, chdtr, chdtriv
|
|
|
|
References
|
|
----------
|
|
.. [1] Chi-Square distribution,
|
|
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It inverts `chdtrc`.
|
|
|
|
>>> v, p = 1, 0.3
|
|
>>> sc.chdtrc(v, sc.chdtri(v, p))
|
|
0.3
|
|
>>> x = 1
|
|
>>> sc.chdtri(v, sc.chdtrc(v, x))
|
|
1.0
|
|
|
|
""")
|
|
|
|
add_newdoc("chdtriv",
|
|
"""
|
|
chdtriv(p, x, out=None)
|
|
|
|
Inverse to `chdtr` with respect to `v`.
|
|
|
|
Returns `v` such that ``chdtr(v, x) == p``.
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
Probability that the Chi square random variable is less than
|
|
or equal to `x`.
|
|
x : array_like
|
|
Nonnegative input.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Degrees of freedom.
|
|
|
|
See Also
|
|
--------
|
|
chdtr, chdtrc, chdtri
|
|
|
|
References
|
|
----------
|
|
.. [1] Chi-Square distribution,
|
|
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It inverts `chdtr`.
|
|
|
|
>>> p, x = 0.5, 1
|
|
>>> sc.chdtr(sc.chdtriv(p, x), x)
|
|
0.5000000000202172
|
|
>>> v = 1
|
|
>>> sc.chdtriv(sc.chdtr(v, x), v)
|
|
1.0000000000000013
|
|
|
|
""")
|
|
|
|
add_newdoc("chndtr",
|
|
"""
|
|
chndtr(x, df, nc)
|
|
|
|
Non-central chi square cumulative distribution function
|
|
|
|
""")
|
|
|
|
add_newdoc("chndtrix",
|
|
"""
|
|
chndtrix(p, df, nc)
|
|
|
|
Inverse to `chndtr` vs `x`
|
|
""")
|
|
|
|
add_newdoc("chndtridf",
|
|
"""
|
|
chndtridf(x, p, nc)
|
|
|
|
Inverse to `chndtr` vs `df`
|
|
""")
|
|
|
|
add_newdoc("chndtrinc",
|
|
"""
|
|
chndtrinc(x, df, p)
|
|
|
|
Inverse to `chndtr` vs `nc`
|
|
""")
|
|
|
|
add_newdoc("cosdg",
|
|
"""
|
|
cosdg(x, out=None)
|
|
|
|
Cosine of the angle `x` given in degrees.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Angle, given in degrees.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Cosine of the input.
|
|
|
|
See Also
|
|
--------
|
|
sindg, tandg, cotdg
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is more accurate than using cosine directly.
|
|
|
|
>>> x = 90 + 180 * np.arange(3)
|
|
>>> sc.cosdg(x)
|
|
array([-0., 0., -0.])
|
|
>>> np.cos(x * np.pi / 180)
|
|
array([ 6.1232340e-17, -1.8369702e-16, 3.0616170e-16])
|
|
|
|
""")
|
|
|
|
add_newdoc("cosm1",
|
|
"""
|
|
cosm1(x, out=None)
|
|
|
|
cos(x) - 1 for use when `x` is near zero.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real valued argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of ``cos(x) - 1``.
|
|
|
|
See Also
|
|
--------
|
|
expm1, log1p
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is more accurate than computing ``cos(x) - 1`` directly for
|
|
``x`` around 0.
|
|
|
|
>>> x = 1e-30
|
|
>>> np.cos(x) - 1
|
|
0.0
|
|
>>> sc.cosm1(x)
|
|
-5.0000000000000005e-61
|
|
|
|
""")
|
|
|
|
add_newdoc("cotdg",
|
|
"""
|
|
cotdg(x, out=None)
|
|
|
|
Cotangent of the angle `x` given in degrees.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Angle, given in degrees.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Cotangent at the input.
|
|
|
|
See Also
|
|
--------
|
|
sindg, cosdg, tandg
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is more accurate than using cotangent directly.
|
|
|
|
>>> x = 90 + 180 * np.arange(3)
|
|
>>> sc.cotdg(x)
|
|
array([0., 0., 0.])
|
|
>>> 1 / np.tan(x * np.pi / 180)
|
|
array([6.1232340e-17, 1.8369702e-16, 3.0616170e-16])
|
|
|
|
""")
|
|
|
|
add_newdoc("dawsn",
|
|
"""
|
|
dawsn(x)
|
|
|
|
Dawson's integral.
|
|
|
|
Computes::
|
|
|
|
exp(-x**2) * integral(exp(t**2), t=0..x).
|
|
|
|
See Also
|
|
--------
|
|
wofz, erf, erfc, erfcx, erfi
|
|
|
|
References
|
|
----------
|
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
|
http://ab-initio.mit.edu/Faddeeva
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(-15, 15, num=1000)
|
|
>>> plt.plot(x, special.dawsn(x))
|
|
>>> plt.xlabel('$x$')
|
|
>>> plt.ylabel('$dawsn(x)$')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("ellipe",
|
|
r"""
|
|
ellipe(m)
|
|
|
|
Complete elliptic integral of the second kind
|
|
|
|
This function is defined as
|
|
|
|
.. math:: E(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{1/2} dt
|
|
|
|
Parameters
|
|
----------
|
|
m : array_like
|
|
Defines the parameter of the elliptic integral.
|
|
|
|
Returns
|
|
-------
|
|
E : ndarray
|
|
Value of the elliptic integral.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the Cephes [1]_ routine `ellpe`.
|
|
|
|
For `m > 0` the computation uses the approximation,
|
|
|
|
.. math:: E(m) \approx P(1-m) - (1-m) \log(1-m) Q(1-m),
|
|
|
|
where :math:`P` and :math:`Q` are tenth-order polynomials. For
|
|
`m < 0`, the relation
|
|
|
|
.. math:: E(m) = E(m/(m - 1)) \sqrt(1-m)
|
|
|
|
is used.
|
|
|
|
The parameterization in terms of :math:`m` follows that of section
|
|
17.2 in [2]_. Other parameterizations in terms of the
|
|
complementary parameter :math:`1 - m`, modular angle
|
|
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
|
|
used, so be careful that you choose the correct parameter.
|
|
|
|
See Also
|
|
--------
|
|
ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1
|
|
ellipk : Complete elliptic integral of the first kind
|
|
ellipkinc : Incomplete elliptic integral of the first kind
|
|
ellipeinc : Incomplete elliptic integral of the second kind
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
This function is used in finding the circumference of an
|
|
ellipse with semi-major axis `a` and semi-minor axis `b`.
|
|
|
|
>>> from scipy import special
|
|
|
|
>>> a = 3.5
|
|
>>> b = 2.1
|
|
>>> e_sq = 1.0 - b**2/a**2 # eccentricity squared
|
|
|
|
Then the circumference is found using the following:
|
|
|
|
>>> C = 4*a*special.ellipe(e_sq) # circumference formula
|
|
>>> C
|
|
17.868899204378693
|
|
|
|
When `a` and `b` are the same (meaning eccentricity is 0),
|
|
this reduces to the circumference of a circle.
|
|
|
|
>>> 4*a*special.ellipe(0.0) # formula for ellipse with a = b
|
|
21.991148575128552
|
|
>>> 2*np.pi*a # formula for circle of radius a
|
|
21.991148575128552
|
|
|
|
""")
|
|
|
|
add_newdoc("ellipeinc",
|
|
r"""
|
|
ellipeinc(phi, m)
|
|
|
|
Incomplete elliptic integral of the second kind
|
|
|
|
This function is defined as
|
|
|
|
.. math:: E(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{1/2} dt
|
|
|
|
Parameters
|
|
----------
|
|
phi : array_like
|
|
amplitude of the elliptic integral.
|
|
|
|
m : array_like
|
|
parameter of the elliptic integral.
|
|
|
|
Returns
|
|
-------
|
|
E : ndarray
|
|
Value of the elliptic integral.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the Cephes [1]_ routine `ellie`.
|
|
|
|
Computation uses arithmetic-geometric means algorithm.
|
|
|
|
The parameterization in terms of :math:`m` follows that of section
|
|
17.2 in [2]_. Other parameterizations in terms of the
|
|
complementary parameter :math:`1 - m`, modular angle
|
|
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
|
|
used, so be careful that you choose the correct parameter.
|
|
|
|
See Also
|
|
--------
|
|
ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1
|
|
ellipk : Complete elliptic integral of the first kind
|
|
ellipkinc : Incomplete elliptic integral of the first kind
|
|
ellipe : Complete elliptic integral of the second kind
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
""")
|
|
|
|
add_newdoc("ellipj",
|
|
"""
|
|
ellipj(u, m)
|
|
|
|
Jacobian elliptic functions
|
|
|
|
Calculates the Jacobian elliptic functions of parameter `m` between
|
|
0 and 1, and real argument `u`.
|
|
|
|
Parameters
|
|
----------
|
|
m : array_like
|
|
Parameter.
|
|
u : array_like
|
|
Argument.
|
|
|
|
Returns
|
|
-------
|
|
sn, cn, dn, ph : ndarrays
|
|
The returned functions::
|
|
|
|
sn(u|m), cn(u|m), dn(u|m)
|
|
|
|
The value `ph` is such that if `u = ellipkinc(ph, m)`,
|
|
then `sn(u|m) = sin(ph)` and `cn(u|m) = cos(ph)`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the Cephes [1]_ routine `ellpj`.
|
|
|
|
These functions are periodic, with quarter-period on the real axis
|
|
equal to the complete elliptic integral `ellipk(m)`.
|
|
|
|
Relation to incomplete elliptic integral: If `u = ellipkinc(phi,m)`, then
|
|
`sn(u|m) = sin(phi)`, and `cn(u|m) = cos(phi)`. The `phi` is called
|
|
the amplitude of `u`.
|
|
|
|
Computation is by means of the arithmetic-geometric mean algorithm,
|
|
except when `m` is within 1e-9 of 0 or 1. In the latter case with `m`
|
|
close to 1, the approximation applies only for `phi < pi/2`.
|
|
|
|
See also
|
|
--------
|
|
ellipk : Complete elliptic integral of the first kind
|
|
ellipkinc : Incomplete elliptic integral of the first kind
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("ellipkm1",
|
|
"""
|
|
ellipkm1(p)
|
|
|
|
Complete elliptic integral of the first kind around `m` = 1
|
|
|
|
This function is defined as
|
|
|
|
.. math:: K(p) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt
|
|
|
|
where `m = 1 - p`.
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
Defines the parameter of the elliptic integral as `m = 1 - p`.
|
|
|
|
Returns
|
|
-------
|
|
K : ndarray
|
|
Value of the elliptic integral.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the Cephes [1]_ routine `ellpk`.
|
|
|
|
For `p <= 1`, computation uses the approximation,
|
|
|
|
.. math:: K(p) \\approx P(p) - \\log(p) Q(p),
|
|
|
|
where :math:`P` and :math:`Q` are tenth-order polynomials. The
|
|
argument `p` is used internally rather than `m` so that the logarithmic
|
|
singularity at `m = 1` will be shifted to the origin; this preserves
|
|
maximum accuracy. For `p > 1`, the identity
|
|
|
|
.. math:: K(p) = K(1/p)/\\sqrt(p)
|
|
|
|
is used.
|
|
|
|
See Also
|
|
--------
|
|
ellipk : Complete elliptic integral of the first kind
|
|
ellipkinc : Incomplete elliptic integral of the first kind
|
|
ellipe : Complete elliptic integral of the second kind
|
|
ellipeinc : Incomplete elliptic integral of the second kind
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("ellipk",
|
|
r"""
|
|
ellipk(m)
|
|
|
|
Complete elliptic integral of the first kind.
|
|
|
|
This function is defined as
|
|
|
|
.. math:: K(m) = \int_0^{\pi/2} [1 - m \sin(t)^2]^{-1/2} dt
|
|
|
|
Parameters
|
|
----------
|
|
m : array_like
|
|
The parameter of the elliptic integral.
|
|
|
|
Returns
|
|
-------
|
|
K : array_like
|
|
Value of the elliptic integral.
|
|
|
|
Notes
|
|
-----
|
|
For more precision around point m = 1, use `ellipkm1`, which this
|
|
function calls.
|
|
|
|
The parameterization in terms of :math:`m` follows that of section
|
|
17.2 in [1]_. Other parameterizations in terms of the
|
|
complementary parameter :math:`1 - m`, modular angle
|
|
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
|
|
used, so be careful that you choose the correct parameter.
|
|
|
|
See Also
|
|
--------
|
|
ellipkm1 : Complete elliptic integral of the first kind around m = 1
|
|
ellipkinc : Incomplete elliptic integral of the first kind
|
|
ellipe : Complete elliptic integral of the second kind
|
|
ellipeinc : Incomplete elliptic integral of the second kind
|
|
|
|
References
|
|
----------
|
|
.. [1] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("ellipkinc",
|
|
r"""
|
|
ellipkinc(phi, m)
|
|
|
|
Incomplete elliptic integral of the first kind
|
|
|
|
This function is defined as
|
|
|
|
.. math:: K(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{-1/2} dt
|
|
|
|
This function is also called `F(phi, m)`.
|
|
|
|
Parameters
|
|
----------
|
|
phi : array_like
|
|
amplitude of the elliptic integral
|
|
|
|
m : array_like
|
|
parameter of the elliptic integral
|
|
|
|
Returns
|
|
-------
|
|
K : ndarray
|
|
Value of the elliptic integral
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the Cephes [1]_ routine `ellik`. The computation is
|
|
carried out using the arithmetic-geometric mean algorithm.
|
|
|
|
The parameterization in terms of :math:`m` follows that of section
|
|
17.2 in [2]_. Other parameterizations in terms of the
|
|
complementary parameter :math:`1 - m`, modular angle
|
|
:math:`\sin^2(\alpha) = m`, or modulus :math:`k^2 = m` are also
|
|
used, so be careful that you choose the correct parameter.
|
|
|
|
See Also
|
|
--------
|
|
ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1
|
|
ellipk : Complete elliptic integral of the first kind
|
|
ellipe : Complete elliptic integral of the second kind
|
|
ellipeinc : Incomplete elliptic integral of the second kind
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
""")
|
|
|
|
add_newdoc("entr",
|
|
r"""
|
|
entr(x)
|
|
|
|
Elementwise function for computing entropy.
|
|
|
|
.. math:: \text{entr}(x) = \begin{cases} - x \log(x) & x > 0 \\ 0 & x = 0 \\ -\infty & \text{otherwise} \end{cases}
|
|
|
|
Parameters
|
|
----------
|
|
x : ndarray
|
|
Input array.
|
|
|
|
Returns
|
|
-------
|
|
res : ndarray
|
|
The value of the elementwise entropy function at the given points `x`.
|
|
|
|
See Also
|
|
--------
|
|
kl_div, rel_entr
|
|
|
|
Notes
|
|
-----
|
|
This function is concave.
|
|
|
|
.. versionadded:: 0.15.0
|
|
|
|
""")
|
|
|
|
add_newdoc("erf",
|
|
"""
|
|
erf(z)
|
|
|
|
Returns the error function of complex argument.
|
|
|
|
It is defined as ``2/sqrt(pi)*integral(exp(-t**2), t=0..z)``.
|
|
|
|
Parameters
|
|
----------
|
|
x : ndarray
|
|
Input array.
|
|
|
|
Returns
|
|
-------
|
|
res : ndarray
|
|
The values of the error function at the given points `x`.
|
|
|
|
See Also
|
|
--------
|
|
erfc, erfinv, erfcinv, wofz, erfcx, erfi
|
|
|
|
Notes
|
|
-----
|
|
The cumulative of the unit normal distribution is given by
|
|
``Phi(z) = 1/2[1 + erf(z/sqrt(2))]``.
|
|
|
|
References
|
|
----------
|
|
.. [1] https://en.wikipedia.org/wiki/Error_function
|
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover,
|
|
1972. http://www.math.sfu.ca/~cbm/aands/page_297.htm
|
|
.. [3] Steven G. Johnson, Faddeeva W function implementation.
|
|
http://ab-initio.mit.edu/Faddeeva
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(-3, 3)
|
|
>>> plt.plot(x, special.erf(x))
|
|
>>> plt.xlabel('$x$')
|
|
>>> plt.ylabel('$erf(x)$')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("erfc",
|
|
"""
|
|
erfc(x, out=None)
|
|
|
|
Complementary error function, ``1 - erf(x)``.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real or complex valued argument
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the complementary error function
|
|
|
|
See Also
|
|
--------
|
|
erf, erfi, erfcx, dawsn, wofz
|
|
|
|
References
|
|
----------
|
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
|
http://ab-initio.mit.edu/Faddeeva
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(-3, 3)
|
|
>>> plt.plot(x, special.erfc(x))
|
|
>>> plt.xlabel('$x$')
|
|
>>> plt.ylabel('$erfc(x)$')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("erfi",
|
|
"""
|
|
erfi(z, out=None)
|
|
|
|
Imaginary error function, ``-i erf(i z)``.
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Real or complex valued argument
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the imaginary error function
|
|
|
|
See Also
|
|
--------
|
|
erf, erfc, erfcx, dawsn, wofz
|
|
|
|
Notes
|
|
-----
|
|
|
|
.. versionadded:: 0.12.0
|
|
|
|
References
|
|
----------
|
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
|
http://ab-initio.mit.edu/Faddeeva
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(-3, 3)
|
|
>>> plt.plot(x, special.erfi(x))
|
|
>>> plt.xlabel('$x$')
|
|
>>> plt.ylabel('$erfi(x)$')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("erfcx",
|
|
"""
|
|
erfcx(x, out=None)
|
|
|
|
Scaled complementary error function, ``exp(x**2) * erfc(x)``.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real or complex valued argument
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the scaled complementary error function
|
|
|
|
|
|
See Also
|
|
--------
|
|
erf, erfc, erfi, dawsn, wofz
|
|
|
|
Notes
|
|
-----
|
|
|
|
.. versionadded:: 0.12.0
|
|
|
|
References
|
|
----------
|
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
|
http://ab-initio.mit.edu/Faddeeva
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(-3, 3)
|
|
>>> plt.plot(x, special.erfcx(x))
|
|
>>> plt.xlabel('$x$')
|
|
>>> plt.ylabel('$erfcx(x)$')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("erfinv",
|
|
"""Inverse of the error function.
|
|
|
|
Computes the inverse of the error function.
|
|
|
|
In the complex domain, there is no unique complex number w satisfying
|
|
erf(w)=z. This indicates a true inverse function would have multi-value.
|
|
When the domain restricts to the real, -1 < x < 1, there is a unique real
|
|
number satisfying erf(erfinv(x)) = x.
|
|
|
|
Parameters
|
|
----------
|
|
y : ndarray
|
|
Argument at which to evaluate. Domain: [-1, 1]
|
|
|
|
Returns
|
|
-------
|
|
erfinv : ndarray
|
|
The inverse of erf of y, element-wise)
|
|
|
|
See Also
|
|
--------
|
|
erf : Error function of a complex argument
|
|
erfc : Complementary error function, ``1 - erf(x)``
|
|
erfcinv : Inverse of the complementary error function
|
|
|
|
Examples
|
|
--------
|
|
1) evaluating a float number
|
|
|
|
>>> from scipy import special
|
|
>>> special.erfinv(0.5)
|
|
0.4769362762044698
|
|
|
|
2) evaluating an ndarray
|
|
|
|
>>> from scipy import special
|
|
>>> y = np.linspace(-1.0, 1.0, num=10)
|
|
>>> special.erfinv(y)
|
|
array([ -inf, -0.86312307, -0.5407314 , -0.30457019, -0.0987901 ,
|
|
0.0987901 , 0.30457019, 0.5407314 , 0.86312307, inf])
|
|
|
|
""")
|
|
|
|
add_newdoc("erfcinv",
|
|
"""Inverse of the complementary error function.
|
|
|
|
Computes the inverse of the complementary error function.
|
|
|
|
In the complex domain, there is no unique complex number w satisfying
|
|
erfc(w)=z. This indicates a true inverse function would have multi-value.
|
|
When the domain restricts to the real, 0 < x < 2, there is a unique real
|
|
number satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).
|
|
|
|
It is related to inverse of the error function by erfcinv(1-x) = erfinv(x)
|
|
|
|
Parameters
|
|
----------
|
|
y : ndarray
|
|
Argument at which to evaluate. Domain: [0, 2]
|
|
|
|
Returns
|
|
-------
|
|
erfcinv : ndarray
|
|
The inverse of erfc of y, element-wise
|
|
|
|
See Also
|
|
--------
|
|
erf : Error function of a complex argument
|
|
erfc : Complementary error function, ``1 - erf(x)``
|
|
erfinv : Inverse of the error function
|
|
|
|
Examples
|
|
--------
|
|
1) evaluating a float number
|
|
|
|
>>> from scipy import special
|
|
>>> special.erfcinv(0.5)
|
|
0.4769362762044698
|
|
|
|
2) evaluating an ndarray
|
|
|
|
>>> from scipy import special
|
|
>>> y = np.linspace(0.0, 2.0, num=11)
|
|
>>> special.erfcinv(y)
|
|
array([ inf, 0.9061938 , 0.59511608, 0.37080716, 0.17914345,
|
|
-0. , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,
|
|
-inf])
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_jacobi",
|
|
r"""
|
|
eval_jacobi(n, alpha, beta, x, out=None)
|
|
|
|
Evaluate Jacobi polynomial at a point.
|
|
|
|
The Jacobi polynomials can be defined via the Gauss hypergeometric
|
|
function :math:`{}_2F_1` as
|
|
|
|
.. math::
|
|
|
|
P_n^{(\alpha, \beta)}(x) = \frac{(\alpha + 1)_n}{\Gamma(n + 1)}
|
|
{}_2F_1(-n, 1 + \alpha + \beta + n; \alpha + 1; (1 - z)/2)
|
|
|
|
where :math:`(\cdot)_n` is the Pochhammer symbol; see `poch`. When
|
|
:math:`n` is an integer the result is a polynomial of degree
|
|
:math:`n`. See 22.5.42 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer the result is
|
|
determined via the relation to the Gauss hypergeometric
|
|
function.
|
|
alpha : array_like
|
|
Parameter
|
|
beta : array_like
|
|
Parameter
|
|
x : array_like
|
|
Points at which to evaluate the polynomial
|
|
|
|
Returns
|
|
-------
|
|
P : ndarray
|
|
Values of the Jacobi polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_jacobi : roots and quadrature weights of Jacobi polynomials
|
|
jacobi : Jacobi polynomial object
|
|
hyp2f1 : Gauss hypergeometric function
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_sh_jacobi",
|
|
r"""
|
|
eval_sh_jacobi(n, p, q, x, out=None)
|
|
|
|
Evaluate shifted Jacobi polynomial at a point.
|
|
|
|
Defined by
|
|
|
|
.. math::
|
|
|
|
G_n^{(p, q)}(x)
|
|
= \binom{2n + p - 1}{n}^{-1} P_n^{(p - q, q - 1)}(2x - 1),
|
|
|
|
where :math:`P_n^{(\cdot, \cdot)}` is the n-th Jacobi
|
|
polynomial. See 22.5.2 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to `binom` and `eval_jacobi`.
|
|
p : float
|
|
Parameter
|
|
q : float
|
|
Parameter
|
|
|
|
Returns
|
|
-------
|
|
G : ndarray
|
|
Values of the shifted Jacobi polynomial.
|
|
|
|
See Also
|
|
--------
|
|
roots_sh_jacobi : roots and quadrature weights of shifted Jacobi
|
|
polynomials
|
|
sh_jacobi : shifted Jacobi polynomial object
|
|
eval_jacobi : evaluate Jacobi polynomials
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_gegenbauer",
|
|
r"""
|
|
eval_gegenbauer(n, alpha, x, out=None)
|
|
|
|
Evaluate Gegenbauer polynomial at a point.
|
|
|
|
The Gegenbauer polynomials can be defined via the Gauss
|
|
hypergeometric function :math:`{}_2F_1` as
|
|
|
|
.. math::
|
|
|
|
C_n^{(\alpha)} = \frac{(2\alpha)_n}{\Gamma(n + 1)}
|
|
{}_2F_1(-n, 2\alpha + n; \alpha + 1/2; (1 - z)/2).
|
|
|
|
When :math:`n` is an integer the result is a polynomial of degree
|
|
:math:`n`. See 22.5.46 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to the Gauss hypergeometric
|
|
function.
|
|
alpha : array_like
|
|
Parameter
|
|
x : array_like
|
|
Points at which to evaluate the Gegenbauer polynomial
|
|
|
|
Returns
|
|
-------
|
|
C : ndarray
|
|
Values of the Gegenbauer polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_gegenbauer : roots and quadrature weights of Gegenbauer
|
|
polynomials
|
|
gegenbauer : Gegenbauer polynomial object
|
|
hyp2f1 : Gauss hypergeometric function
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_chebyt",
|
|
r"""
|
|
eval_chebyt(n, x, out=None)
|
|
|
|
Evaluate Chebyshev polynomial of the first kind at a point.
|
|
|
|
The Chebyshev polynomials of the first kind can be defined via the
|
|
Gauss hypergeometric function :math:`{}_2F_1` as
|
|
|
|
.. math::
|
|
|
|
T_n(x) = {}_2F_1(n, -n; 1/2; (1 - x)/2).
|
|
|
|
When :math:`n` is an integer the result is a polynomial of degree
|
|
:math:`n`. See 22.5.47 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to the Gauss hypergeometric
|
|
function.
|
|
x : array_like
|
|
Points at which to evaluate the Chebyshev polynomial
|
|
|
|
Returns
|
|
-------
|
|
T : ndarray
|
|
Values of the Chebyshev polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_chebyt : roots and quadrature weights of Chebyshev
|
|
polynomials of the first kind
|
|
chebyu : Chebychev polynomial object
|
|
eval_chebyu : evaluate Chebyshev polynomials of the second kind
|
|
hyp2f1 : Gauss hypergeometric function
|
|
numpy.polynomial.chebyshev.Chebyshev : Chebyshev series
|
|
|
|
Notes
|
|
-----
|
|
This routine is numerically stable for `x` in ``[-1, 1]`` at least
|
|
up to order ``10000``.
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_chebyu",
|
|
r"""
|
|
eval_chebyu(n, x, out=None)
|
|
|
|
Evaluate Chebyshev polynomial of the second kind at a point.
|
|
|
|
The Chebyshev polynomials of the second kind can be defined via
|
|
the Gauss hypergeometric function :math:`{}_2F_1` as
|
|
|
|
.. math::
|
|
|
|
U_n(x) = (n + 1) {}_2F_1(-n, n + 2; 3/2; (1 - x)/2).
|
|
|
|
When :math:`n` is an integer the result is a polynomial of degree
|
|
:math:`n`. See 22.5.48 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to the Gauss hypergeometric
|
|
function.
|
|
x : array_like
|
|
Points at which to evaluate the Chebyshev polynomial
|
|
|
|
Returns
|
|
-------
|
|
U : ndarray
|
|
Values of the Chebyshev polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_chebyu : roots and quadrature weights of Chebyshev
|
|
polynomials of the second kind
|
|
chebyu : Chebyshev polynomial object
|
|
eval_chebyt : evaluate Chebyshev polynomials of the first kind
|
|
hyp2f1 : Gauss hypergeometric function
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_chebys",
|
|
r"""
|
|
eval_chebys(n, x, out=None)
|
|
|
|
Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a
|
|
point.
|
|
|
|
These polynomials are defined as
|
|
|
|
.. math::
|
|
|
|
S_n(x) = U_n(x/2)
|
|
|
|
where :math:`U_n` is a Chebyshev polynomial of the second
|
|
kind. See 22.5.13 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to `eval_chebyu`.
|
|
x : array_like
|
|
Points at which to evaluate the Chebyshev polynomial
|
|
|
|
Returns
|
|
-------
|
|
S : ndarray
|
|
Values of the Chebyshev polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_chebys : roots and quadrature weights of Chebyshev
|
|
polynomials of the second kind on [-2, 2]
|
|
chebys : Chebyshev polynomial object
|
|
eval_chebyu : evaluate Chebyshev polynomials of the second kind
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
They are a scaled version of the Chebyshev polynomials of the
|
|
second kind.
|
|
|
|
>>> x = np.linspace(-2, 2, 6)
|
|
>>> sc.eval_chebys(3, x)
|
|
array([-4. , 0.672, 0.736, -0.736, -0.672, 4. ])
|
|
>>> sc.eval_chebyu(3, x / 2)
|
|
array([-4. , 0.672, 0.736, -0.736, -0.672, 4. ])
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_chebyc",
|
|
r"""
|
|
eval_chebyc(n, x, out=None)
|
|
|
|
Evaluate Chebyshev polynomial of the first kind on [-2, 2] at a
|
|
point.
|
|
|
|
These polynomials are defined as
|
|
|
|
.. math::
|
|
|
|
C_n(x) = 2 T_n(x/2)
|
|
|
|
where :math:`T_n` is a Chebyshev polynomial of the first kind. See
|
|
22.5.11 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to `eval_chebyt`.
|
|
x : array_like
|
|
Points at which to evaluate the Chebyshev polynomial
|
|
|
|
Returns
|
|
-------
|
|
C : ndarray
|
|
Values of the Chebyshev polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_chebyc : roots and quadrature weights of Chebyshev
|
|
polynomials of the first kind on [-2, 2]
|
|
chebyc : Chebyshev polynomial object
|
|
numpy.polynomial.chebyshev.Chebyshev : Chebyshev series
|
|
eval_chebyt : evaluate Chebycshev polynomials of the first kind
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
They are a scaled version of the Chebyshev polynomials of the
|
|
first kind.
|
|
|
|
>>> x = np.linspace(-2, 2, 6)
|
|
>>> sc.eval_chebyc(3, x)
|
|
array([-2. , 1.872, 1.136, -1.136, -1.872, 2. ])
|
|
>>> 2 * sc.eval_chebyt(3, x / 2)
|
|
array([-2. , 1.872, 1.136, -1.136, -1.872, 2. ])
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_sh_chebyt",
|
|
r"""
|
|
eval_sh_chebyt(n, x, out=None)
|
|
|
|
Evaluate shifted Chebyshev polynomial of the first kind at a
|
|
point.
|
|
|
|
These polynomials are defined as
|
|
|
|
.. math::
|
|
|
|
T_n^*(x) = T_n(2x - 1)
|
|
|
|
where :math:`T_n` is a Chebyshev polynomial of the first kind. See
|
|
22.5.14 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to `eval_chebyt`.
|
|
x : array_like
|
|
Points at which to evaluate the shifted Chebyshev polynomial
|
|
|
|
Returns
|
|
-------
|
|
T : ndarray
|
|
Values of the shifted Chebyshev polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_sh_chebyt : roots and quadrature weights of shifted
|
|
Chebyshev polynomials of the first kind
|
|
sh_chebyt : shifted Chebyshev polynomial object
|
|
eval_chebyt : evaluate Chebyshev polynomials of the first kind
|
|
numpy.polynomial.chebyshev.Chebyshev : Chebyshev series
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_sh_chebyu",
|
|
r"""
|
|
eval_sh_chebyu(n, x, out=None)
|
|
|
|
Evaluate shifted Chebyshev polynomial of the second kind at a
|
|
point.
|
|
|
|
These polynomials are defined as
|
|
|
|
.. math::
|
|
|
|
U_n^*(x) = U_n(2x - 1)
|
|
|
|
where :math:`U_n` is a Chebyshev polynomial of the first kind. See
|
|
22.5.15 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to `eval_chebyu`.
|
|
x : array_like
|
|
Points at which to evaluate the shifted Chebyshev polynomial
|
|
|
|
Returns
|
|
-------
|
|
U : ndarray
|
|
Values of the shifted Chebyshev polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_sh_chebyu : roots and quadrature weights of shifted
|
|
Chebychev polynomials of the second kind
|
|
sh_chebyu : shifted Chebyshev polynomial object
|
|
eval_chebyu : evaluate Chebyshev polynomials of the second kind
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_legendre",
|
|
r"""
|
|
eval_legendre(n, x, out=None)
|
|
|
|
Evaluate Legendre polynomial at a point.
|
|
|
|
The Legendre polynomials can be defined via the Gauss
|
|
hypergeometric function :math:`{}_2F_1` as
|
|
|
|
.. math::
|
|
|
|
P_n(x) = {}_2F_1(-n, n + 1; 1; (1 - x)/2).
|
|
|
|
When :math:`n` is an integer the result is a polynomial of degree
|
|
:math:`n`. See 22.5.49 in [AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to the Gauss hypergeometric
|
|
function.
|
|
x : array_like
|
|
Points at which to evaluate the Legendre polynomial
|
|
|
|
Returns
|
|
-------
|
|
P : ndarray
|
|
Values of the Legendre polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_legendre : roots and quadrature weights of Legendre
|
|
polynomials
|
|
legendre : Legendre polynomial object
|
|
hyp2f1 : Gauss hypergeometric function
|
|
numpy.polynomial.legendre.Legendre : Legendre series
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import eval_legendre
|
|
|
|
Evaluate the zero-order Legendre polynomial at x = 0
|
|
|
|
>>> eval_legendre(0, 0)
|
|
1.0
|
|
|
|
Evaluate the first-order Legendre polynomial between -1 and 1
|
|
|
|
>>> import numpy as np
|
|
>>> X = np.linspace(-1, 1, 5) # Domain of Legendre polynomials
|
|
>>> eval_legendre(1, X)
|
|
array([-1. , -0.5, 0. , 0.5, 1. ])
|
|
|
|
Evaluate Legendre polynomials of order 0 through 4 at x = 0
|
|
|
|
>>> N = range(0, 5)
|
|
>>> eval_legendre(N, 0)
|
|
array([ 1. , 0. , -0.5 , 0. , 0.375])
|
|
|
|
Plot Legendre polynomials of order 0 through 4
|
|
|
|
>>> X = np.linspace(-1, 1)
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> for n in range(0, 5):
|
|
... y = eval_legendre(n, X)
|
|
... plt.plot(X, y, label=r'$P_{}(x)$'.format(n))
|
|
|
|
>>> plt.title("Legendre Polynomials")
|
|
>>> plt.xlabel("x")
|
|
>>> plt.ylabel(r'$P_n(x)$')
|
|
>>> plt.legend(loc='lower right')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_sh_legendre",
|
|
r"""
|
|
eval_sh_legendre(n, x, out=None)
|
|
|
|
Evaluate shifted Legendre polynomial at a point.
|
|
|
|
These polynomials are defined as
|
|
|
|
.. math::
|
|
|
|
P_n^*(x) = P_n(2x - 1)
|
|
|
|
where :math:`P_n` is a Legendre polynomial. See 2.2.11 in [AS]_
|
|
for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the value is
|
|
determined via the relation to `eval_legendre`.
|
|
x : array_like
|
|
Points at which to evaluate the shifted Legendre polynomial
|
|
|
|
Returns
|
|
-------
|
|
P : ndarray
|
|
Values of the shifted Legendre polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_sh_legendre : roots and quadrature weights of shifted
|
|
Legendre polynomials
|
|
sh_legendre : shifted Legendre polynomial object
|
|
eval_legendre : evaluate Legendre polynomials
|
|
numpy.polynomial.legendre.Legendre : Legendre series
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_genlaguerre",
|
|
r"""
|
|
eval_genlaguerre(n, alpha, x, out=None)
|
|
|
|
Evaluate generalized Laguerre polynomial at a point.
|
|
|
|
The generalized Laguerre polynomials can be defined via the
|
|
confluent hypergeometric function :math:`{}_1F_1` as
|
|
|
|
.. math::
|
|
|
|
L_n^{(\alpha)}(x) = \binom{n + \alpha}{n}
|
|
{}_1F_1(-n, \alpha + 1, x).
|
|
|
|
When :math:`n` is an integer the result is a polynomial of degree
|
|
:math:`n`. See 22.5.54 in [AS]_ for details. The Laguerre
|
|
polynomials are the special case where :math:`\alpha = 0`.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer, the result is
|
|
determined via the relation to the confluent hypergeometric
|
|
function.
|
|
alpha : array_like
|
|
Parameter; must have ``alpha > -1``
|
|
x : array_like
|
|
Points at which to evaluate the generalized Laguerre
|
|
polynomial
|
|
|
|
Returns
|
|
-------
|
|
L : ndarray
|
|
Values of the generalized Laguerre polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_genlaguerre : roots and quadrature weights of generalized
|
|
Laguerre polynomials
|
|
genlaguerre : generalized Laguerre polynomial object
|
|
hyp1f1 : confluent hypergeometric function
|
|
eval_laguerre : evaluate Laguerre polynomials
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_laguerre",
|
|
r"""
|
|
eval_laguerre(n, x, out=None)
|
|
|
|
Evaluate Laguerre polynomial at a point.
|
|
|
|
The Laguerre polynomials can be defined via the confluent
|
|
hypergeometric function :math:`{}_1F_1` as
|
|
|
|
.. math::
|
|
|
|
L_n(x) = {}_1F_1(-n, 1, x).
|
|
|
|
See 22.5.16 and 22.5.54 in [AS]_ for details. When :math:`n` is an
|
|
integer the result is a polynomial of degree :math:`n`.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial. If not an integer the result is
|
|
determined via the relation to the confluent hypergeometric
|
|
function.
|
|
x : array_like
|
|
Points at which to evaluate the Laguerre polynomial
|
|
|
|
Returns
|
|
-------
|
|
L : ndarray
|
|
Values of the Laguerre polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_laguerre : roots and quadrature weights of Laguerre
|
|
polynomials
|
|
laguerre : Laguerre polynomial object
|
|
numpy.polynomial.laguerre.Laguerre : Laguerre series
|
|
eval_genlaguerre : evaluate generalized Laguerre polynomials
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_hermite",
|
|
r"""
|
|
eval_hermite(n, x, out=None)
|
|
|
|
Evaluate physicist's Hermite polynomial at a point.
|
|
|
|
Defined by
|
|
|
|
.. math::
|
|
|
|
H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2};
|
|
|
|
:math:`H_n` is a polynomial of degree :math:`n`. See 22.11.7 in
|
|
[AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial
|
|
x : array_like
|
|
Points at which to evaluate the Hermite polynomial
|
|
|
|
Returns
|
|
-------
|
|
H : ndarray
|
|
Values of the Hermite polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_hermite : roots and quadrature weights of physicist's
|
|
Hermite polynomials
|
|
hermite : physicist's Hermite polynomial object
|
|
numpy.polynomial.hermite.Hermite : Physicist's Hermite series
|
|
eval_hermitenorm : evaluate Probabilist's Hermite polynomials
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("eval_hermitenorm",
|
|
r"""
|
|
eval_hermitenorm(n, x, out=None)
|
|
|
|
Evaluate probabilist's (normalized) Hermite polynomial at a
|
|
point.
|
|
|
|
Defined by
|
|
|
|
.. math::
|
|
|
|
He_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2};
|
|
|
|
:math:`He_n` is a polynomial of degree :math:`n`. See 22.11.8 in
|
|
[AS]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Degree of the polynomial
|
|
x : array_like
|
|
Points at which to evaluate the Hermite polynomial
|
|
|
|
Returns
|
|
-------
|
|
He : ndarray
|
|
Values of the Hermite polynomial
|
|
|
|
See Also
|
|
--------
|
|
roots_hermitenorm : roots and quadrature weights of probabilist's
|
|
Hermite polynomials
|
|
hermitenorm : probabilist's Hermite polynomial object
|
|
numpy.polynomial.hermite_e.HermiteE : Probabilist's Hermite series
|
|
eval_hermite : evaluate physicist's Hermite polynomials
|
|
|
|
References
|
|
----------
|
|
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("exp1",
|
|
r"""
|
|
exp1(z, out=None)
|
|
|
|
Exponential integral E1.
|
|
|
|
For complex :math:`z \ne 0` the exponential integral can be defined as
|
|
[1]_
|
|
|
|
.. math::
|
|
|
|
E_1(z) = \int_z^\infty \frac{e^{-t}}{t} dt,
|
|
|
|
where the path of the integral does not cross the negative real
|
|
axis or pass through the origin.
|
|
|
|
Parameters
|
|
----------
|
|
z: array_like
|
|
Real or complex argument.
|
|
out: ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the exponential integral E1
|
|
|
|
See Also
|
|
--------
|
|
expi : exponential integral :math:`Ei`
|
|
expn : generalization of :math:`E_1`
|
|
|
|
Notes
|
|
-----
|
|
For :math:`x > 0` it is related to the exponential integral
|
|
:math:`Ei` (see `expi`) via the relation
|
|
|
|
.. math::
|
|
|
|
E_1(x) = -Ei(-x).
|
|
|
|
References
|
|
----------
|
|
.. [1] Digital Library of Mathematical Functions, 6.2.1
|
|
https://dlmf.nist.gov/6.2#E1
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It has a pole at 0.
|
|
|
|
>>> sc.exp1(0)
|
|
inf
|
|
|
|
It has a branch cut on the negative real axis.
|
|
|
|
>>> sc.exp1(-1)
|
|
nan
|
|
>>> sc.exp1(complex(-1, 0))
|
|
(-1.8951178163559368-3.141592653589793j)
|
|
>>> sc.exp1(complex(-1, -0.0))
|
|
(-1.8951178163559368+3.141592653589793j)
|
|
|
|
It approaches 0 along the positive real axis.
|
|
|
|
>>> sc.exp1([1, 10, 100, 1000])
|
|
array([2.19383934e-01, 4.15696893e-06, 3.68359776e-46, 0.00000000e+00])
|
|
|
|
It is related to `expi`.
|
|
|
|
>>> x = np.array([1, 2, 3, 4])
|
|
>>> sc.exp1(x)
|
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
|
>>> -sc.expi(-x)
|
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
|
|
|
""")
|
|
|
|
add_newdoc("exp10",
|
|
"""
|
|
exp10(x)
|
|
|
|
Compute ``10**x`` element-wise.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
`x` must contain real numbers.
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
``10**x``, computed element-wise.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import exp10
|
|
|
|
>>> exp10(3)
|
|
1000.0
|
|
>>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])
|
|
>>> exp10(x)
|
|
array([[ 0.1 , 0.31622777, 1. ],
|
|
[ 3.16227766, 10. , 31.6227766 ]])
|
|
|
|
""")
|
|
|
|
add_newdoc("exp2",
|
|
"""
|
|
exp2(x)
|
|
|
|
Compute ``2**x`` element-wise.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
`x` must contain real numbers.
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
``2**x``, computed element-wise.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import exp2
|
|
|
|
>>> exp2(3)
|
|
8.0
|
|
>>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])
|
|
>>> exp2(x)
|
|
array([[ 0.5 , 0.70710678, 1. ],
|
|
[ 1.41421356, 2. , 2.82842712]])
|
|
""")
|
|
|
|
add_newdoc("expi",
|
|
r"""
|
|
expi(x, out=None)
|
|
|
|
Exponential integral Ei.
|
|
|
|
For real :math:`x`, the exponential integral is defined as [1]_
|
|
|
|
.. math::
|
|
|
|
Ei(x) = \int_{-\infty}^x \frac{e^t}{t} dt.
|
|
|
|
For :math:`x > 0` the integral is understood as a Cauchy principle
|
|
value.
|
|
|
|
It is extended to the complex plane by analytic continuation of
|
|
the function on the interval :math:`(0, \infty)`. The complex
|
|
variant has a branch cut on the negative real axis.
|
|
|
|
Parameters
|
|
----------
|
|
x: array_like
|
|
Real or complex valued argument
|
|
out: ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the exponential integral
|
|
|
|
Notes
|
|
-----
|
|
The exponential integrals :math:`E_1` and :math:`Ei` satisfy the
|
|
relation
|
|
|
|
.. math::
|
|
|
|
E_1(x) = -Ei(-x)
|
|
|
|
for :math:`x > 0`.
|
|
|
|
See Also
|
|
--------
|
|
exp1 : Exponential integral :math:`E_1`
|
|
expn : Generalized exponential integral :math:`E_n`
|
|
|
|
References
|
|
----------
|
|
.. [1] Digital Library of Mathematical Functions, 6.2.5
|
|
https://dlmf.nist.gov/6.2#E5
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is related to `exp1`.
|
|
|
|
>>> x = np.array([1, 2, 3, 4])
|
|
>>> -sc.expi(-x)
|
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
|
>>> sc.exp1(x)
|
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
|
|
|
The complex variant has a branch cut on the negative real axis.
|
|
|
|
>>> import scipy.special as sc
|
|
>>> sc.expi(-1 + 1e-12j)
|
|
(-0.21938393439552062+3.1415926535894254j)
|
|
>>> sc.expi(-1 - 1e-12j)
|
|
(-0.21938393439552062-3.1415926535894254j)
|
|
|
|
As the complex variant approaches the branch cut, the real parts
|
|
approach the value of the real variant.
|
|
|
|
>>> sc.expi(-1)
|
|
-0.21938393439552062
|
|
|
|
The SciPy implementation returns the real variant for complex
|
|
values on the branch cut.
|
|
|
|
>>> sc.expi(complex(-1, 0.0))
|
|
(-0.21938393439552062-0j)
|
|
>>> sc.expi(complex(-1, -0.0))
|
|
(-0.21938393439552062-0j)
|
|
|
|
""")
|
|
|
|
add_newdoc('expit',
|
|
"""
|
|
expit(x)
|
|
|
|
Expit (a.k.a. logistic sigmoid) ufunc for ndarrays.
|
|
|
|
The expit function, also known as the logistic sigmoid function, is
|
|
defined as ``expit(x) = 1/(1+exp(-x))``. It is the inverse of the
|
|
logit function.
|
|
|
|
Parameters
|
|
----------
|
|
x : ndarray
|
|
The ndarray to apply expit to element-wise.
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
An ndarray of the same shape as x. Its entries
|
|
are `expit` of the corresponding entry of x.
|
|
|
|
See Also
|
|
--------
|
|
logit
|
|
|
|
Notes
|
|
-----
|
|
As a ufunc expit takes a number of optional
|
|
keyword arguments. For more information
|
|
see `ufuncs <https://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_
|
|
|
|
.. versionadded:: 0.10.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import expit, logit
|
|
|
|
>>> expit([-np.inf, -1.5, 0, 1.5, np.inf])
|
|
array([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ])
|
|
|
|
`logit` is the inverse of `expit`:
|
|
|
|
>>> logit(expit([-2.5, 0, 3.1, 5.0]))
|
|
array([-2.5, 0. , 3.1, 5. ])
|
|
|
|
Plot expit(x) for x in [-6, 6]:
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(-6, 6, 121)
|
|
>>> y = expit(x)
|
|
>>> plt.plot(x, y)
|
|
>>> plt.grid()
|
|
>>> plt.xlim(-6, 6)
|
|
>>> plt.xlabel('x')
|
|
>>> plt.title('expit(x)')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("expm1",
|
|
"""
|
|
expm1(x)
|
|
|
|
Compute ``exp(x) - 1``.
|
|
|
|
When `x` is near zero, ``exp(x)`` is near 1, so the numerical calculation
|
|
of ``exp(x) - 1`` can suffer from catastrophic loss of precision.
|
|
``expm1(x)`` is implemented to avoid the loss of precision that occurs when
|
|
`x` is near zero.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
`x` must contain real numbers.
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
``exp(x) - 1`` computed element-wise.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import expm1
|
|
|
|
>>> expm1(1.0)
|
|
1.7182818284590451
|
|
>>> expm1([-0.2, -0.1, 0, 0.1, 0.2])
|
|
array([-0.18126925, -0.09516258, 0. , 0.10517092, 0.22140276])
|
|
|
|
The exact value of ``exp(7.5e-13) - 1`` is::
|
|
|
|
7.5000000000028125000000007031250000001318...*10**-13.
|
|
|
|
Here is what ``expm1(7.5e-13)`` gives:
|
|
|
|
>>> expm1(7.5e-13)
|
|
7.5000000000028135e-13
|
|
|
|
Compare that to ``exp(7.5e-13) - 1``, where the subtraction results in
|
|
a "catastrophic" loss of precision:
|
|
|
|
>>> np.exp(7.5e-13) - 1
|
|
7.5006667543675576e-13
|
|
|
|
""")
|
|
|
|
add_newdoc("expn",
|
|
r"""
|
|
expn(n, x, out=None)
|
|
|
|
Generalized exponential integral En.
|
|
|
|
For integer :math:`n \geq 0` and real :math:`x \geq 0` the
|
|
generalized exponential integral is defined as [dlmf]_
|
|
|
|
.. math::
|
|
|
|
E_n(x) = x^{n - 1} \int_x^\infty \frac{e^{-t}}{t^n} dt.
|
|
|
|
Parameters
|
|
----------
|
|
n: array_like
|
|
Non-negative integers
|
|
x: array_like
|
|
Real argument
|
|
out: ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the generalized exponential integral
|
|
|
|
See Also
|
|
--------
|
|
exp1 : special case of :math:`E_n` for :math:`n = 1`
|
|
expi : related to :math:`E_n` when :math:`n = 1`
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] Digital Library of Mathematical Functions, 8.19.2
|
|
https://dlmf.nist.gov/8.19#E2
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
Its domain is nonnegative n and x.
|
|
|
|
>>> sc.expn(-1, 1.0), sc.expn(1, -1.0)
|
|
(nan, nan)
|
|
|
|
It has a pole at ``x = 0`` for ``n = 1, 2``; for larger ``n`` it
|
|
is equal to ``1 / (n - 1)``.
|
|
|
|
>>> sc.expn([0, 1, 2, 3, 4], 0)
|
|
array([ inf, inf, 1. , 0.5 , 0.33333333])
|
|
|
|
For n equal to 0 it reduces to ``exp(-x) / x``.
|
|
|
|
>>> x = np.array([1, 2, 3, 4])
|
|
>>> sc.expn(0, x)
|
|
array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
|
|
>>> np.exp(-x) / x
|
|
array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
|
|
|
|
For n equal to 1 it reduces to `exp1`.
|
|
|
|
>>> sc.expn(1, x)
|
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
|
>>> sc.exp1(x)
|
|
array([0.21938393, 0.04890051, 0.01304838, 0.00377935])
|
|
|
|
""")
|
|
|
|
add_newdoc("exprel",
|
|
r"""
|
|
exprel(x)
|
|
|
|
Relative error exponential, ``(exp(x) - 1)/x``.
|
|
|
|
When `x` is near zero, ``exp(x)`` is near 1, so the numerical calculation
|
|
of ``exp(x) - 1`` can suffer from catastrophic loss of precision.
|
|
``exprel(x)`` is implemented to avoid the loss of precision that occurs when
|
|
`x` is near zero.
|
|
|
|
Parameters
|
|
----------
|
|
x : ndarray
|
|
Input array. `x` must contain real numbers.
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
``(exp(x) - 1)/x``, computed element-wise.
|
|
|
|
See Also
|
|
--------
|
|
expm1
|
|
|
|
Notes
|
|
-----
|
|
.. versionadded:: 0.17.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import exprel
|
|
|
|
>>> exprel(0.01)
|
|
1.0050167084168056
|
|
>>> exprel([-0.25, -0.1, 0, 0.1, 0.25])
|
|
array([ 0.88479687, 0.95162582, 1. , 1.05170918, 1.13610167])
|
|
|
|
Compare ``exprel(5e-9)`` to the naive calculation. The exact value
|
|
is ``1.00000000250000000416...``.
|
|
|
|
>>> exprel(5e-9)
|
|
1.0000000025
|
|
|
|
>>> (np.exp(5e-9) - 1)/5e-9
|
|
0.99999999392252903
|
|
""")
|
|
|
|
add_newdoc("fdtr",
|
|
r"""
|
|
fdtr(dfn, dfd, x)
|
|
|
|
F cumulative distribution function.
|
|
|
|
Returns the value of the cumulative distribution function of the
|
|
F-distribution, also known as Snedecor's F-distribution or the
|
|
Fisher-Snedecor distribution.
|
|
|
|
The F-distribution with parameters :math:`d_n` and :math:`d_d` is the
|
|
distribution of the random variable,
|
|
|
|
.. math::
|
|
X = \frac{U_n/d_n}{U_d/d_d},
|
|
|
|
where :math:`U_n` and :math:`U_d` are random variables distributed
|
|
:math:`\chi^2`, with :math:`d_n` and :math:`d_d` degrees of freedom,
|
|
respectively.
|
|
|
|
Parameters
|
|
----------
|
|
dfn : array_like
|
|
First parameter (positive float).
|
|
dfd : array_like
|
|
Second parameter (positive float).
|
|
x : array_like
|
|
Argument (nonnegative float).
|
|
|
|
Returns
|
|
-------
|
|
y : ndarray
|
|
The CDF of the F-distribution with parameters `dfn` and `dfd` at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The regularized incomplete beta function is used, according to the
|
|
formula,
|
|
|
|
.. math::
|
|
F(d_n, d_d; x) = I_{xd_n/(d_d + xd_n)}(d_n/2, d_d/2).
|
|
|
|
Wrapper for the Cephes [1]_ routine `fdtr`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("fdtrc",
|
|
r"""
|
|
fdtrc(dfn, dfd, x)
|
|
|
|
F survival function.
|
|
|
|
Returns the complemented F-distribution function (the integral of the
|
|
density from `x` to infinity).
|
|
|
|
Parameters
|
|
----------
|
|
dfn : array_like
|
|
First parameter (positive float).
|
|
dfd : array_like
|
|
Second parameter (positive float).
|
|
x : array_like
|
|
Argument (nonnegative float).
|
|
|
|
Returns
|
|
-------
|
|
y : ndarray
|
|
The complemented F-distribution function with parameters `dfn` and
|
|
`dfd` at `x`.
|
|
|
|
See also
|
|
--------
|
|
fdtr
|
|
|
|
Notes
|
|
-----
|
|
The regularized incomplete beta function is used, according to the
|
|
formula,
|
|
|
|
.. math::
|
|
F(d_n, d_d; x) = I_{d_d/(d_d + xd_n)}(d_d/2, d_n/2).
|
|
|
|
Wrapper for the Cephes [1]_ routine `fdtrc`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("fdtri",
|
|
r"""
|
|
fdtri(dfn, dfd, p)
|
|
|
|
The `p`-th quantile of the F-distribution.
|
|
|
|
This function is the inverse of the F-distribution CDF, `fdtr`, returning
|
|
the `x` such that `fdtr(dfn, dfd, x) = p`.
|
|
|
|
Parameters
|
|
----------
|
|
dfn : array_like
|
|
First parameter (positive float).
|
|
dfd : array_like
|
|
Second parameter (positive float).
|
|
p : array_like
|
|
Cumulative probability, in [0, 1].
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
The quantile corresponding to `p`.
|
|
|
|
Notes
|
|
-----
|
|
The computation is carried out using the relation to the inverse
|
|
regularized beta function, :math:`I^{-1}_x(a, b)`. Let
|
|
:math:`z = I^{-1}_p(d_d/2, d_n/2).` Then,
|
|
|
|
.. math::
|
|
x = \frac{d_d (1 - z)}{d_n z}.
|
|
|
|
If `p` is such that :math:`x < 0.5`, the following relation is used
|
|
instead for improved stability: let
|
|
:math:`z' = I^{-1}_{1 - p}(d_n/2, d_d/2).` Then,
|
|
|
|
.. math::
|
|
x = \frac{d_d z'}{d_n (1 - z')}.
|
|
|
|
Wrapper for the Cephes [1]_ routine `fdtri`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("fdtridfd",
|
|
"""
|
|
fdtridfd(dfn, p, x)
|
|
|
|
Inverse to `fdtr` vs dfd
|
|
|
|
Finds the F density argument dfd such that ``fdtr(dfn, dfd, x) == p``.
|
|
""")
|
|
|
|
add_newdoc("fdtridfn",
|
|
"""
|
|
fdtridfn(p, dfd, x)
|
|
|
|
Inverse to `fdtr` vs dfn
|
|
|
|
finds the F density argument dfn such that ``fdtr(dfn, dfd, x) == p``.
|
|
""")
|
|
|
|
add_newdoc("fresnel",
|
|
r"""
|
|
fresnel(z, out=None)
|
|
|
|
Fresnel integrals.
|
|
|
|
The Fresnel integrals are defined as
|
|
|
|
.. math::
|
|
|
|
S(z) &= \int_0^z \sin(\pi t^2 /2) dt \\
|
|
C(z) &= \int_0^z \cos(\pi t^2 /2) dt.
|
|
|
|
See [dlmf]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Real or complex valued argument
|
|
out : 2-tuple of ndarrays, optional
|
|
Optional output arrays for the function results
|
|
|
|
Returns
|
|
-------
|
|
S, C : 2-tuple of scalar or ndarray
|
|
Values of the Fresnel integrals
|
|
|
|
See Also
|
|
--------
|
|
fresnel_zeros : zeros of the Fresnel integrals
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/7.2#iii
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
As z goes to infinity along the real axis, S and C converge to 0.5.
|
|
|
|
>>> S, C = sc.fresnel([0.1, 1, 10, 100, np.inf])
|
|
>>> S
|
|
array([0.00052359, 0.43825915, 0.46816998, 0.4968169 , 0.5 ])
|
|
>>> C
|
|
array([0.09999753, 0.7798934 , 0.49989869, 0.4999999 , 0.5 ])
|
|
|
|
They are related to the error function `erf`.
|
|
|
|
>>> z = np.array([1, 2, 3, 4])
|
|
>>> zeta = 0.5 * np.sqrt(np.pi) * (1 - 1j) * z
|
|
>>> S, C = sc.fresnel(z)
|
|
>>> C + 1j*S
|
|
array([0.7798934 +0.43825915j, 0.48825341+0.34341568j,
|
|
0.60572079+0.496313j , 0.49842603+0.42051575j])
|
|
>>> 0.5 * (1 + 1j) * sc.erf(zeta)
|
|
array([0.7798934 +0.43825915j, 0.48825341+0.34341568j,
|
|
0.60572079+0.496313j , 0.49842603+0.42051575j])
|
|
|
|
""")
|
|
|
|
add_newdoc("gamma",
|
|
r"""
|
|
gamma(z)
|
|
|
|
gamma function.
|
|
|
|
The gamma function is defined as
|
|
|
|
.. math::
|
|
|
|
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt
|
|
|
|
for :math:`\Re(z) > 0` and is extended to the rest of the complex
|
|
plane by analytic continuation. See [dlmf]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Real or complex valued argument
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the gamma function
|
|
|
|
Notes
|
|
-----
|
|
The gamma function is often referred to as the generalized
|
|
factorial since :math:`\Gamma(n + 1) = n!` for natural numbers
|
|
:math:`n`. More generally it satisfies the recurrence relation
|
|
:math:`\Gamma(z + 1) = z \cdot \Gamma(z)` for complex :math:`z`,
|
|
which, combined with the fact that :math:`\Gamma(1) = 1`, implies
|
|
the above identity for :math:`z = n`.
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/5.2#E1
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import gamma, factorial
|
|
|
|
>>> gamma([0, 0.5, 1, 5])
|
|
array([ inf, 1.77245385, 1. , 24. ])
|
|
|
|
>>> z = 2.5 + 1j
|
|
>>> gamma(z)
|
|
(0.77476210455108352+0.70763120437959293j)
|
|
>>> gamma(z+1), z*gamma(z) # Recurrence property
|
|
((1.2292740569981171+2.5438401155000685j),
|
|
(1.2292740569981158+2.5438401155000658j))
|
|
|
|
>>> gamma(0.5)**2 # gamma(0.5) = sqrt(pi)
|
|
3.1415926535897927
|
|
|
|
Plot gamma(x) for real x
|
|
|
|
>>> x = np.linspace(-3.5, 5.5, 2251)
|
|
>>> y = gamma(x)
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')
|
|
>>> k = np.arange(1, 7)
|
|
>>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,
|
|
... label='(x-1)!, x = 1, 2, ...')
|
|
>>> plt.xlim(-3.5, 5.5)
|
|
>>> plt.ylim(-10, 25)
|
|
>>> plt.grid()
|
|
>>> plt.xlabel('x')
|
|
>>> plt.legend(loc='lower right')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("gammainc",
|
|
r"""
|
|
gammainc(a, x)
|
|
|
|
Regularized lower incomplete gamma function.
|
|
|
|
It is defined as
|
|
|
|
.. math::
|
|
|
|
P(a, x) = \frac{1}{\Gamma(a)} \int_0^x t^{a - 1}e^{-t} dt
|
|
|
|
for :math:`a > 0` and :math:`x \geq 0`. See [dlmf]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Positive parameter
|
|
x : array_like
|
|
Nonnegative argument
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the lower incomplete gamma function
|
|
|
|
Notes
|
|
-----
|
|
The function satisfies the relation ``gammainc(a, x) +
|
|
gammaincc(a, x) = 1`` where `gammaincc` is the regularized upper
|
|
incomplete gamma function.
|
|
|
|
The implementation largely follows that of [boost]_.
|
|
|
|
See also
|
|
--------
|
|
gammaincc : regularized upper incomplete gamma function
|
|
gammaincinv : inverse of the regularized lower incomplete gamma
|
|
function with respect to `x`
|
|
gammainccinv : inverse of the regularized upper incomplete gamma
|
|
function with respect to `x`
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical functions
|
|
https://dlmf.nist.gov/8.2#E4
|
|
.. [boost] Maddock et. al., "Incomplete Gamma Functions",
|
|
https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is the CDF of the gamma distribution, so it starts at 0 and
|
|
monotonically increases to 1.
|
|
|
|
>>> sc.gammainc(0.5, [0, 1, 10, 100])
|
|
array([0. , 0.84270079, 0.99999226, 1. ])
|
|
|
|
It is equal to one minus the upper incomplete gamma function.
|
|
|
|
>>> a, x = 0.5, 0.4
|
|
>>> sc.gammainc(a, x)
|
|
0.6289066304773024
|
|
>>> 1 - sc.gammaincc(a, x)
|
|
0.6289066304773024
|
|
|
|
""")
|
|
|
|
add_newdoc("gammaincc",
|
|
r"""
|
|
gammaincc(a, x)
|
|
|
|
Regularized upper incomplete gamma function.
|
|
|
|
It is defined as
|
|
|
|
.. math::
|
|
|
|
Q(a, x) = \frac{1}{\Gamma(a)} \int_x^\infty t^{a - 1}e^{-t} dt
|
|
|
|
for :math:`a > 0` and :math:`x \geq 0`. See [dlmf]_ for details.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Positive parameter
|
|
x : array_like
|
|
Nonnegative argument
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the upper incomplete gamma function
|
|
|
|
Notes
|
|
-----
|
|
The function satisfies the relation ``gammainc(a, x) +
|
|
gammaincc(a, x) = 1`` where `gammainc` is the regularized lower
|
|
incomplete gamma function.
|
|
|
|
The implementation largely follows that of [boost]_.
|
|
|
|
See also
|
|
--------
|
|
gammainc : regularized lower incomplete gamma function
|
|
gammaincinv : inverse of the regularized lower incomplete gamma
|
|
function with respect to `x`
|
|
gammainccinv : inverse to of the regularized upper incomplete
|
|
gamma function with respect to `x`
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical functions
|
|
https://dlmf.nist.gov/8.2#E4
|
|
.. [boost] Maddock et. al., "Incomplete Gamma Functions",
|
|
https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is the survival function of the gamma distribution, so it
|
|
starts at 1 and monotonically decreases to 0.
|
|
|
|
>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])
|
|
array([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,
|
|
0.00000000e+00])
|
|
|
|
It is equal to one minus the lower incomplete gamma function.
|
|
|
|
>>> a, x = 0.5, 0.4
|
|
>>> sc.gammaincc(a, x)
|
|
0.37109336952269756
|
|
>>> 1 - sc.gammainc(a, x)
|
|
0.37109336952269756
|
|
|
|
""")
|
|
|
|
add_newdoc("gammainccinv",
|
|
"""
|
|
gammainccinv(a, y)
|
|
|
|
Inverse of the upper incomplete gamma function with respect to `x`
|
|
|
|
Given an input :math:`y` between 0 and 1, returns :math:`x` such
|
|
that :math:`y = Q(a, x)`. Here :math:`Q` is the upper incomplete
|
|
gamma function; see `gammaincc`. This is well-defined because the
|
|
upper incomplete gamma function is monotonic as can be seen from
|
|
its definition in [dlmf]_.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Positive parameter
|
|
y : array_like
|
|
Argument between 0 and 1, inclusive
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the inverse of the upper incomplete gamma function
|
|
|
|
See Also
|
|
--------
|
|
gammaincc : regularized upper incomplete gamma function
|
|
gammainc : regularized lower incomplete gamma function
|
|
gammaincinv : inverse of the regularized lower incomplete gamma
|
|
function with respect to `x`
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/8.2#E4
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It starts at infinity and monotonically decreases to 0.
|
|
|
|
>>> sc.gammainccinv(0.5, [0, 0.1, 0.5, 1])
|
|
array([ inf, 1.35277173, 0.22746821, 0. ])
|
|
|
|
It inverts the upper incomplete gamma function.
|
|
|
|
>>> a, x = 0.5, [0, 0.1, 0.5, 1]
|
|
>>> sc.gammaincc(a, sc.gammainccinv(a, x))
|
|
array([0. , 0.1, 0.5, 1. ])
|
|
|
|
>>> a, x = 0.5, [0, 10, 50]
|
|
>>> sc.gammainccinv(a, sc.gammaincc(a, x))
|
|
array([ 0., 10., 50.])
|
|
|
|
""")
|
|
|
|
add_newdoc("gammaincinv",
|
|
"""
|
|
gammaincinv(a, y)
|
|
|
|
Inverse to the lower incomplete gamma function with respect to `x`.
|
|
|
|
Given an input :math:`y` between 0 and 1, returns :math:`x` such
|
|
that :math:`y = P(a, x)`. Here :math:`P` is the regularized lower
|
|
incomplete gamma function; see `gammainc`. This is well-defined
|
|
because the lower incomplete gamma function is monotonic as can be
|
|
seen from its definition in [dlmf]_.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Positive parameter
|
|
y : array_like
|
|
Parameter between 0 and 1, inclusive
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the inverse of the lower incomplete gamma function
|
|
|
|
See Also
|
|
--------
|
|
gammainc : regularized lower incomplete gamma function
|
|
gammaincc : regularized upper incomplete gamma function
|
|
gammainccinv : inverse of the regualizred upper incomplete gamma
|
|
function with respect to `x`
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/8.2#E4
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It starts at 0 and monotonically increases to infinity.
|
|
|
|
>>> sc.gammaincinv(0.5, [0, 0.1 ,0.5, 1])
|
|
array([0. , 0.00789539, 0.22746821, inf])
|
|
|
|
It inverts the lower incomplete gamma function.
|
|
|
|
>>> a, x = 0.5, [0, 0.1, 0.5, 1]
|
|
>>> sc.gammainc(a, sc.gammaincinv(a, x))
|
|
array([0. , 0.1, 0.5, 1. ])
|
|
|
|
>>> a, x = 0.5, [0, 10, 25]
|
|
>>> sc.gammaincinv(a, sc.gammainc(a, x))
|
|
array([ 0. , 10. , 25.00001465])
|
|
|
|
""")
|
|
|
|
add_newdoc("gammaln",
|
|
r"""
|
|
gammaln(x, out=None)
|
|
|
|
Logarithm of the absolute value of the gamma function.
|
|
|
|
Defined as
|
|
|
|
.. math::
|
|
|
|
\ln(\lvert\Gamma(x)\rvert)
|
|
|
|
where :math:`\Gamma` is the gamma function. For more details on
|
|
the gamma function, see [dlmf]_.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the log of the absolute value of gamma
|
|
|
|
See Also
|
|
--------
|
|
gammasgn : sign of the gamma function
|
|
loggamma : principal branch of the logarithm of the gamma function
|
|
|
|
Notes
|
|
-----
|
|
It is the same function as the Python standard library function
|
|
:func:`math.lgamma`.
|
|
|
|
When used in conjunction with `gammasgn`, this function is useful
|
|
for working in logspace on the real axis without having to deal
|
|
with complex numbers via the relation ``exp(gammaln(x)) =
|
|
gammasgn(x) * gamma(x)``.
|
|
|
|
For complex-valued log-gamma, use `loggamma` instead of `gammaln`.
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/5
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It has two positive zeros.
|
|
|
|
>>> sc.gammaln([1, 2])
|
|
array([0., 0.])
|
|
|
|
It has poles at nonpositive integers.
|
|
|
|
>>> sc.gammaln([0, -1, -2, -3, -4])
|
|
array([inf, inf, inf, inf, inf])
|
|
|
|
It asymptotically approaches ``x * log(x)`` (Stirling's formula).
|
|
|
|
>>> x = np.array([1e10, 1e20, 1e40, 1e80])
|
|
>>> sc.gammaln(x)
|
|
array([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82])
|
|
>>> x * np.log(x)
|
|
array([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82])
|
|
|
|
""")
|
|
|
|
add_newdoc("gammasgn",
|
|
r"""
|
|
gammasgn(x)
|
|
|
|
Sign of the gamma function.
|
|
|
|
It is defined as
|
|
|
|
.. math::
|
|
|
|
\text{gammasgn}(x) =
|
|
\begin{cases}
|
|
+1 & \Gamma(x) > 0 \\
|
|
-1 & \Gamma(x) < 0
|
|
\end{cases}
|
|
|
|
where :math:`\Gamma` is the gamma function; see `gamma`. This
|
|
definition is complete since the gamma function is never zero;
|
|
see the discussion after [dlmf]_.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Sign of the gamma function
|
|
|
|
Notes
|
|
-----
|
|
The gamma function can be computed as ``gammasgn(x) *
|
|
np.exp(gammaln(x))``.
|
|
|
|
See Also
|
|
--------
|
|
gamma : the gamma function
|
|
gammaln : log of the absolute value of the gamma function
|
|
loggamma : analytic continuation of the log of the gamma function
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/5.2#E1
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is 1 for `x > 0`.
|
|
|
|
>>> sc.gammasgn([1, 2, 3, 4])
|
|
array([1., 1., 1., 1.])
|
|
|
|
It alternates between -1 and 1 for negative integers.
|
|
|
|
>>> sc.gammasgn([-0.5, -1.5, -2.5, -3.5])
|
|
array([-1., 1., -1., 1.])
|
|
|
|
It can be used to compute the gamma function.
|
|
|
|
>>> x = [1.5, 0.5, -0.5, -1.5]
|
|
>>> sc.gammasgn(x) * np.exp(sc.gammaln(x))
|
|
array([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])
|
|
>>> sc.gamma(x)
|
|
array([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])
|
|
|
|
""")
|
|
|
|
add_newdoc("gdtr",
|
|
r"""
|
|
gdtr(a, b, x)
|
|
|
|
Gamma distribution cumulative distribution function.
|
|
|
|
Returns the integral from zero to `x` of the gamma probability density
|
|
function,
|
|
|
|
.. math::
|
|
|
|
F = \int_0^x \frac{a^b}{\Gamma(b)} t^{b-1} e^{-at}\,dt,
|
|
|
|
where :math:`\Gamma` is the gamma function.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
The rate parameter of the gamma distribution, sometimes denoted
|
|
:math:`\beta` (float). It is also the reciprocal of the scale
|
|
parameter :math:`\theta`.
|
|
b : array_like
|
|
The shape parameter of the gamma distribution, sometimes denoted
|
|
:math:`\alpha` (float).
|
|
x : array_like
|
|
The quantile (upper limit of integration; float).
|
|
|
|
See also
|
|
--------
|
|
gdtrc : 1 - CDF of the gamma distribution.
|
|
|
|
Returns
|
|
-------
|
|
F : ndarray
|
|
The CDF of the gamma distribution with parameters `a` and `b`
|
|
evaluated at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The evaluation is carried out using the relation to the incomplete gamma
|
|
integral (regularized gamma function).
|
|
|
|
Wrapper for the Cephes [1]_ routine `gdtr`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("gdtrc",
|
|
r"""
|
|
gdtrc(a, b, x)
|
|
|
|
Gamma distribution survival function.
|
|
|
|
Integral from `x` to infinity of the gamma probability density function,
|
|
|
|
.. math::
|
|
|
|
F = \int_x^\infty \frac{a^b}{\Gamma(b)} t^{b-1} e^{-at}\,dt,
|
|
|
|
where :math:`\Gamma` is the gamma function.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
The rate parameter of the gamma distribution, sometimes denoted
|
|
:math:`\beta` (float). It is also the reciprocal of the scale
|
|
parameter :math:`\theta`.
|
|
b : array_like
|
|
The shape parameter of the gamma distribution, sometimes denoted
|
|
:math:`\alpha` (float).
|
|
x : array_like
|
|
The quantile (lower limit of integration; float).
|
|
|
|
Returns
|
|
-------
|
|
F : ndarray
|
|
The survival function of the gamma distribution with parameters `a`
|
|
and `b` evaluated at `x`.
|
|
|
|
See Also
|
|
--------
|
|
gdtr, gdtrix
|
|
|
|
Notes
|
|
-----
|
|
The evaluation is carried out using the relation to the incomplete gamma
|
|
integral (regularized gamma function).
|
|
|
|
Wrapper for the Cephes [1]_ routine `gdtrc`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("gdtria",
|
|
"""
|
|
gdtria(p, b, x, out=None)
|
|
|
|
Inverse of `gdtr` vs a.
|
|
|
|
Returns the inverse with respect to the parameter `a` of ``p =
|
|
gdtr(a, b, x)``, the cumulative distribution function of the gamma
|
|
distribution.
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
Probability values.
|
|
b : array_like
|
|
`b` parameter values of `gdtr(a, b, x)`. `b` is the "shape" parameter
|
|
of the gamma distribution.
|
|
x : array_like
|
|
Nonnegative real values, from the domain of the gamma distribution.
|
|
out : ndarray, optional
|
|
If a fourth argument is given, it must be a numpy.ndarray whose size
|
|
matches the broadcast result of `a`, `b` and `x`. `out` is then the
|
|
array returned by the function.
|
|
|
|
Returns
|
|
-------
|
|
a : ndarray
|
|
Values of the `a` parameter such that `p = gdtr(a, b, x)`. `1/a`
|
|
is the "scale" parameter of the gamma distribution.
|
|
|
|
See Also
|
|
--------
|
|
gdtr : CDF of the gamma distribution.
|
|
gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`.
|
|
gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.
|
|
|
|
The cumulative distribution function `p` is computed using a routine by
|
|
DiDinato and Morris [2]_. Computation of `a` involves a search for a value
|
|
that produces the desired value of `p`. The search relies on the
|
|
monotonicity of `p` with `a`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
|
Computation of the incomplete gamma function ratios and their
|
|
inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.
|
|
|
|
Examples
|
|
--------
|
|
First evaluate `gdtr`.
|
|
|
|
>>> from scipy.special import gdtr, gdtria
|
|
>>> p = gdtr(1.2, 3.4, 5.6)
|
|
>>> print(p)
|
|
0.94378087442
|
|
|
|
Verify the inverse.
|
|
|
|
>>> gdtria(p, 3.4, 5.6)
|
|
1.2
|
|
""")
|
|
|
|
add_newdoc("gdtrib",
|
|
"""
|
|
gdtrib(a, p, x, out=None)
|
|
|
|
Inverse of `gdtr` vs b.
|
|
|
|
Returns the inverse with respect to the parameter `b` of ``p =
|
|
gdtr(a, b, x)``, the cumulative distribution function of the gamma
|
|
distribution.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
`a` parameter values of `gdtr(a, b, x)`. `1/a` is the "scale"
|
|
parameter of the gamma distribution.
|
|
p : array_like
|
|
Probability values.
|
|
x : array_like
|
|
Nonnegative real values, from the domain of the gamma distribution.
|
|
out : ndarray, optional
|
|
If a fourth argument is given, it must be a numpy.ndarray whose size
|
|
matches the broadcast result of `a`, `b` and `x`. `out` is then the
|
|
array returned by the function.
|
|
|
|
Returns
|
|
-------
|
|
b : ndarray
|
|
Values of the `b` parameter such that `p = gdtr(a, b, x)`. `b` is
|
|
the "shape" parameter of the gamma distribution.
|
|
|
|
See Also
|
|
--------
|
|
gdtr : CDF of the gamma distribution.
|
|
gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.
|
|
gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.
|
|
|
|
The cumulative distribution function `p` is computed using a routine by
|
|
DiDinato and Morris [2]_. Computation of `b` involves a search for a value
|
|
that produces the desired value of `p`. The search relies on the
|
|
monotonicity of `p` with `b`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
|
Computation of the incomplete gamma function ratios and their
|
|
inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.
|
|
|
|
Examples
|
|
--------
|
|
First evaluate `gdtr`.
|
|
|
|
>>> from scipy.special import gdtr, gdtrib
|
|
>>> p = gdtr(1.2, 3.4, 5.6)
|
|
>>> print(p)
|
|
0.94378087442
|
|
|
|
Verify the inverse.
|
|
|
|
>>> gdtrib(1.2, p, 5.6)
|
|
3.3999999999723882
|
|
""")
|
|
|
|
add_newdoc("gdtrix",
|
|
"""
|
|
gdtrix(a, b, p, out=None)
|
|
|
|
Inverse of `gdtr` vs x.
|
|
|
|
Returns the inverse with respect to the parameter `x` of ``p =
|
|
gdtr(a, b, x)``, the cumulative distribution function of the gamma
|
|
distribution. This is also known as the pth quantile of the
|
|
distribution.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
`a` parameter values of `gdtr(a, b, x)`. `1/a` is the "scale"
|
|
parameter of the gamma distribution.
|
|
b : array_like
|
|
`b` parameter values of `gdtr(a, b, x)`. `b` is the "shape" parameter
|
|
of the gamma distribution.
|
|
p : array_like
|
|
Probability values.
|
|
out : ndarray, optional
|
|
If a fourth argument is given, it must be a numpy.ndarray whose size
|
|
matches the broadcast result of `a`, `b` and `x`. `out` is then the
|
|
array returned by the function.
|
|
|
|
Returns
|
|
-------
|
|
x : ndarray
|
|
Values of the `x` parameter such that `p = gdtr(a, b, x)`.
|
|
|
|
See Also
|
|
--------
|
|
gdtr : CDF of the gamma distribution.
|
|
gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.
|
|
gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.
|
|
|
|
The cumulative distribution function `p` is computed using a routine by
|
|
DiDinato and Morris [2]_. Computation of `x` involves a search for a value
|
|
that produces the desired value of `p`. The search relies on the
|
|
monotonicity of `p` with `x`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
.. [2] DiDinato, A. R. and Morris, A. H.,
|
|
Computation of the incomplete gamma function ratios and their
|
|
inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.
|
|
|
|
Examples
|
|
--------
|
|
First evaluate `gdtr`.
|
|
|
|
>>> from scipy.special import gdtr, gdtrix
|
|
>>> p = gdtr(1.2, 3.4, 5.6)
|
|
>>> print(p)
|
|
0.94378087442
|
|
|
|
Verify the inverse.
|
|
|
|
>>> gdtrix(1.2, 3.4, p)
|
|
5.5999999999999996
|
|
""")
|
|
|
|
add_newdoc("hankel1",
|
|
r"""
|
|
hankel1(v, z)
|
|
|
|
Hankel function of the first kind
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order (float).
|
|
z : array_like
|
|
Argument (float or complex).
|
|
|
|
Returns
|
|
-------
|
|
out : Values of the Hankel function of the first kind.
|
|
|
|
Notes
|
|
-----
|
|
A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the
|
|
computation using the relation,
|
|
|
|
.. math:: H^{(1)}_v(z) = \frac{2}{\imath\pi} \exp(-\imath \pi v/2) K_v(z \exp(-\imath\pi/2))
|
|
|
|
where :math:`K_v` is the modified Bessel function of the second kind.
|
|
For negative orders, the relation
|
|
|
|
.. math:: H^{(1)}_{-v}(z) = H^{(1)}_v(z) \exp(\imath\pi v)
|
|
|
|
is used.
|
|
|
|
See also
|
|
--------
|
|
hankel1e : this function with leading exponential behavior stripped off.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
""")
|
|
|
|
add_newdoc("hankel1e",
|
|
r"""
|
|
hankel1e(v, z)
|
|
|
|
Exponentially scaled Hankel function of the first kind
|
|
|
|
Defined as::
|
|
|
|
hankel1e(v, z) = hankel1(v, z) * exp(-1j * z)
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order (float).
|
|
z : array_like
|
|
Argument (float or complex).
|
|
|
|
Returns
|
|
-------
|
|
out : Values of the exponentially scaled Hankel function.
|
|
|
|
Notes
|
|
-----
|
|
A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the
|
|
computation using the relation,
|
|
|
|
.. math:: H^{(1)}_v(z) = \frac{2}{\imath\pi} \exp(-\imath \pi v/2) K_v(z \exp(-\imath\pi/2))
|
|
|
|
where :math:`K_v` is the modified Bessel function of the second kind.
|
|
For negative orders, the relation
|
|
|
|
.. math:: H^{(1)}_{-v}(z) = H^{(1)}_v(z) \exp(\imath\pi v)
|
|
|
|
is used.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
""")
|
|
|
|
add_newdoc("hankel2",
|
|
r"""
|
|
hankel2(v, z)
|
|
|
|
Hankel function of the second kind
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order (float).
|
|
z : array_like
|
|
Argument (float or complex).
|
|
|
|
Returns
|
|
-------
|
|
out : Values of the Hankel function of the second kind.
|
|
|
|
Notes
|
|
-----
|
|
A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the
|
|
computation using the relation,
|
|
|
|
.. math:: H^{(2)}_v(z) = -\frac{2}{\imath\pi} \exp(\imath \pi v/2) K_v(z \exp(\imath\pi/2))
|
|
|
|
where :math:`K_v` is the modified Bessel function of the second kind.
|
|
For negative orders, the relation
|
|
|
|
.. math:: H^{(2)}_{-v}(z) = H^{(2)}_v(z) \exp(-\imath\pi v)
|
|
|
|
is used.
|
|
|
|
See also
|
|
--------
|
|
hankel2e : this function with leading exponential behavior stripped off.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
""")
|
|
|
|
add_newdoc("hankel2e",
|
|
r"""
|
|
hankel2e(v, z)
|
|
|
|
Exponentially scaled Hankel function of the second kind
|
|
|
|
Defined as::
|
|
|
|
hankel2e(v, z) = hankel2(v, z) * exp(1j * z)
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order (float).
|
|
z : array_like
|
|
Argument (float or complex).
|
|
|
|
Returns
|
|
-------
|
|
out : Values of the exponentially scaled Hankel function of the second kind.
|
|
|
|
Notes
|
|
-----
|
|
A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the
|
|
computation using the relation,
|
|
|
|
.. math:: H^{(2)}_v(z) = -\frac{2}{\imath\pi} \exp(\frac{\imath \pi v}{2}) K_v(z exp(\frac{\imath\pi}{2}))
|
|
|
|
where :math:`K_v` is the modified Bessel function of the second kind.
|
|
For negative orders, the relation
|
|
|
|
.. math:: H^{(2)}_{-v}(z) = H^{(2)}_v(z) \exp(-\imath\pi v)
|
|
|
|
is used.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
|
|
""")
|
|
|
|
add_newdoc("huber",
|
|
r"""
|
|
huber(delta, r)
|
|
|
|
Huber loss function.
|
|
|
|
.. math:: \text{huber}(\delta, r) = \begin{cases} \infty & \delta < 0 \\ \frac{1}{2}r^2 & 0 \le \delta, | r | \le \delta \\ \delta ( |r| - \frac{1}{2}\delta ) & \text{otherwise} \end{cases}
|
|
|
|
Parameters
|
|
----------
|
|
delta : ndarray
|
|
Input array, indicating the quadratic vs. linear loss changepoint.
|
|
r : ndarray
|
|
Input array, possibly representing residuals.
|
|
|
|
Returns
|
|
-------
|
|
res : ndarray
|
|
The computed Huber loss function values.
|
|
|
|
Notes
|
|
-----
|
|
This function is convex in r.
|
|
|
|
.. versionadded:: 0.15.0
|
|
|
|
""")
|
|
|
|
add_newdoc("hyp0f1",
|
|
r"""
|
|
hyp0f1(v, z, out=None)
|
|
|
|
Confluent hypergeometric limit function 0F1.
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Real-valued parameter
|
|
z : array_like
|
|
Real- or complex-valued argument
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
The confluent hypergeometric limit function
|
|
|
|
Notes
|
|
-----
|
|
This function is defined as:
|
|
|
|
.. math:: _0F_1(v, z) = \sum_{k=0}^{\infty}\frac{z^k}{(v)_k k!}.
|
|
|
|
It's also the limit as :math:`q \to \infty` of :math:`_1F_1(q; v; z/q)`,
|
|
and satisfies the differential equation :math:`f''(z) + vf'(z) =
|
|
f(z)`. See [1]_ for more information.
|
|
|
|
References
|
|
----------
|
|
.. [1] Wolfram MathWorld, "Confluent Hypergeometric Limit Function",
|
|
http://mathworld.wolfram.com/ConfluentHypergeometricLimitFunction.html
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is one when `z` is zero.
|
|
|
|
>>> sc.hyp0f1(1, 0)
|
|
1.0
|
|
|
|
It is the limit of the confluent hypergeometric function as `q`
|
|
goes to infinity.
|
|
|
|
>>> q = np.array([1, 10, 100, 1000])
|
|
>>> v = 1
|
|
>>> z = 1
|
|
>>> sc.hyp1f1(q, v, z / q)
|
|
array([2.71828183, 2.31481985, 2.28303778, 2.27992985])
|
|
>>> sc.hyp0f1(v, z)
|
|
2.2795853023360673
|
|
|
|
It is related to Bessel functions.
|
|
|
|
>>> n = 1
|
|
>>> x = np.linspace(0, 1, 5)
|
|
>>> sc.jv(n, x)
|
|
array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])
|
|
>>> (0.5 * x)**n / sc.factorial(n) * sc.hyp0f1(n + 1, -0.25 * x**2)
|
|
array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])
|
|
|
|
""")
|
|
|
|
add_newdoc("hyp1f1",
|
|
r"""
|
|
hyp1f1(a, b, x, out=None)
|
|
|
|
Confluent hypergeometric function 1F1.
|
|
|
|
The confluent hypergeometric function is defined by the series
|
|
|
|
.. math::
|
|
|
|
{}_1F_1(a; b; x) = \sum_{k = 0}^\infty \frac{(a)_k}{(b)_k k!} x^k.
|
|
|
|
See [dlmf]_ for more details. Here :math:`(\cdot)_k` is the
|
|
Pochhammer symbol; see `poch`.
|
|
|
|
Parameters
|
|
----------
|
|
a, b : array_like
|
|
Real parameters
|
|
x : array_like
|
|
Real or complex argument
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the confluent hypergeometric function
|
|
|
|
See also
|
|
--------
|
|
hyperu : another confluent hypergeometric function
|
|
hyp0f1 : confluent hypergeometric limit function
|
|
hyp2f1 : Gaussian hypergeometric function
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/13.2#E2
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is one when `x` is zero:
|
|
|
|
>>> sc.hyp1f1(0.5, 0.5, 0)
|
|
1.0
|
|
|
|
It is singular when `b` is a nonpositive integer.
|
|
|
|
>>> sc.hyp1f1(0.5, -1, 0)
|
|
inf
|
|
|
|
It is a polynomial when `a` is a nonpositive integer.
|
|
|
|
>>> a, b, x = -1, 0.5, np.array([1.0, 2.0, 3.0, 4.0])
|
|
>>> sc.hyp1f1(a, b, x)
|
|
array([-1., -3., -5., -7.])
|
|
>>> 1 + (a / b) * x
|
|
array([-1., -3., -5., -7.])
|
|
|
|
It reduces to the exponential function when `a = b`.
|
|
|
|
>>> sc.hyp1f1(2, 2, [1, 2, 3, 4])
|
|
array([ 2.71828183, 7.3890561 , 20.08553692, 54.59815003])
|
|
>>> np.exp([1, 2, 3, 4])
|
|
array([ 2.71828183, 7.3890561 , 20.08553692, 54.59815003])
|
|
|
|
""")
|
|
|
|
add_newdoc("hyp2f1",
|
|
r"""
|
|
hyp2f1(a, b, c, z)
|
|
|
|
Gauss hypergeometric function 2F1(a, b; c; z)
|
|
|
|
Parameters
|
|
----------
|
|
a, b, c : array_like
|
|
Arguments, should be real-valued.
|
|
z : array_like
|
|
Argument, real or complex.
|
|
|
|
Returns
|
|
-------
|
|
hyp2f1 : scalar or ndarray
|
|
The values of the gaussian hypergeometric function.
|
|
|
|
See also
|
|
--------
|
|
hyp0f1 : confluent hypergeometric limit function.
|
|
hyp1f1 : Kummer's (confluent hypergeometric) function.
|
|
|
|
Notes
|
|
-----
|
|
This function is defined for :math:`|z| < 1` as
|
|
|
|
.. math::
|
|
|
|
\mathrm{hyp2f1}(a, b, c, z) = \sum_{n=0}^\infty
|
|
\frac{(a)_n (b)_n}{(c)_n}\frac{z^n}{n!},
|
|
|
|
and defined on the rest of the complex z-plane by analytic
|
|
continuation [1]_.
|
|
Here :math:`(\cdot)_n` is the Pochhammer symbol; see `poch`. When
|
|
:math:`n` is an integer the result is a polynomial of degree :math:`n`.
|
|
|
|
The implementation for complex values of ``z`` is described in [2]_.
|
|
|
|
References
|
|
----------
|
|
.. [1] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/15.2
|
|
.. [2] S. Zhang and J.M. Jin, "Computation of Special Functions", Wiley 1996
|
|
.. [3] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It has poles when `c` is a negative integer.
|
|
|
|
>>> sc.hyp2f1(1, 1, -2, 1)
|
|
inf
|
|
|
|
It is a polynomial when `a` or `b` is a negative integer.
|
|
|
|
>>> a, b, c = -1, 1, 1.5
|
|
>>> z = np.linspace(0, 1, 5)
|
|
>>> sc.hyp2f1(a, b, c, z)
|
|
array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333])
|
|
>>> 1 + a * b * z / c
|
|
array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333])
|
|
|
|
It is symmetric in `a` and `b`.
|
|
|
|
>>> a = np.linspace(0, 1, 5)
|
|
>>> b = np.linspace(0, 1, 5)
|
|
>>> sc.hyp2f1(a, b, 1, 0.5)
|
|
array([1. , 1.03997334, 1.1803406 , 1.47074441, 2. ])
|
|
>>> sc.hyp2f1(b, a, 1, 0.5)
|
|
array([1. , 1.03997334, 1.1803406 , 1.47074441, 2. ])
|
|
|
|
It contains many other functions as special cases.
|
|
|
|
>>> z = 0.5
|
|
>>> sc.hyp2f1(1, 1, 2, z)
|
|
1.3862943611198901
|
|
>>> -np.log(1 - z) / z
|
|
1.3862943611198906
|
|
|
|
>>> sc.hyp2f1(0.5, 1, 1.5, z**2)
|
|
1.098612288668109
|
|
>>> np.log((1 + z) / (1 - z)) / (2 * z)
|
|
1.0986122886681098
|
|
|
|
>>> sc.hyp2f1(0.5, 1, 1.5, -z**2)
|
|
0.9272952180016117
|
|
>>> np.arctan(z) / z
|
|
0.9272952180016123
|
|
|
|
""")
|
|
|
|
add_newdoc("hyperu",
|
|
r"""
|
|
hyperu(a, b, x, out=None)
|
|
|
|
Confluent hypergeometric function U
|
|
|
|
It is defined as the solution to the equation
|
|
|
|
.. math::
|
|
|
|
x \frac{d^2w}{dx^2} + (b - x) \frac{dw}{dx} - aw = 0
|
|
|
|
which satisfies the property
|
|
|
|
.. math::
|
|
|
|
U(a, b, x) \sim x^{-a}
|
|
|
|
as :math:`x \to \infty`. See [dlmf]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
a, b : array_like
|
|
Real-valued parameters
|
|
x : array_like
|
|
Real-valued argument
|
|
out : ndarray
|
|
Optional output array for the function values
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of `U`
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematics Functions
|
|
https://dlmf.nist.gov/13.2#E6
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It has a branch cut along the negative `x` axis.
|
|
|
|
>>> x = np.linspace(-0.1, -10, 5)
|
|
>>> sc.hyperu(1, 1, x)
|
|
array([nan, nan, nan, nan, nan])
|
|
|
|
It approaches zero as `x` goes to infinity.
|
|
|
|
>>> x = np.array([1, 10, 100])
|
|
>>> sc.hyperu(1, 1, x)
|
|
array([0.59634736, 0.09156333, 0.00990194])
|
|
|
|
It satisfies Kummer's transformation.
|
|
|
|
>>> a, b, x = 2, 1, 1
|
|
>>> sc.hyperu(a, b, x)
|
|
0.1926947246463881
|
|
>>> x**(1 - b) * sc.hyperu(a - b + 1, 2 - b, x)
|
|
0.1926947246463881
|
|
|
|
""")
|
|
|
|
add_newdoc("i0",
|
|
r"""
|
|
i0(x)
|
|
|
|
Modified Bessel function of order 0.
|
|
|
|
Defined as,
|
|
|
|
.. math::
|
|
I_0(x) = \sum_{k=0}^\infty \frac{(x^2/4)^k}{(k!)^2} = J_0(\imath x),
|
|
|
|
where :math:`J_0` is the Bessel function of the first kind of order 0.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float)
|
|
|
|
Returns
|
|
-------
|
|
I : ndarray
|
|
Value of the modified Bessel function of order 0 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The range is partitioned into the two intervals [0, 8] and (8, infinity).
|
|
Chebyshev polynomial expansions are employed in each interval.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `i0`.
|
|
|
|
See also
|
|
--------
|
|
iv
|
|
i0e
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("i0e",
|
|
"""
|
|
i0e(x)
|
|
|
|
Exponentially scaled modified Bessel function of order 0.
|
|
|
|
Defined as::
|
|
|
|
i0e(x) = exp(-abs(x)) * i0(x).
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float)
|
|
|
|
Returns
|
|
-------
|
|
I : ndarray
|
|
Value of the exponentially scaled modified Bessel function of order 0
|
|
at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The range is partitioned into the two intervals [0, 8] and (8, infinity).
|
|
Chebyshev polynomial expansions are employed in each interval. The
|
|
polynomial expansions used are the same as those in `i0`, but
|
|
they are not multiplied by the dominant exponential factor.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `i0e`.
|
|
|
|
See also
|
|
--------
|
|
iv
|
|
i0
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("i1",
|
|
r"""
|
|
i1(x)
|
|
|
|
Modified Bessel function of order 1.
|
|
|
|
Defined as,
|
|
|
|
.. math::
|
|
I_1(x) = \frac{1}{2}x \sum_{k=0}^\infty \frac{(x^2/4)^k}{k! (k + 1)!}
|
|
= -\imath J_1(\imath x),
|
|
|
|
where :math:`J_1` is the Bessel function of the first kind of order 1.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float)
|
|
|
|
Returns
|
|
-------
|
|
I : ndarray
|
|
Value of the modified Bessel function of order 1 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The range is partitioned into the two intervals [0, 8] and (8, infinity).
|
|
Chebyshev polynomial expansions are employed in each interval.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `i1`.
|
|
|
|
See also
|
|
--------
|
|
iv
|
|
i1e
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("i1e",
|
|
"""
|
|
i1e(x)
|
|
|
|
Exponentially scaled modified Bessel function of order 1.
|
|
|
|
Defined as::
|
|
|
|
i1e(x) = exp(-abs(x)) * i1(x)
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float)
|
|
|
|
Returns
|
|
-------
|
|
I : ndarray
|
|
Value of the exponentially scaled modified Bessel function of order 1
|
|
at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The range is partitioned into the two intervals [0, 8] and (8, infinity).
|
|
Chebyshev polynomial expansions are employed in each interval. The
|
|
polynomial expansions used are the same as those in `i1`, but
|
|
they are not multiplied by the dominant exponential factor.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `i1e`.
|
|
|
|
See also
|
|
--------
|
|
iv
|
|
i1
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("_igam_fac",
|
|
"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("it2i0k0",
|
|
r"""
|
|
it2i0k0(x, out=None)
|
|
|
|
Integrals related to modified Bessel functions of order 0.
|
|
|
|
Computes the integrals
|
|
|
|
.. math::
|
|
|
|
\int_0^x \frac{I_0(t) - 1}{t} dt \\
|
|
\int_x^\infty \frac{K_0(t)}{t} dt.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Values at which to evaluate the integrals.
|
|
out : tuple of ndarrays, optional
|
|
Optional output arrays for the function results.
|
|
|
|
Returns
|
|
-------
|
|
ii0 : scalar or ndarray
|
|
The integral for `i0`
|
|
ik0 : scalar or ndarray
|
|
The integral for `k0`
|
|
|
|
""")
|
|
|
|
add_newdoc("it2j0y0",
|
|
r"""
|
|
it2j0y0(x, out=None)
|
|
|
|
Integrals related to Bessel functions of the first kind of order 0.
|
|
|
|
Computes the integrals
|
|
|
|
.. math::
|
|
|
|
\int_0^x \frac{1 - J_0(t)}{t} dt \\
|
|
\int_x^\infty \frac{Y_0(t)}{t} dt.
|
|
|
|
For more on :math:`J_0` and :math:`Y_0` see `j0` and `y0`.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Values at which to evaluate the integrals.
|
|
out : tuple of ndarrays, optional
|
|
Optional output arrays for the function results.
|
|
|
|
Returns
|
|
-------
|
|
ij0 : scalar or ndarray
|
|
The integral for `j0`
|
|
iy0 : scalar or ndarray
|
|
The integral for `y0`
|
|
|
|
""")
|
|
|
|
add_newdoc("it2struve0",
|
|
r"""
|
|
it2struve0(x)
|
|
|
|
Integral related to the Struve function of order 0.
|
|
|
|
Returns the integral,
|
|
|
|
.. math::
|
|
\int_x^\infty \frac{H_0(t)}{t}\,dt
|
|
|
|
where :math:`H_0` is the Struve function of order 0.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Lower limit of integration.
|
|
|
|
Returns
|
|
-------
|
|
I : ndarray
|
|
The value of the integral.
|
|
|
|
See also
|
|
--------
|
|
struve
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
|
Jin [1]_.
|
|
|
|
References
|
|
----------
|
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
|
Functions", John Wiley and Sons, 1996.
|
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
|
""")
|
|
|
|
add_newdoc("itairy",
|
|
"""
|
|
itairy(x)
|
|
|
|
Integrals of Airy functions
|
|
|
|
Calculates the integrals of Airy functions from 0 to `x`.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
x: array_like
|
|
Upper limit of integration (float).
|
|
|
|
Returns
|
|
-------
|
|
Apt
|
|
Integral of Ai(t) from 0 to x.
|
|
Bpt
|
|
Integral of Bi(t) from 0 to x.
|
|
Ant
|
|
Integral of Ai(-t) from 0 to x.
|
|
Bnt
|
|
Integral of Bi(-t) from 0 to x.
|
|
|
|
Notes
|
|
-----
|
|
|
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
|
Jin [1]_.
|
|
|
|
References
|
|
----------
|
|
|
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
|
Functions", John Wiley and Sons, 1996.
|
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
|
""")
|
|
|
|
add_newdoc("iti0k0",
|
|
r"""
|
|
iti0k0(x, out=None)
|
|
|
|
Integrals of modified Bessel functions of order 0.
|
|
|
|
Computes the integrals
|
|
|
|
.. math::
|
|
|
|
\int_0^x I_0(t) dt \\
|
|
\int_0^x K_0(t) dt.
|
|
|
|
For more on :math:`I_0` and :math:`K_0` see `i0` and `k0`.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Values at which to evaluate the integrals.
|
|
out : tuple of ndarrays, optional
|
|
Optional output arrays for the function results.
|
|
|
|
Returns
|
|
-------
|
|
ii0 : scalar or ndarray
|
|
The integral for `i0`
|
|
ik0 : scalar or ndarray
|
|
The integral for `k0`
|
|
""")
|
|
|
|
add_newdoc("itj0y0",
|
|
r"""
|
|
itj0y0(x, out=None)
|
|
|
|
Integrals of Bessel functions of the first kind of order 0.
|
|
|
|
Computes the integrals
|
|
|
|
.. math::
|
|
|
|
\int_0^x J_0(t) dt \\
|
|
\int_0^x Y_0(t) dt.
|
|
|
|
For more on :math:`J_0` and :math:`Y_0` see `j0` and `y0`.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Values at which to evaluate the integrals.
|
|
out : tuple of ndarrays, optional
|
|
Optional output arrays for the function results.
|
|
|
|
Returns
|
|
-------
|
|
ij0 : scalar or ndarray
|
|
The integral of `j0`
|
|
iy0 : scalar or ndarray
|
|
The integral of `y0`
|
|
|
|
""")
|
|
|
|
add_newdoc("itmodstruve0",
|
|
r"""
|
|
itmodstruve0(x)
|
|
|
|
Integral of the modified Struve function of order 0.
|
|
|
|
.. math::
|
|
I = \int_0^x L_0(t)\,dt
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Upper limit of integration (float).
|
|
|
|
Returns
|
|
-------
|
|
I : ndarray
|
|
The integral of :math:`L_0` from 0 to `x`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
|
Jin [1]_.
|
|
|
|
References
|
|
----------
|
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
|
Functions", John Wiley and Sons, 1996.
|
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
|
|
|
""")
|
|
|
|
add_newdoc("itstruve0",
|
|
r"""
|
|
itstruve0(x)
|
|
|
|
Integral of the Struve function of order 0.
|
|
|
|
.. math::
|
|
I = \int_0^x H_0(t)\,dt
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Upper limit of integration (float).
|
|
|
|
Returns
|
|
-------
|
|
I : ndarray
|
|
The integral of :math:`H_0` from 0 to `x`.
|
|
|
|
See also
|
|
--------
|
|
struve
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
|
|
Jin [1]_.
|
|
|
|
References
|
|
----------
|
|
.. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
|
Functions", John Wiley and Sons, 1996.
|
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
|
|
|
""")
|
|
|
|
add_newdoc("iv",
|
|
r"""
|
|
iv(v, z)
|
|
|
|
Modified Bessel function of the first kind of real order.
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order. If `z` is of real type and negative, `v` must be integer
|
|
valued.
|
|
z : array_like of float or complex
|
|
Argument.
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
Values of the modified Bessel function.
|
|
|
|
Notes
|
|
-----
|
|
For real `z` and :math:`v \in [-50, 50]`, the evaluation is carried out
|
|
using Temme's method [1]_. For larger orders, uniform asymptotic
|
|
expansions are applied.
|
|
|
|
For complex `z` and positive `v`, the AMOS [2]_ `zbesi` routine is
|
|
called. It uses a power series for small `z`, the asymptotic expansion
|
|
for large `abs(z)`, the Miller algorithm normalized by the Wronskian
|
|
and a Neumann series for intermediate magnitudes, and the uniform
|
|
asymptotic expansions for :math:`I_v(z)` and :math:`J_v(z)` for large
|
|
orders. Backward recurrence is used to generate sequences or reduce
|
|
orders when necessary.
|
|
|
|
The calculations above are done in the right half plane and continued
|
|
into the left half plane by the formula,
|
|
|
|
.. math:: I_v(z \exp(\pm\imath\pi)) = \exp(\pm\pi v) I_v(z)
|
|
|
|
(valid when the real part of `z` is positive). For negative `v`, the
|
|
formula
|
|
|
|
.. math:: I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin(\pi v) K_v(z)
|
|
|
|
is used, where :math:`K_v(z)` is the modified Bessel function of the
|
|
second kind, evaluated using the AMOS routine `zbesk`.
|
|
|
|
See also
|
|
--------
|
|
kve : This function with leading exponential behavior stripped off.
|
|
|
|
References
|
|
----------
|
|
.. [1] Temme, Journal of Computational Physics, vol 21, 343 (1976)
|
|
.. [2] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
""")
|
|
|
|
add_newdoc("ive",
|
|
r"""
|
|
ive(v, z)
|
|
|
|
Exponentially scaled modified Bessel function of the first kind
|
|
|
|
Defined as::
|
|
|
|
ive(v, z) = iv(v, z) * exp(-abs(z.real))
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like of float
|
|
Order.
|
|
z : array_like of float or complex
|
|
Argument.
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
Values of the exponentially scaled modified Bessel function.
|
|
|
|
Notes
|
|
-----
|
|
For positive `v`, the AMOS [1]_ `zbesi` routine is called. It uses a
|
|
power series for small `z`, the asymptotic expansion for large
|
|
`abs(z)`, the Miller algorithm normalized by the Wronskian and a
|
|
Neumann series for intermediate magnitudes, and the uniform asymptotic
|
|
expansions for :math:`I_v(z)` and :math:`J_v(z)` for large orders.
|
|
Backward recurrence is used to generate sequences or reduce orders when
|
|
necessary.
|
|
|
|
The calculations above are done in the right half plane and continued
|
|
into the left half plane by the formula,
|
|
|
|
.. math:: I_v(z \exp(\pm\imath\pi)) = \exp(\pm\pi v) I_v(z)
|
|
|
|
(valid when the real part of `z` is positive). For negative `v`, the
|
|
formula
|
|
|
|
.. math:: I_{-v}(z) = I_v(z) + \frac{2}{\pi} \sin(\pi v) K_v(z)
|
|
|
|
is used, where :math:`K_v(z)` is the modified Bessel function of the
|
|
second kind, evaluated using the AMOS routine `zbesk`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
""")
|
|
|
|
add_newdoc("j0",
|
|
r"""
|
|
j0(x)
|
|
|
|
Bessel function of the first kind of order 0.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float).
|
|
|
|
Returns
|
|
-------
|
|
J : ndarray
|
|
Value of the Bessel function of the first kind of order 0 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The domain is divided into the intervals [0, 5] and (5, infinity). In the
|
|
first interval the following rational approximation is used:
|
|
|
|
.. math::
|
|
|
|
J_0(x) \approx (w - r_1^2)(w - r_2^2) \frac{P_3(w)}{Q_8(w)},
|
|
|
|
where :math:`w = x^2` and :math:`r_1`, :math:`r_2` are the zeros of
|
|
:math:`J_0`, and :math:`P_3` and :math:`Q_8` are polynomials of degrees 3
|
|
and 8, respectively.
|
|
|
|
In the second interval, the Hankel asymptotic expansion is employed with
|
|
two rational functions of degree 6/6 and 7/7.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `j0`.
|
|
It should not be confused with the spherical Bessel functions (see
|
|
`spherical_jn`).
|
|
|
|
See also
|
|
--------
|
|
jv : Bessel function of real order and complex argument.
|
|
spherical_jn : spherical Bessel functions.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("j1",
|
|
"""
|
|
j1(x)
|
|
|
|
Bessel function of the first kind of order 1.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float).
|
|
|
|
Returns
|
|
-------
|
|
J : ndarray
|
|
Value of the Bessel function of the first kind of order 1 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The domain is divided into the intervals [0, 8] and (8, infinity). In the
|
|
first interval a 24 term Chebyshev expansion is used. In the second, the
|
|
asymptotic trigonometric representation is employed using two rational
|
|
functions of degree 5/5.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `j1`.
|
|
It should not be confused with the spherical Bessel functions (see
|
|
`spherical_jn`).
|
|
|
|
See also
|
|
--------
|
|
jv
|
|
spherical_jn : spherical Bessel functions.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("jn",
|
|
"""
|
|
jn(n, x)
|
|
|
|
Bessel function of the first kind of integer order and real argument.
|
|
|
|
Notes
|
|
-----
|
|
`jn` is an alias of `jv`.
|
|
Not to be confused with the spherical Bessel functions (see `spherical_jn`).
|
|
|
|
See also
|
|
--------
|
|
jv
|
|
spherical_jn : spherical Bessel functions.
|
|
|
|
""")
|
|
|
|
add_newdoc("jv",
|
|
r"""
|
|
jv(v, z)
|
|
|
|
Bessel function of the first kind of real order and complex argument.
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order (float).
|
|
z : array_like
|
|
Argument (float or complex).
|
|
|
|
Returns
|
|
-------
|
|
J : ndarray
|
|
Value of the Bessel function, :math:`J_v(z)`.
|
|
|
|
Notes
|
|
-----
|
|
For positive `v` values, the computation is carried out using the AMOS
|
|
[1]_ `zbesj` routine, which exploits the connection to the modified
|
|
Bessel function :math:`I_v`,
|
|
|
|
.. math::
|
|
J_v(z) = \exp(v\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0)
|
|
|
|
J_v(z) = \exp(-v\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0)
|
|
|
|
For negative `v` values the formula,
|
|
|
|
.. math:: J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)
|
|
|
|
is used, where :math:`Y_v(z)` is the Bessel function of the second
|
|
kind, computed using the AMOS routine `zbesy`. Note that the second
|
|
term is exactly zero for integer `v`; to improve accuracy the second
|
|
term is explicitly omitted for `v` values such that `v = floor(v)`.
|
|
|
|
Not to be confused with the spherical Bessel functions (see `spherical_jn`).
|
|
|
|
See also
|
|
--------
|
|
jve : :math:`J_v` with leading exponential behavior stripped off.
|
|
spherical_jn : spherical Bessel functions.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
""")
|
|
|
|
add_newdoc("jve",
|
|
r"""
|
|
jve(v, z)
|
|
|
|
Exponentially scaled Bessel function of order `v`.
|
|
|
|
Defined as::
|
|
|
|
jve(v, z) = jv(v, z) * exp(-abs(z.imag))
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order (float).
|
|
z : array_like
|
|
Argument (float or complex).
|
|
|
|
Returns
|
|
-------
|
|
J : ndarray
|
|
Value of the exponentially scaled Bessel function.
|
|
|
|
Notes
|
|
-----
|
|
For positive `v` values, the computation is carried out using the AMOS
|
|
[1]_ `zbesj` routine, which exploits the connection to the modified
|
|
Bessel function :math:`I_v`,
|
|
|
|
.. math::
|
|
J_v(z) = \exp(v\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0)
|
|
|
|
J_v(z) = \exp(-v\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0)
|
|
|
|
For negative `v` values the formula,
|
|
|
|
.. math:: J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)
|
|
|
|
is used, where :math:`Y_v(z)` is the Bessel function of the second
|
|
kind, computed using the AMOS routine `zbesy`. Note that the second
|
|
term is exactly zero for integer `v`; to improve accuracy the second
|
|
term is explicitly omitted for `v` values such that `v = floor(v)`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
""")
|
|
|
|
add_newdoc("k0",
|
|
r"""
|
|
k0(x)
|
|
|
|
Modified Bessel function of the second kind of order 0, :math:`K_0`.
|
|
|
|
This function is also sometimes referred to as the modified Bessel
|
|
function of the third kind of order 0.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float).
|
|
|
|
Returns
|
|
-------
|
|
K : ndarray
|
|
Value of the modified Bessel function :math:`K_0` at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The range is partitioned into the two intervals [0, 2] and (2, infinity).
|
|
Chebyshev polynomial expansions are employed in each interval.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `k0`.
|
|
|
|
See also
|
|
--------
|
|
kv
|
|
k0e
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("k0e",
|
|
"""
|
|
k0e(x)
|
|
|
|
Exponentially scaled modified Bessel function K of order 0
|
|
|
|
Defined as::
|
|
|
|
k0e(x) = exp(x) * k0(x).
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float)
|
|
|
|
Returns
|
|
-------
|
|
K : ndarray
|
|
Value of the exponentially scaled modified Bessel function K of order
|
|
0 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The range is partitioned into the two intervals [0, 2] and (2, infinity).
|
|
Chebyshev polynomial expansions are employed in each interval.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `k0e`.
|
|
|
|
See also
|
|
--------
|
|
kv
|
|
k0
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("k1",
|
|
"""
|
|
k1(x)
|
|
|
|
Modified Bessel function of the second kind of order 1, :math:`K_1(x)`.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float)
|
|
|
|
Returns
|
|
-------
|
|
K : ndarray
|
|
Value of the modified Bessel function K of order 1 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The range is partitioned into the two intervals [0, 2] and (2, infinity).
|
|
Chebyshev polynomial expansions are employed in each interval.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `k1`.
|
|
|
|
See also
|
|
--------
|
|
kv
|
|
k1e
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("k1e",
|
|
"""
|
|
k1e(x)
|
|
|
|
Exponentially scaled modified Bessel function K of order 1
|
|
|
|
Defined as::
|
|
|
|
k1e(x) = exp(x) * k1(x)
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float)
|
|
|
|
Returns
|
|
-------
|
|
K : ndarray
|
|
Value of the exponentially scaled modified Bessel function K of order
|
|
1 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
The range is partitioned into the two intervals [0, 2] and (2, infinity).
|
|
Chebyshev polynomial expansions are employed in each interval.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `k1e`.
|
|
|
|
See also
|
|
--------
|
|
kv
|
|
k1
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("kei",
|
|
r"""
|
|
kei(x, out=None)
|
|
|
|
Kelvin function kei.
|
|
|
|
Defined as
|
|
|
|
.. math::
|
|
|
|
\mathrm{kei}(x) = \Im[K_0(x e^{\pi i / 4})]
|
|
|
|
where :math:`K_0` is the modified Bessel function of the second
|
|
kind (see `kv`). See [dlmf]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the Kelvin function.
|
|
|
|
See Also
|
|
--------
|
|
ker : the corresponding real part
|
|
keip : the derivative of kei
|
|
kv : modified Bessel function of the second kind
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
|
https://dlmf.nist.gov/10.61
|
|
|
|
Examples
|
|
--------
|
|
It can be expressed using the modified Bessel function of the
|
|
second kind.
|
|
|
|
>>> import scipy.special as sc
|
|
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
|
|
>>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).imag
|
|
array([-0.49499464, -0.20240007, -0.05112188, 0.0021984 ])
|
|
>>> sc.kei(x)
|
|
array([-0.49499464, -0.20240007, -0.05112188, 0.0021984 ])
|
|
|
|
""")
|
|
|
|
add_newdoc("keip",
|
|
r"""
|
|
keip(x, out=None)
|
|
|
|
Derivative of the Kelvin function kei.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
The values of the derivative of kei.
|
|
|
|
See Also
|
|
--------
|
|
kei
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
|
https://dlmf.nist.gov/10#PT5
|
|
|
|
""")
|
|
|
|
add_newdoc("kelvin",
|
|
"""
|
|
kelvin(x)
|
|
|
|
Kelvin functions as complex numbers
|
|
|
|
Returns
|
|
-------
|
|
Be, Ke, Bep, Kep
|
|
The tuple (Be, Ke, Bep, Kep) contains complex numbers
|
|
representing the real and imaginary Kelvin functions and their
|
|
derivatives evaluated at `x`. For example, kelvin(x)[0].real =
|
|
ber x and kelvin(x)[0].imag = bei x with similar relationships
|
|
for ker and kei.
|
|
""")
|
|
|
|
add_newdoc("ker",
|
|
r"""
|
|
ker(x, out=None)
|
|
|
|
Kelvin function ker.
|
|
|
|
Defined as
|
|
|
|
.. math::
|
|
|
|
\mathrm{ker}(x) = \Re[K_0(x e^{\pi i / 4})]
|
|
|
|
Where :math:`K_0` is the modified Bessel function of the second
|
|
kind (see `kv`). See [dlmf]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
See Also
|
|
--------
|
|
kei : the corresponding imaginary part
|
|
kerp : the derivative of ker
|
|
kv : modified Bessel function of the second kind
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the Kelvin function.
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
|
https://dlmf.nist.gov/10.61
|
|
|
|
Examples
|
|
--------
|
|
It can be expressed using the modified Bessel function of the
|
|
second kind.
|
|
|
|
>>> import scipy.special as sc
|
|
>>> x = np.array([1.0, 2.0, 3.0, 4.0])
|
|
>>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).real
|
|
array([ 0.28670621, -0.04166451, -0.06702923, -0.03617885])
|
|
>>> sc.ker(x)
|
|
array([ 0.28670621, -0.04166451, -0.06702923, -0.03617885])
|
|
|
|
""")
|
|
|
|
add_newdoc("kerp",
|
|
r"""
|
|
kerp(x, out=None)
|
|
|
|
Derivative of the Kelvin function ker.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real argument.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the derivative of ker.
|
|
|
|
See Also
|
|
--------
|
|
ker
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST, Digital Library of Mathematical Functions,
|
|
https://dlmf.nist.gov/10#PT5
|
|
|
|
""")
|
|
|
|
add_newdoc("kl_div",
|
|
r"""
|
|
kl_div(x, y, out=None)
|
|
|
|
Elementwise function for computing Kullback-Leibler divergence.
|
|
|
|
.. math::
|
|
|
|
\mathrm{kl\_div}(x, y) =
|
|
\begin{cases}
|
|
x \log(x / y) - x + y & x > 0, y > 0 \\
|
|
y & x = 0, y \ge 0 \\
|
|
\infty & \text{otherwise}
|
|
\end{cases}
|
|
|
|
Parameters
|
|
----------
|
|
x, y : array_like
|
|
Real arguments
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the Kullback-Liebler divergence.
|
|
|
|
See Also
|
|
--------
|
|
entr, rel_entr
|
|
|
|
Notes
|
|
-----
|
|
.. versionadded:: 0.15.0
|
|
|
|
This function is non-negative and is jointly convex in `x` and `y`.
|
|
|
|
The origin of this function is in convex programming; see [1]_ for
|
|
details. This is why the the function contains the extra :math:`-x
|
|
+ y` terms over what might be expected from the Kullback-Leibler
|
|
divergence. For a version of the function without the extra terms,
|
|
see `rel_entr`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Grant, Boyd, and Ye, "CVX: Matlab Software for Disciplined Convex
|
|
Programming", http://cvxr.com/cvx/
|
|
|
|
|
|
""")
|
|
|
|
add_newdoc("kn",
|
|
r"""
|
|
kn(n, x)
|
|
|
|
Modified Bessel function of the second kind of integer order `n`
|
|
|
|
Returns the modified Bessel function of the second kind for integer order
|
|
`n` at real `z`.
|
|
|
|
These are also sometimes called functions of the third kind, Basset
|
|
functions, or Macdonald functions.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like of int
|
|
Order of Bessel functions (floats will truncate with a warning)
|
|
z : array_like of float
|
|
Argument at which to evaluate the Bessel functions
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
The results
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the
|
|
algorithm used, see [2]_ and the references therein.
|
|
|
|
See Also
|
|
--------
|
|
kv : Same function, but accepts real order and complex argument
|
|
kvp : Derivative of this function
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
.. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel
|
|
functions of a complex argument and nonnegative order", ACM
|
|
TOMS Vol. 12 Issue 3, Sept. 1986, p. 265
|
|
|
|
Examples
|
|
--------
|
|
Plot the function of several orders for real input:
|
|
|
|
>>> from scipy.special import kn
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(0, 5, 1000)
|
|
>>> for N in range(6):
|
|
... plt.plot(x, kn(N, x), label='$K_{}(x)$'.format(N))
|
|
>>> plt.ylim(0, 10)
|
|
>>> plt.legend()
|
|
>>> plt.title(r'Modified Bessel function of the second kind $K_n(x)$')
|
|
>>> plt.show()
|
|
|
|
Calculate for a single value at multiple orders:
|
|
|
|
>>> kn([4, 5, 6], 1)
|
|
array([ 44.23241585, 360.9605896 , 3653.83831186])
|
|
""")
|
|
|
|
add_newdoc("kolmogi",
|
|
"""
|
|
kolmogi(p)
|
|
|
|
Inverse Survival Function of Kolmogorov distribution
|
|
|
|
It is the inverse function to `kolmogorov`.
|
|
Returns y such that ``kolmogorov(y) == p``.
|
|
|
|
Parameters
|
|
----------
|
|
p : float array_like
|
|
Probability
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
The value(s) of kolmogi(p)
|
|
|
|
Notes
|
|
-----
|
|
`kolmogorov` is used by `stats.kstest` in the application of the
|
|
Kolmogorov-Smirnov Goodness of Fit test. For historial reasons this
|
|
function is exposed in `scpy.special`, but the recommended way to achieve
|
|
the most accurate CDF/SF/PDF/PPF/ISF computations is to use the
|
|
`stats.kstwobign` distribution.
|
|
|
|
See Also
|
|
--------
|
|
kolmogorov : The Survival Function for the distribution
|
|
scipy.stats.kstwobign : Provides the functionality as a continuous distribution
|
|
smirnov, smirnovi : Functions for the one-sided distribution
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import kolmogi
|
|
>>> kolmogi([0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0])
|
|
array([ inf, 1.22384787, 1.01918472, 0.82757356, 0.67644769,
|
|
0.57117327, 0. ])
|
|
|
|
""")
|
|
|
|
add_newdoc("kolmogorov",
|
|
r"""
|
|
kolmogorov(y)
|
|
|
|
Complementary cumulative distribution (Survival Function) function of
|
|
Kolmogorov distribution.
|
|
|
|
Returns the complementary cumulative distribution function of
|
|
Kolmogorov's limiting distribution (``D_n*\sqrt(n)`` as n goes to infinity)
|
|
of a two-sided test for equality between an empirical and a theoretical
|
|
distribution. It is equal to the (limit as n->infinity of the)
|
|
probability that ``sqrt(n) * max absolute deviation > y``.
|
|
|
|
Parameters
|
|
----------
|
|
y : float array_like
|
|
Absolute deviation between the Empirical CDF (ECDF) and the target CDF,
|
|
multiplied by sqrt(n).
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
The value(s) of kolmogorov(y)
|
|
|
|
Notes
|
|
-----
|
|
`kolmogorov` is used by `stats.kstest` in the application of the
|
|
Kolmogorov-Smirnov Goodness of Fit test. For historial reasons this
|
|
function is exposed in `scpy.special`, but the recommended way to achieve
|
|
the most accurate CDF/SF/PDF/PPF/ISF computations is to use the
|
|
`stats.kstwobign` distribution.
|
|
|
|
See Also
|
|
--------
|
|
kolmogi : The Inverse Survival Function for the distribution
|
|
scipy.stats.kstwobign : Provides the functionality as a continuous distribution
|
|
smirnov, smirnovi : Functions for the one-sided distribution
|
|
|
|
Examples
|
|
--------
|
|
Show the probability of a gap at least as big as 0, 0.5 and 1.0.
|
|
|
|
>>> from scipy.special import kolmogorov
|
|
>>> from scipy.stats import kstwobign
|
|
>>> kolmogorov([0, 0.5, 1.0])
|
|
array([ 1. , 0.96394524, 0.26999967])
|
|
|
|
Compare a sample of size 1000 drawn from a Laplace(0, 1) distribution against
|
|
the target distribution, a Normal(0, 1) distribution.
|
|
|
|
>>> from scipy.stats import norm, laplace
|
|
>>> n = 1000
|
|
>>> np.random.seed(seed=233423)
|
|
>>> lap01 = laplace(0, 1)
|
|
>>> x = np.sort(lap01.rvs(n))
|
|
>>> np.mean(x), np.std(x)
|
|
(-0.083073685397609842, 1.3676426568399822)
|
|
|
|
Construct the Empirical CDF and the K-S statistic Dn.
|
|
|
|
>>> target = norm(0,1) # Normal mean 0, stddev 1
|
|
>>> cdfs = target.cdf(x)
|
|
>>> ecdfs = np.arange(n+1, dtype=float)/n
|
|
>>> gaps = np.column_stack([cdfs - ecdfs[:n], ecdfs[1:] - cdfs])
|
|
>>> Dn = np.max(gaps)
|
|
>>> Kn = np.sqrt(n) * Dn
|
|
>>> print('Dn=%f, sqrt(n)*Dn=%f' % (Dn, Kn))
|
|
Dn=0.058286, sqrt(n)*Dn=1.843153
|
|
>>> print(chr(10).join(['For a sample of size n drawn from a N(0, 1) distribution:',
|
|
... ' the approximate Kolmogorov probability that sqrt(n)*Dn>=%f is %f' % (Kn, kolmogorov(Kn)),
|
|
... ' the approximate Kolmogorov probability that sqrt(n)*Dn<=%f is %f' % (Kn, kstwobign.cdf(Kn))]))
|
|
For a sample of size n drawn from a N(0, 1) distribution:
|
|
the approximate Kolmogorov probability that sqrt(n)*Dn>=1.843153 is 0.002240
|
|
the approximate Kolmogorov probability that sqrt(n)*Dn<=1.843153 is 0.997760
|
|
|
|
Plot the Empirical CDF against the target N(0, 1) CDF.
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label='Empirical CDF')
|
|
>>> x3 = np.linspace(-3, 3, 100)
|
|
>>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')
|
|
>>> plt.ylim([0, 1]); plt.grid(True); plt.legend();
|
|
>>> # Add vertical lines marking Dn+ and Dn-
|
|
>>> iminus, iplus = np.argmax(gaps, axis=0)
|
|
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r', linestyle='dashed', lw=4)
|
|
>>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='r', linestyle='dashed', lw=4)
|
|
>>> plt.show()
|
|
""")
|
|
|
|
add_newdoc("_kolmogc",
|
|
r"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("_kolmogci",
|
|
r"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("_kolmogp",
|
|
r"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("kv",
|
|
r"""
|
|
kv(v, z)
|
|
|
|
Modified Bessel function of the second kind of real order `v`
|
|
|
|
Returns the modified Bessel function of the second kind for real order
|
|
`v` at complex `z`.
|
|
|
|
These are also sometimes called functions of the third kind, Basset
|
|
functions, or Macdonald functions. They are defined as those solutions
|
|
of the modified Bessel equation for which,
|
|
|
|
.. math::
|
|
K_v(x) \sim \sqrt{\pi/(2x)} \exp(-x)
|
|
|
|
as :math:`x \to \infty` [3]_.
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like of float
|
|
Order of Bessel functions
|
|
z : array_like of complex
|
|
Argument at which to evaluate the Bessel functions
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
The results. Note that input must be of complex type to get complex
|
|
output, e.g. ``kv(3, -2+0j)`` instead of ``kv(3, -2)``.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the
|
|
algorithm used, see [2]_ and the references therein.
|
|
|
|
See Also
|
|
--------
|
|
kve : This function with leading exponential behavior stripped off.
|
|
kvp : Derivative of this function
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
.. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel
|
|
functions of a complex argument and nonnegative order", ACM
|
|
TOMS Vol. 12 Issue 3, Sept. 1986, p. 265
|
|
.. [3] NIST Digital Library of Mathematical Functions,
|
|
Eq. 10.25.E3. https://dlmf.nist.gov/10.25.E3
|
|
|
|
Examples
|
|
--------
|
|
Plot the function of several orders for real input:
|
|
|
|
>>> from scipy.special import kv
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(0, 5, 1000)
|
|
>>> for N in np.linspace(0, 6, 5):
|
|
... plt.plot(x, kv(N, x), label='$K_{{{}}}(x)$'.format(N))
|
|
>>> plt.ylim(0, 10)
|
|
>>> plt.legend()
|
|
>>> plt.title(r'Modified Bessel function of the second kind $K_\nu(x)$')
|
|
>>> plt.show()
|
|
|
|
Calculate for a single value at multiple orders:
|
|
|
|
>>> kv([4, 4.5, 5], 1+2j)
|
|
array([ 0.1992+2.3892j, 2.3493+3.6j , 7.2827+3.8104j])
|
|
|
|
""")
|
|
|
|
add_newdoc("kve",
|
|
r"""
|
|
kve(v, z)
|
|
|
|
Exponentially scaled modified Bessel function of the second kind.
|
|
|
|
Returns the exponentially scaled, modified Bessel function of the
|
|
second kind (sometimes called the third kind) for real order `v` at
|
|
complex `z`::
|
|
|
|
kve(v, z) = kv(v, z) * exp(z)
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like of float
|
|
Order of Bessel functions
|
|
z : array_like of complex
|
|
Argument at which to evaluate the Bessel functions
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
The exponentially scaled modified Bessel function of the second kind.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the
|
|
algorithm used, see [2]_ and the references therein.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
.. [2] Donald E. Amos, "Algorithm 644: A portable package for Bessel
|
|
functions of a complex argument and nonnegative order", ACM
|
|
TOMS Vol. 12 Issue 3, Sept. 1986, p. 265
|
|
""")
|
|
|
|
add_newdoc("_lanczos_sum_expg_scaled",
|
|
"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("_lgam1p",
|
|
"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("log1p",
|
|
"""
|
|
log1p(x, out=None)
|
|
|
|
Calculates log(1 + x) for use when `x` is near zero.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real or complex valued input.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of ``log(1 + x)``.
|
|
|
|
See Also
|
|
--------
|
|
expm1, cosm1
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is more accurate than using ``log(1 + x)`` directly for ``x``
|
|
near 0. Note that in the below example ``1 + 1e-17 == 1`` to
|
|
double precision.
|
|
|
|
>>> sc.log1p(1e-17)
|
|
1e-17
|
|
>>> np.log(1 + 1e-17)
|
|
0.0
|
|
|
|
""")
|
|
|
|
add_newdoc("_log1pmx",
|
|
"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc('logit',
|
|
"""
|
|
logit(x)
|
|
|
|
Logit ufunc for ndarrays.
|
|
|
|
The logit function is defined as logit(p) = log(p/(1-p)).
|
|
Note that logit(0) = -inf, logit(1) = inf, and logit(p)
|
|
for p<0 or p>1 yields nan.
|
|
|
|
Parameters
|
|
----------
|
|
x : ndarray
|
|
The ndarray to apply logit to element-wise.
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray
|
|
An ndarray of the same shape as x. Its entries
|
|
are logit of the corresponding entry of x.
|
|
|
|
See Also
|
|
--------
|
|
expit
|
|
|
|
Notes
|
|
-----
|
|
As a ufunc logit takes a number of optional
|
|
keyword arguments. For more information
|
|
see `ufuncs <https://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_
|
|
|
|
.. versionadded:: 0.10.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import logit, expit
|
|
|
|
>>> logit([0, 0.25, 0.5, 0.75, 1])
|
|
array([ -inf, -1.09861229, 0. , 1.09861229, inf])
|
|
|
|
`expit` is the inverse of `logit`:
|
|
|
|
>>> expit(logit([0.1, 0.75, 0.999]))
|
|
array([ 0.1 , 0.75 , 0.999])
|
|
|
|
Plot logit(x) for x in [0, 1]:
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> x = np.linspace(0, 1, 501)
|
|
>>> y = logit(x)
|
|
>>> plt.plot(x, y)
|
|
>>> plt.grid()
|
|
>>> plt.ylim(-6, 6)
|
|
>>> plt.xlabel('x')
|
|
>>> plt.title('logit(x)')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("lpmv",
|
|
r"""
|
|
lpmv(m, v, x)
|
|
|
|
Associated Legendre function of integer order and real degree.
|
|
|
|
Defined as
|
|
|
|
.. math::
|
|
|
|
P_v^m = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_v(x)
|
|
|
|
where
|
|
|
|
.. math::
|
|
|
|
P_v = \sum_{k = 0}^\infty \frac{(-v)_k (v + 1)_k}{(k!)^2}
|
|
\left(\frac{1 - x}{2}\right)^k
|
|
|
|
is the Legendre function of the first kind. Here :math:`(\cdot)_k`
|
|
is the Pochhammer symbol; see `poch`.
|
|
|
|
Parameters
|
|
----------
|
|
m : array_like
|
|
Order (int or float). If passed a float not equal to an
|
|
integer the function returns NaN.
|
|
v : array_like
|
|
Degree (float).
|
|
x : array_like
|
|
Argument (float). Must have ``|x| <= 1``.
|
|
|
|
Returns
|
|
-------
|
|
pmv : ndarray
|
|
Value of the associated Legendre function.
|
|
|
|
See Also
|
|
--------
|
|
lpmn : Compute the associated Legendre function for all orders
|
|
``0, ..., m`` and degrees ``0, ..., n``.
|
|
clpmn : Compute the associated Legendre function at complex
|
|
arguments.
|
|
|
|
Notes
|
|
-----
|
|
Note that this implementation includes the Condon-Shortley phase.
|
|
|
|
References
|
|
----------
|
|
.. [1] Zhang, Jin, "Computation of Special Functions", John Wiley
|
|
and Sons, Inc, 1996.
|
|
|
|
""")
|
|
|
|
add_newdoc("mathieu_a",
|
|
"""
|
|
mathieu_a(m, q)
|
|
|
|
Characteristic value of even Mathieu functions
|
|
|
|
Returns the characteristic value for the even solution,
|
|
``ce_m(z, q)``, of Mathieu's equation.
|
|
""")
|
|
|
|
add_newdoc("mathieu_b",
|
|
"""
|
|
mathieu_b(m, q)
|
|
|
|
Characteristic value of odd Mathieu functions
|
|
|
|
Returns the characteristic value for the odd solution,
|
|
``se_m(z, q)``, of Mathieu's equation.
|
|
""")
|
|
|
|
add_newdoc("mathieu_cem",
|
|
"""
|
|
mathieu_cem(m, q, x)
|
|
|
|
Even Mathieu function and its derivative
|
|
|
|
Returns the even Mathieu function, ``ce_m(x, q)``, of order `m` and
|
|
parameter `q` evaluated at `x` (given in degrees). Also returns the
|
|
derivative with respect to `x` of ce_m(x, q)
|
|
|
|
Parameters
|
|
----------
|
|
m
|
|
Order of the function
|
|
q
|
|
Parameter of the function
|
|
x
|
|
Argument of the function, *given in degrees, not radians*
|
|
|
|
Returns
|
|
-------
|
|
y
|
|
Value of the function
|
|
yp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("mathieu_modcem1",
|
|
"""
|
|
mathieu_modcem1(m, q, x)
|
|
|
|
Even modified Mathieu function of the first kind and its derivative
|
|
|
|
Evaluates the even modified Mathieu function of the first kind,
|
|
``Mc1m(x, q)``, and its derivative at `x` for order `m` and parameter
|
|
`q`.
|
|
|
|
Returns
|
|
-------
|
|
y
|
|
Value of the function
|
|
yp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("mathieu_modcem2",
|
|
"""
|
|
mathieu_modcem2(m, q, x)
|
|
|
|
Even modified Mathieu function of the second kind and its derivative
|
|
|
|
Evaluates the even modified Mathieu function of the second kind,
|
|
Mc2m(x, q), and its derivative at `x` (given in degrees) for order `m`
|
|
and parameter `q`.
|
|
|
|
Returns
|
|
-------
|
|
y
|
|
Value of the function
|
|
yp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("mathieu_modsem1",
|
|
"""
|
|
mathieu_modsem1(m, q, x)
|
|
|
|
Odd modified Mathieu function of the first kind and its derivative
|
|
|
|
Evaluates the odd modified Mathieu function of the first kind,
|
|
Ms1m(x, q), and its derivative at `x` (given in degrees) for order `m`
|
|
and parameter `q`.
|
|
|
|
Returns
|
|
-------
|
|
y
|
|
Value of the function
|
|
yp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("mathieu_modsem2",
|
|
"""
|
|
mathieu_modsem2(m, q, x)
|
|
|
|
Odd modified Mathieu function of the second kind and its derivative
|
|
|
|
Evaluates the odd modified Mathieu function of the second kind,
|
|
Ms2m(x, q), and its derivative at `x` (given in degrees) for order `m`
|
|
and parameter q.
|
|
|
|
Returns
|
|
-------
|
|
y
|
|
Value of the function
|
|
yp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("mathieu_sem",
|
|
"""
|
|
mathieu_sem(m, q, x)
|
|
|
|
Odd Mathieu function and its derivative
|
|
|
|
Returns the odd Mathieu function, se_m(x, q), of order `m` and
|
|
parameter `q` evaluated at `x` (given in degrees). Also returns the
|
|
derivative with respect to `x` of se_m(x, q).
|
|
|
|
Parameters
|
|
----------
|
|
m
|
|
Order of the function
|
|
q
|
|
Parameter of the function
|
|
x
|
|
Argument of the function, *given in degrees, not radians*.
|
|
|
|
Returns
|
|
-------
|
|
y
|
|
Value of the function
|
|
yp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("modfresnelm",
|
|
"""
|
|
modfresnelm(x)
|
|
|
|
Modified Fresnel negative integrals
|
|
|
|
Returns
|
|
-------
|
|
fm
|
|
Integral ``F_-(x)``: ``integral(exp(-1j*t*t), t=x..inf)``
|
|
km
|
|
Integral ``K_-(x)``: ``1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp``
|
|
""")
|
|
|
|
add_newdoc("modfresnelp",
|
|
"""
|
|
modfresnelp(x)
|
|
|
|
Modified Fresnel positive integrals
|
|
|
|
Returns
|
|
-------
|
|
fp
|
|
Integral ``F_+(x)``: ``integral(exp(1j*t*t), t=x..inf)``
|
|
kp
|
|
Integral ``K_+(x)``: ``1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp``
|
|
""")
|
|
|
|
add_newdoc("modstruve",
|
|
r"""
|
|
modstruve(v, x)
|
|
|
|
Modified Struve function.
|
|
|
|
Return the value of the modified Struve function of order `v` at `x`. The
|
|
modified Struve function is defined as,
|
|
|
|
.. math::
|
|
L_v(x) = -\imath \exp(-\pi\imath v/2) H_v(\imath x),
|
|
|
|
where :math:`H_v` is the Struve function.
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order of the modified Struve function (float).
|
|
x : array_like
|
|
Argument of the Struve function (float; must be positive unless `v` is
|
|
an integer).
|
|
|
|
Returns
|
|
-------
|
|
L : ndarray
|
|
Value of the modified Struve function of order `v` at `x`.
|
|
|
|
Notes
|
|
-----
|
|
Three methods discussed in [1]_ are used to evaluate the function:
|
|
|
|
- power series
|
|
- expansion in Bessel functions (if :math:`|x| < |v| + 20`)
|
|
- asymptotic large-x expansion (if :math:`x \geq 0.7v + 12`)
|
|
|
|
Rounding errors are estimated based on the largest terms in the sums, and
|
|
the result associated with the smallest error is returned.
|
|
|
|
See also
|
|
--------
|
|
struve
|
|
|
|
References
|
|
----------
|
|
.. [1] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/11
|
|
""")
|
|
|
|
add_newdoc("nbdtr",
|
|
r"""
|
|
nbdtr(k, n, p)
|
|
|
|
Negative binomial cumulative distribution function.
|
|
|
|
Returns the sum of the terms 0 through `k` of the negative binomial
|
|
distribution probability mass function,
|
|
|
|
.. math::
|
|
|
|
F = \sum_{j=0}^k {{n + j - 1}\choose{j}} p^n (1 - p)^j.
|
|
|
|
In a sequence of Bernoulli trials with individual success probabilities
|
|
`p`, this is the probability that `k` or fewer failures precede the nth
|
|
success.
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
The maximum number of allowed failures (nonnegative int).
|
|
n : array_like
|
|
The target number of successes (positive int).
|
|
p : array_like
|
|
Probability of success in a single event (float).
|
|
|
|
Returns
|
|
-------
|
|
F : ndarray
|
|
The probability of `k` or fewer failures before `n` successes in a
|
|
sequence of events with individual success probability `p`.
|
|
|
|
See also
|
|
--------
|
|
nbdtrc
|
|
|
|
Notes
|
|
-----
|
|
If floating point values are passed for `k` or `n`, they will be truncated
|
|
to integers.
|
|
|
|
The terms are not summed directly; instead the regularized incomplete beta
|
|
function is employed, according to the formula,
|
|
|
|
.. math::
|
|
\mathrm{nbdtr}(k, n, p) = I_{p}(n, k + 1).
|
|
|
|
Wrapper for the Cephes [1]_ routine `nbdtr`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("nbdtrc",
|
|
r"""
|
|
nbdtrc(k, n, p)
|
|
|
|
Negative binomial survival function.
|
|
|
|
Returns the sum of the terms `k + 1` to infinity of the negative binomial
|
|
distribution probability mass function,
|
|
|
|
.. math::
|
|
|
|
F = \sum_{j=k + 1}^\infty {{n + j - 1}\choose{j}} p^n (1 - p)^j.
|
|
|
|
In a sequence of Bernoulli trials with individual success probabilities
|
|
`p`, this is the probability that more than `k` failures precede the nth
|
|
success.
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
The maximum number of allowed failures (nonnegative int).
|
|
n : array_like
|
|
The target number of successes (positive int).
|
|
p : array_like
|
|
Probability of success in a single event (float).
|
|
|
|
Returns
|
|
-------
|
|
F : ndarray
|
|
The probability of `k + 1` or more failures before `n` successes in a
|
|
sequence of events with individual success probability `p`.
|
|
|
|
Notes
|
|
-----
|
|
If floating point values are passed for `k` or `n`, they will be truncated
|
|
to integers.
|
|
|
|
The terms are not summed directly; instead the regularized incomplete beta
|
|
function is employed, according to the formula,
|
|
|
|
.. math::
|
|
\mathrm{nbdtrc}(k, n, p) = I_{1 - p}(k + 1, n).
|
|
|
|
Wrapper for the Cephes [1]_ routine `nbdtrc`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("nbdtri",
|
|
"""
|
|
nbdtri(k, n, y)
|
|
|
|
Inverse of `nbdtr` vs `p`.
|
|
|
|
Returns the inverse with respect to the parameter `p` of
|
|
`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution
|
|
function.
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
The maximum number of allowed failures (nonnegative int).
|
|
n : array_like
|
|
The target number of successes (positive int).
|
|
y : array_like
|
|
The probability of `k` or fewer failures before `n` successes (float).
|
|
|
|
Returns
|
|
-------
|
|
p : ndarray
|
|
Probability of success in a single event (float) such that
|
|
`nbdtr(k, n, p) = y`.
|
|
|
|
See also
|
|
--------
|
|
nbdtr : Cumulative distribution function of the negative binomial.
|
|
nbdtrik : Inverse with respect to `k` of `nbdtr(k, n, p)`.
|
|
nbdtrin : Inverse with respect to `n` of `nbdtr(k, n, p)`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the Cephes [1]_ routine `nbdtri`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
|
|
""")
|
|
|
|
add_newdoc("nbdtrik",
|
|
r"""
|
|
nbdtrik(y, n, p)
|
|
|
|
Inverse of `nbdtr` vs `k`.
|
|
|
|
Returns the inverse with respect to the parameter `k` of
|
|
`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution
|
|
function.
|
|
|
|
Parameters
|
|
----------
|
|
y : array_like
|
|
The probability of `k` or fewer failures before `n` successes (float).
|
|
n : array_like
|
|
The target number of successes (positive int).
|
|
p : array_like
|
|
Probability of success in a single event (float).
|
|
|
|
Returns
|
|
-------
|
|
k : ndarray
|
|
The maximum number of allowed failures such that `nbdtr(k, n, p) = y`.
|
|
|
|
See also
|
|
--------
|
|
nbdtr : Cumulative distribution function of the negative binomial.
|
|
nbdtri : Inverse with respect to `p` of `nbdtr(k, n, p)`.
|
|
nbdtrin : Inverse with respect to `n` of `nbdtr(k, n, p)`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfnbn`.
|
|
|
|
Formula 26.5.26 of [2]_,
|
|
|
|
.. math::
|
|
\sum_{j=k + 1}^\infty {{n + j - 1}\choose{j}} p^n (1 - p)^j = I_{1 - p}(k + 1, n),
|
|
|
|
is used to reduce calculation of the cumulative distribution function to
|
|
that of a regularized incomplete beta :math:`I`.
|
|
|
|
Computation of `k` involves a search for a value that produces the desired
|
|
value of `y`. The search relies on the monotonicity of `y` with `k`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("nbdtrin",
|
|
r"""
|
|
nbdtrin(k, y, p)
|
|
|
|
Inverse of `nbdtr` vs `n`.
|
|
|
|
Returns the inverse with respect to the parameter `n` of
|
|
`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution
|
|
function.
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
The maximum number of allowed failures (nonnegative int).
|
|
y : array_like
|
|
The probability of `k` or fewer failures before `n` successes (float).
|
|
p : array_like
|
|
Probability of success in a single event (float).
|
|
|
|
Returns
|
|
-------
|
|
n : ndarray
|
|
The number of successes `n` such that `nbdtr(k, n, p) = y`.
|
|
|
|
See also
|
|
--------
|
|
nbdtr : Cumulative distribution function of the negative binomial.
|
|
nbdtri : Inverse with respect to `p` of `nbdtr(k, n, p)`.
|
|
nbdtrik : Inverse with respect to `k` of `nbdtr(k, n, p)`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdfnbn`.
|
|
|
|
Formula 26.5.26 of [2]_,
|
|
|
|
.. math::
|
|
\sum_{j=k + 1}^\infty {{n + j - 1}\choose{j}} p^n (1 - p)^j = I_{1 - p}(k + 1, n),
|
|
|
|
is used to reduce calculation of the cumulative distribution function to
|
|
that of a regularized incomplete beta :math:`I`.
|
|
|
|
Computation of `n` involves a search for a value that produces the desired
|
|
value of `y`. The search relies on the monotonicity of `y` with `n`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
""")
|
|
|
|
add_newdoc("ncfdtr",
|
|
r"""
|
|
ncfdtr(dfn, dfd, nc, f)
|
|
|
|
Cumulative distribution function of the non-central F distribution.
|
|
|
|
The non-central F describes the distribution of,
|
|
|
|
.. math::
|
|
Z = \frac{X/d_n}{Y/d_d}
|
|
|
|
where :math:`X` and :math:`Y` are independently distributed, with
|
|
:math:`X` distributed non-central :math:`\chi^2` with noncentrality
|
|
parameter `nc` and :math:`d_n` degrees of freedom, and :math:`Y`
|
|
distributed :math:`\chi^2` with :math:`d_d` degrees of freedom.
|
|
|
|
Parameters
|
|
----------
|
|
dfn : array_like
|
|
Degrees of freedom of the numerator sum of squares. Range (0, inf).
|
|
dfd : array_like
|
|
Degrees of freedom of the denominator sum of squares. Range (0, inf).
|
|
nc : array_like
|
|
Noncentrality parameter. Should be in range (0, 1e4).
|
|
f : array_like
|
|
Quantiles, i.e. the upper limit of integration.
|
|
|
|
Returns
|
|
-------
|
|
cdf : float or ndarray
|
|
The calculated CDF. If all inputs are scalar, the return will be a
|
|
float. Otherwise it will be an array.
|
|
|
|
See Also
|
|
--------
|
|
ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.
|
|
ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.
|
|
ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.
|
|
ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the CDFLIB [1]_ Fortran routine `cdffnc`.
|
|
|
|
The cumulative distribution function is computed using Formula 26.6.20 of
|
|
[2]_:
|
|
|
|
.. math::
|
|
F(d_n, d_d, n_c, f) = \sum_{j=0}^\infty e^{-n_c/2} \frac{(n_c/2)^j}{j!} I_{x}(\frac{d_n}{2} + j, \frac{d_d}{2}),
|
|
|
|
where :math:`I` is the regularized incomplete beta function, and
|
|
:math:`x = f d_n/(f d_n + d_d)`.
|
|
|
|
The computation time required for this routine is proportional to the
|
|
noncentrality parameter `nc`. Very large values of this parameter can
|
|
consume immense computer resources. This is why the search range is
|
|
bounded by 10,000.
|
|
|
|
References
|
|
----------
|
|
.. [1] Barry Brown, James Lovato, and Kathy Russell,
|
|
CDFLIB: Library of Fortran Routines for Cumulative Distribution
|
|
Functions, Inverses, and Other Parameters.
|
|
.. [2] Milton Abramowitz and Irene A. Stegun, eds.
|
|
Handbook of Mathematical Functions with Formulas,
|
|
Graphs, and Mathematical Tables. New York: Dover, 1972.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> from scipy import stats
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
Plot the CDF of the non-central F distribution, for nc=0. Compare with the
|
|
F-distribution from scipy.stats:
|
|
|
|
>>> x = np.linspace(-1, 8, num=500)
|
|
>>> dfn = 3
|
|
>>> dfd = 2
|
|
>>> ncf_stats = stats.f.cdf(x, dfn, dfd)
|
|
>>> ncf_special = special.ncfdtr(dfn, dfd, 0, x)
|
|
|
|
>>> fig = plt.figure()
|
|
>>> ax = fig.add_subplot(111)
|
|
>>> ax.plot(x, ncf_stats, 'b-', lw=3)
|
|
>>> ax.plot(x, ncf_special, 'r-')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("ncfdtri",
|
|
"""
|
|
ncfdtri(dfn, dfd, nc, p)
|
|
|
|
Inverse with respect to `f` of the CDF of the non-central F distribution.
|
|
|
|
See `ncfdtr` for more details.
|
|
|
|
Parameters
|
|
----------
|
|
dfn : array_like
|
|
Degrees of freedom of the numerator sum of squares. Range (0, inf).
|
|
dfd : array_like
|
|
Degrees of freedom of the denominator sum of squares. Range (0, inf).
|
|
nc : array_like
|
|
Noncentrality parameter. Should be in range (0, 1e4).
|
|
p : array_like
|
|
Value of the cumulative distribution function. Must be in the
|
|
range [0, 1].
|
|
|
|
Returns
|
|
-------
|
|
f : float
|
|
Quantiles, i.e., the upper limit of integration.
|
|
|
|
See Also
|
|
--------
|
|
ncfdtr : CDF of the non-central F distribution.
|
|
ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.
|
|
ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.
|
|
ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import ncfdtr, ncfdtri
|
|
|
|
Compute the CDF for several values of `f`:
|
|
|
|
>>> f = [0.5, 1, 1.5]
|
|
>>> p = ncfdtr(2, 3, 1.5, f)
|
|
>>> p
|
|
array([ 0.20782291, 0.36107392, 0.47345752])
|
|
|
|
Compute the inverse. We recover the values of `f`, as expected:
|
|
|
|
>>> ncfdtri(2, 3, 1.5, p)
|
|
array([ 0.5, 1. , 1.5])
|
|
|
|
""")
|
|
|
|
add_newdoc("ncfdtridfd",
|
|
"""
|
|
ncfdtridfd(dfn, p, nc, f)
|
|
|
|
Calculate degrees of freedom (denominator) for the noncentral F-distribution.
|
|
|
|
This is the inverse with respect to `dfd` of `ncfdtr`.
|
|
See `ncfdtr` for more details.
|
|
|
|
Parameters
|
|
----------
|
|
dfn : array_like
|
|
Degrees of freedom of the numerator sum of squares. Range (0, inf).
|
|
p : array_like
|
|
Value of the cumulative distribution function. Must be in the
|
|
range [0, 1].
|
|
nc : array_like
|
|
Noncentrality parameter. Should be in range (0, 1e4).
|
|
f : array_like
|
|
Quantiles, i.e., the upper limit of integration.
|
|
|
|
Returns
|
|
-------
|
|
dfd : float
|
|
Degrees of freedom of the denominator sum of squares.
|
|
|
|
See Also
|
|
--------
|
|
ncfdtr : CDF of the non-central F distribution.
|
|
ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.
|
|
ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.
|
|
ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.
|
|
|
|
Notes
|
|
-----
|
|
The value of the cumulative noncentral F distribution is not necessarily
|
|
monotone in either degrees of freedom. There thus may be two values that
|
|
provide a given CDF value. This routine assumes monotonicity and will
|
|
find an arbitrary one of the two values.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import ncfdtr, ncfdtridfd
|
|
|
|
Compute the CDF for several values of `dfd`:
|
|
|
|
>>> dfd = [1, 2, 3]
|
|
>>> p = ncfdtr(2, dfd, 0.25, 15)
|
|
>>> p
|
|
array([ 0.8097138 , 0.93020416, 0.96787852])
|
|
|
|
Compute the inverse. We recover the values of `dfd`, as expected:
|
|
|
|
>>> ncfdtridfd(2, p, 0.25, 15)
|
|
array([ 1., 2., 3.])
|
|
|
|
""")
|
|
|
|
add_newdoc("ncfdtridfn",
|
|
"""
|
|
ncfdtridfn(p, dfd, nc, f)
|
|
|
|
Calculate degrees of freedom (numerator) for the noncentral F-distribution.
|
|
|
|
This is the inverse with respect to `dfn` of `ncfdtr`.
|
|
See `ncfdtr` for more details.
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
Value of the cumulative distribution function. Must be in the
|
|
range [0, 1].
|
|
dfd : array_like
|
|
Degrees of freedom of the denominator sum of squares. Range (0, inf).
|
|
nc : array_like
|
|
Noncentrality parameter. Should be in range (0, 1e4).
|
|
f : float
|
|
Quantiles, i.e., the upper limit of integration.
|
|
|
|
Returns
|
|
-------
|
|
dfn : float
|
|
Degrees of freedom of the numerator sum of squares.
|
|
|
|
See Also
|
|
--------
|
|
ncfdtr : CDF of the non-central F distribution.
|
|
ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.
|
|
ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.
|
|
ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.
|
|
|
|
Notes
|
|
-----
|
|
The value of the cumulative noncentral F distribution is not necessarily
|
|
monotone in either degrees of freedom. There thus may be two values that
|
|
provide a given CDF value. This routine assumes monotonicity and will
|
|
find an arbitrary one of the two values.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import ncfdtr, ncfdtridfn
|
|
|
|
Compute the CDF for several values of `dfn`:
|
|
|
|
>>> dfn = [1, 2, 3]
|
|
>>> p = ncfdtr(dfn, 2, 0.25, 15)
|
|
>>> p
|
|
array([ 0.92562363, 0.93020416, 0.93188394])
|
|
|
|
Compute the inverse. We recover the values of `dfn`, as expected:
|
|
|
|
>>> ncfdtridfn(p, 2, 0.25, 15)
|
|
array([ 1., 2., 3.])
|
|
|
|
""")
|
|
|
|
add_newdoc("ncfdtrinc",
|
|
"""
|
|
ncfdtrinc(dfn, dfd, p, f)
|
|
|
|
Calculate non-centrality parameter for non-central F distribution.
|
|
|
|
This is the inverse with respect to `nc` of `ncfdtr`.
|
|
See `ncfdtr` for more details.
|
|
|
|
Parameters
|
|
----------
|
|
dfn : array_like
|
|
Degrees of freedom of the numerator sum of squares. Range (0, inf).
|
|
dfd : array_like
|
|
Degrees of freedom of the denominator sum of squares. Range (0, inf).
|
|
p : array_like
|
|
Value of the cumulative distribution function. Must be in the
|
|
range [0, 1].
|
|
f : array_like
|
|
Quantiles, i.e., the upper limit of integration.
|
|
|
|
Returns
|
|
-------
|
|
nc : float
|
|
Noncentrality parameter.
|
|
|
|
See Also
|
|
--------
|
|
ncfdtr : CDF of the non-central F distribution.
|
|
ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.
|
|
ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.
|
|
ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import ncfdtr, ncfdtrinc
|
|
|
|
Compute the CDF for several values of `nc`:
|
|
|
|
>>> nc = [0.5, 1.5, 2.0]
|
|
>>> p = ncfdtr(2, 3, nc, 15)
|
|
>>> p
|
|
array([ 0.96309246, 0.94327955, 0.93304098])
|
|
|
|
Compute the inverse. We recover the values of `nc`, as expected:
|
|
|
|
>>> ncfdtrinc(2, 3, p, 15)
|
|
array([ 0.5, 1.5, 2. ])
|
|
|
|
""")
|
|
|
|
add_newdoc("nctdtr",
|
|
"""
|
|
nctdtr(df, nc, t)
|
|
|
|
Cumulative distribution function of the non-central `t` distribution.
|
|
|
|
Parameters
|
|
----------
|
|
df : array_like
|
|
Degrees of freedom of the distribution. Should be in range (0, inf).
|
|
nc : array_like
|
|
Noncentrality parameter. Should be in range (-1e6, 1e6).
|
|
t : array_like
|
|
Quantiles, i.e., the upper limit of integration.
|
|
|
|
Returns
|
|
-------
|
|
cdf : float or ndarray
|
|
The calculated CDF. If all inputs are scalar, the return will be a
|
|
float. Otherwise, it will be an array.
|
|
|
|
See Also
|
|
--------
|
|
nctdtrit : Inverse CDF (iCDF) of the non-central t distribution.
|
|
nctdtridf : Calculate degrees of freedom, given CDF and iCDF values.
|
|
nctdtrinc : Calculate non-centrality parameter, given CDF iCDF values.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> from scipy import stats
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
Plot the CDF of the non-central t distribution, for nc=0. Compare with the
|
|
t-distribution from scipy.stats:
|
|
|
|
>>> x = np.linspace(-5, 5, num=500)
|
|
>>> df = 3
|
|
>>> nct_stats = stats.t.cdf(x, df)
|
|
>>> nct_special = special.nctdtr(df, 0, x)
|
|
|
|
>>> fig = plt.figure()
|
|
>>> ax = fig.add_subplot(111)
|
|
>>> ax.plot(x, nct_stats, 'b-', lw=3)
|
|
>>> ax.plot(x, nct_special, 'r-')
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("nctdtridf",
|
|
"""
|
|
nctdtridf(p, nc, t)
|
|
|
|
Calculate degrees of freedom for non-central t distribution.
|
|
|
|
See `nctdtr` for more details.
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
CDF values, in range (0, 1].
|
|
nc : array_like
|
|
Noncentrality parameter. Should be in range (-1e6, 1e6).
|
|
t : array_like
|
|
Quantiles, i.e., the upper limit of integration.
|
|
|
|
""")
|
|
|
|
add_newdoc("nctdtrinc",
|
|
"""
|
|
nctdtrinc(df, p, t)
|
|
|
|
Calculate non-centrality parameter for non-central t distribution.
|
|
|
|
See `nctdtr` for more details.
|
|
|
|
Parameters
|
|
----------
|
|
df : array_like
|
|
Degrees of freedom of the distribution. Should be in range (0, inf).
|
|
p : array_like
|
|
CDF values, in range (0, 1].
|
|
t : array_like
|
|
Quantiles, i.e., the upper limit of integration.
|
|
|
|
""")
|
|
|
|
add_newdoc("nctdtrit",
|
|
"""
|
|
nctdtrit(df, nc, p)
|
|
|
|
Inverse cumulative distribution function of the non-central t distribution.
|
|
|
|
See `nctdtr` for more details.
|
|
|
|
Parameters
|
|
----------
|
|
df : array_like
|
|
Degrees of freedom of the distribution. Should be in range (0, inf).
|
|
nc : array_like
|
|
Noncentrality parameter. Should be in range (-1e6, 1e6).
|
|
p : array_like
|
|
CDF values, in range (0, 1].
|
|
|
|
""")
|
|
|
|
add_newdoc("ndtr",
|
|
r"""
|
|
ndtr(x)
|
|
|
|
Gaussian cumulative distribution function.
|
|
|
|
Returns the area under the standard Gaussian probability
|
|
density function, integrated from minus infinity to `x`
|
|
|
|
.. math::
|
|
|
|
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp(-t^2/2) dt
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like, real or complex
|
|
Argument
|
|
|
|
Returns
|
|
-------
|
|
ndarray
|
|
The value of the normal CDF evaluated at `x`
|
|
|
|
See Also
|
|
--------
|
|
erf
|
|
erfc
|
|
scipy.stats.norm
|
|
log_ndtr
|
|
|
|
""")
|
|
|
|
|
|
add_newdoc("nrdtrimn",
|
|
"""
|
|
nrdtrimn(p, x, std)
|
|
|
|
Calculate mean of normal distribution given other params.
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
CDF values, in range (0, 1].
|
|
x : array_like
|
|
Quantiles, i.e. the upper limit of integration.
|
|
std : array_like
|
|
Standard deviation.
|
|
|
|
Returns
|
|
-------
|
|
mn : float or ndarray
|
|
The mean of the normal distribution.
|
|
|
|
See Also
|
|
--------
|
|
nrdtrimn, ndtr
|
|
|
|
""")
|
|
|
|
add_newdoc("nrdtrisd",
|
|
"""
|
|
nrdtrisd(p, x, mn)
|
|
|
|
Calculate standard deviation of normal distribution given other params.
|
|
|
|
Parameters
|
|
----------
|
|
p : array_like
|
|
CDF values, in range (0, 1].
|
|
x : array_like
|
|
Quantiles, i.e. the upper limit of integration.
|
|
mn : float or ndarray
|
|
The mean of the normal distribution.
|
|
|
|
Returns
|
|
-------
|
|
std : array_like
|
|
Standard deviation.
|
|
|
|
See Also
|
|
--------
|
|
ndtr
|
|
|
|
""")
|
|
|
|
add_newdoc("log_ndtr",
|
|
"""
|
|
log_ndtr(x)
|
|
|
|
Logarithm of Gaussian cumulative distribution function.
|
|
|
|
Returns the log of the area under the standard Gaussian probability
|
|
density function, integrated from minus infinity to `x`::
|
|
|
|
log(1/sqrt(2*pi) * integral(exp(-t**2 / 2), t=-inf..x))
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like, real or complex
|
|
Argument
|
|
|
|
Returns
|
|
-------
|
|
ndarray
|
|
The value of the log of the normal CDF evaluated at `x`
|
|
|
|
See Also
|
|
--------
|
|
erf
|
|
erfc
|
|
scipy.stats.norm
|
|
ndtr
|
|
|
|
""")
|
|
|
|
add_newdoc("ndtri",
|
|
"""
|
|
ndtri(y)
|
|
|
|
Inverse of `ndtr` vs x
|
|
|
|
Returns the argument x for which the area under the Gaussian
|
|
probability density function (integrated from minus infinity to `x`)
|
|
is equal to y.
|
|
""")
|
|
|
|
add_newdoc("obl_ang1",
|
|
"""
|
|
obl_ang1(m, n, c, x)
|
|
|
|
Oblate spheroidal angular function of the first kind and its derivative
|
|
|
|
Computes the oblate spheroidal angular function of the first kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("obl_ang1_cv",
|
|
"""
|
|
obl_ang1_cv(m, n, c, cv, x)
|
|
|
|
Oblate spheroidal angular function obl_ang1 for precomputed characteristic value
|
|
|
|
Computes the oblate spheroidal angular function of the first kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
|
pre-computed characteristic value.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("obl_cv",
|
|
"""
|
|
obl_cv(m, n, c)
|
|
|
|
Characteristic value of oblate spheroidal function
|
|
|
|
Computes the characteristic value of oblate spheroidal wave
|
|
functions of order `m`, `n` (n>=m) and spheroidal parameter `c`.
|
|
""")
|
|
|
|
add_newdoc("obl_rad1",
|
|
"""
|
|
obl_rad1(m, n, c, x)
|
|
|
|
Oblate spheroidal radial function of the first kind and its derivative
|
|
|
|
Computes the oblate spheroidal radial function of the first kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("obl_rad1_cv",
|
|
"""
|
|
obl_rad1_cv(m, n, c, cv, x)
|
|
|
|
Oblate spheroidal radial function obl_rad1 for precomputed characteristic value
|
|
|
|
Computes the oblate spheroidal radial function of the first kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
|
pre-computed characteristic value.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("obl_rad2",
|
|
"""
|
|
obl_rad2(m, n, c, x)
|
|
|
|
Oblate spheroidal radial function of the second kind and its derivative.
|
|
|
|
Computes the oblate spheroidal radial function of the second kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("obl_rad2_cv",
|
|
"""
|
|
obl_rad2_cv(m, n, c, cv, x)
|
|
|
|
Oblate spheroidal radial function obl_rad2 for precomputed characteristic value
|
|
|
|
Computes the oblate spheroidal radial function of the second kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
|
pre-computed characteristic value.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pbdv",
|
|
"""
|
|
pbdv(v, x)
|
|
|
|
Parabolic cylinder function D
|
|
|
|
Returns (d, dp) the parabolic cylinder function Dv(x) in d and the
|
|
derivative, Dv'(x) in dp.
|
|
|
|
Returns
|
|
-------
|
|
d
|
|
Value of the function
|
|
dp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pbvv",
|
|
"""
|
|
pbvv(v, x)
|
|
|
|
Parabolic cylinder function V
|
|
|
|
Returns the parabolic cylinder function Vv(x) in v and the
|
|
derivative, Vv'(x) in vp.
|
|
|
|
Returns
|
|
-------
|
|
v
|
|
Value of the function
|
|
vp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pbwa",
|
|
r"""
|
|
pbwa(a, x)
|
|
|
|
Parabolic cylinder function W.
|
|
|
|
The function is a particular solution to the differential equation
|
|
|
|
.. math::
|
|
|
|
y'' + \left(\frac{1}{4}x^2 - a\right)y = 0,
|
|
|
|
for a full definition see section 12.14 in [1]_.
|
|
|
|
Parameters
|
|
----------
|
|
a : array_like
|
|
Real parameter
|
|
x : array_like
|
|
Real argument
|
|
|
|
Returns
|
|
-------
|
|
w : scalar or ndarray
|
|
Value of the function
|
|
wp : scalar or ndarray
|
|
Value of the derivative in x
|
|
|
|
Notes
|
|
-----
|
|
The function is a wrapper for a Fortran routine by Zhang and Jin
|
|
[2]_. The implementation is accurate only for ``|a|, |x| < 5`` and
|
|
returns NaN outside that range.
|
|
|
|
References
|
|
----------
|
|
.. [1] Digital Library of Mathematical Functions, 14.30.
|
|
https://dlmf.nist.gov/14.30
|
|
.. [2] Zhang, Shanjie and Jin, Jianming. "Computation of Special
|
|
Functions", John Wiley and Sons, 1996.
|
|
https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html
|
|
""")
|
|
|
|
add_newdoc("pdtr",
|
|
r"""
|
|
pdtr(k, m, out=None)
|
|
|
|
Poisson cumulative distribution function.
|
|
|
|
Defined as the probability that a Poisson-distributed random
|
|
variable with event rate :math:`m` is less than or equal to
|
|
:math:`k`. More concretely, this works out to be [1]_
|
|
|
|
.. math::
|
|
|
|
\exp(-m) \sum_{j = 0}^{\lfloor{k}\rfloor} \frac{m^j}{m!}.
|
|
|
|
Parameters
|
|
----------
|
|
k : array_like
|
|
Nonnegative real argument
|
|
m : array_like
|
|
Nonnegative real shape parameter
|
|
out : ndarray
|
|
Optional output array for the function results
|
|
|
|
See Also
|
|
--------
|
|
pdtrc : Poisson survival function
|
|
pdtrik : inverse of `pdtr` with respect to `k`
|
|
pdtri : inverse of `pdtr` with respect to `m`
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the Poisson cumulative distribution function
|
|
|
|
References
|
|
----------
|
|
.. [1] https://en.wikipedia.org/wiki/Poisson_distribution
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is a cumulative distribution function, so it converges to 1
|
|
monotonically as `k` goes to infinity.
|
|
|
|
>>> sc.pdtr([1, 10, 100, np.inf], 1)
|
|
array([0.73575888, 0.99999999, 1. , 1. ])
|
|
|
|
It is discontinuous at integers and constant between integers.
|
|
|
|
>>> sc.pdtr([1, 1.5, 1.9, 2], 1)
|
|
array([0.73575888, 0.73575888, 0.73575888, 0.9196986 ])
|
|
|
|
""")
|
|
|
|
add_newdoc("pdtrc",
|
|
"""
|
|
pdtrc(k, m)
|
|
|
|
Poisson survival function
|
|
|
|
Returns the sum of the terms from k+1 to infinity of the Poisson
|
|
distribution: sum(exp(-m) * m**j / j!, j=k+1..inf) = gammainc(
|
|
k+1, m). Arguments must both be non-negative doubles.
|
|
""")
|
|
|
|
add_newdoc("pdtri",
|
|
"""
|
|
pdtri(k, y)
|
|
|
|
Inverse to `pdtr` vs m
|
|
|
|
Returns the Poisson variable `m` such that the sum from 0 to `k` of
|
|
the Poisson density is equal to the given probability `y`:
|
|
calculated by gammaincinv(k+1, y). `k` must be a nonnegative
|
|
integer and `y` between 0 and 1.
|
|
""")
|
|
|
|
add_newdoc("pdtrik",
|
|
"""
|
|
pdtrik(p, m)
|
|
|
|
Inverse to `pdtr` vs k
|
|
|
|
Returns the quantile k such that ``pdtr(k, m) = p``
|
|
""")
|
|
|
|
add_newdoc("poch",
|
|
r"""
|
|
poch(z, m)
|
|
|
|
Pochhammer symbol.
|
|
|
|
The Pochhammer symbol (rising factorial) is defined as
|
|
|
|
.. math::
|
|
|
|
(z)_m = \frac{\Gamma(z + m)}{\Gamma(z)}
|
|
|
|
For positive integer `m` it reads
|
|
|
|
.. math::
|
|
|
|
(z)_m = z (z + 1) ... (z + m - 1)
|
|
|
|
See [dlmf]_ for more details.
|
|
|
|
Parameters
|
|
----------
|
|
z, m : array_like
|
|
Real-valued arguments.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
The value of the function.
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] Nist, Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/5.2#iii
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is 1 when m is 0.
|
|
|
|
>>> sc.poch([1, 2, 3, 4], 0)
|
|
array([1., 1., 1., 1.])
|
|
|
|
For z equal to 1 it reduces to the factorial function.
|
|
|
|
>>> sc.poch(1, 5)
|
|
120.0
|
|
>>> 1 * 2 * 3 * 4 * 5
|
|
120
|
|
|
|
It can be expressed in terms of the gamma function.
|
|
|
|
>>> z, m = 3.7, 2.1
|
|
>>> sc.poch(z, m)
|
|
20.529581933776953
|
|
>>> sc.gamma(z + m) / sc.gamma(z)
|
|
20.52958193377696
|
|
|
|
""")
|
|
|
|
add_newdoc("pro_ang1",
|
|
"""
|
|
pro_ang1(m, n, c, x)
|
|
|
|
Prolate spheroidal angular function of the first kind and its derivative
|
|
|
|
Computes the prolate spheroidal angular function of the first kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pro_ang1_cv",
|
|
"""
|
|
pro_ang1_cv(m, n, c, cv, x)
|
|
|
|
Prolate spheroidal angular function pro_ang1 for precomputed characteristic value
|
|
|
|
Computes the prolate spheroidal angular function of the first kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
|
pre-computed characteristic value.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pro_cv",
|
|
"""
|
|
pro_cv(m, n, c)
|
|
|
|
Characteristic value of prolate spheroidal function
|
|
|
|
Computes the characteristic value of prolate spheroidal wave
|
|
functions of order `m`, `n` (n>=m) and spheroidal parameter `c`.
|
|
""")
|
|
|
|
add_newdoc("pro_rad1",
|
|
"""
|
|
pro_rad1(m, n, c, x)
|
|
|
|
Prolate spheroidal radial function of the first kind and its derivative
|
|
|
|
Computes the prolate spheroidal radial function of the first kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pro_rad1_cv",
|
|
"""
|
|
pro_rad1_cv(m, n, c, cv, x)
|
|
|
|
Prolate spheroidal radial function pro_rad1 for precomputed characteristic value
|
|
|
|
Computes the prolate spheroidal radial function of the first kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
|
pre-computed characteristic value.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pro_rad2",
|
|
"""
|
|
pro_rad2(m, n, c, x)
|
|
|
|
Prolate spheroidal radial function of the second kind and its derivative
|
|
|
|
Computes the prolate spheroidal radial function of the second kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pro_rad2_cv",
|
|
"""
|
|
pro_rad2_cv(m, n, c, cv, x)
|
|
|
|
Prolate spheroidal radial function pro_rad2 for precomputed characteristic value
|
|
|
|
Computes the prolate spheroidal radial function of the second kind
|
|
and its derivative (with respect to `x`) for mode parameters m>=0
|
|
and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires
|
|
pre-computed characteristic value.
|
|
|
|
Returns
|
|
-------
|
|
s
|
|
Value of the function
|
|
sp
|
|
Value of the derivative vs x
|
|
""")
|
|
|
|
add_newdoc("pseudo_huber",
|
|
r"""
|
|
pseudo_huber(delta, r)
|
|
|
|
Pseudo-Huber loss function.
|
|
|
|
.. math:: \mathrm{pseudo\_huber}(\delta, r) = \delta^2 \left( \sqrt{ 1 + \left( \frac{r}{\delta} \right)^2 } - 1 \right)
|
|
|
|
Parameters
|
|
----------
|
|
delta : ndarray
|
|
Input array, indicating the soft quadratic vs. linear loss changepoint.
|
|
r : ndarray
|
|
Input array, possibly representing residuals.
|
|
|
|
Returns
|
|
-------
|
|
res : ndarray
|
|
The computed Pseudo-Huber loss function values.
|
|
|
|
Notes
|
|
-----
|
|
This function is convex in :math:`r`.
|
|
|
|
.. versionadded:: 0.15.0
|
|
|
|
""")
|
|
|
|
add_newdoc("psi",
|
|
"""
|
|
psi(z, out=None)
|
|
|
|
The digamma function.
|
|
|
|
The logarithmic derivative of the gamma function evaluated at ``z``.
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Real or complex argument.
|
|
out : ndarray, optional
|
|
Array for the computed values of ``psi``.
|
|
|
|
Returns
|
|
-------
|
|
digamma : ndarray
|
|
Computed values of ``psi``.
|
|
|
|
Notes
|
|
-----
|
|
For large values not close to the negative real axis, ``psi`` is
|
|
computed using the asymptotic series (5.11.2) from [1]_. For small
|
|
arguments not close to the negative real axis, the recurrence
|
|
relation (5.5.2) from [1]_ is used until the argument is large
|
|
enough to use the asymptotic series. For values close to the
|
|
negative real axis, the reflection formula (5.5.4) from [1]_ is
|
|
used first. Note that ``psi`` has a family of zeros on the
|
|
negative real axis which occur between the poles at nonpositive
|
|
integers. Around the zeros the reflection formula suffers from
|
|
cancellation and the implementation loses precision. The sole
|
|
positive zero and the first negative zero, however, are handled
|
|
separately by precomputing series expansions using [2]_, so the
|
|
function should maintain full accuracy around the origin.
|
|
|
|
References
|
|
----------
|
|
.. [1] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/5
|
|
.. [2] Fredrik Johansson and others.
|
|
"mpmath: a Python library for arbitrary-precision floating-point arithmetic"
|
|
(Version 0.19) http://mpmath.org/
|
|
|
|
""")
|
|
|
|
add_newdoc("radian",
|
|
"""
|
|
radian(d, m, s, out=None)
|
|
|
|
Convert from degrees to radians.
|
|
|
|
Returns the angle given in (d)egrees, (m)inutes, and (s)econds in
|
|
radians.
|
|
|
|
Parameters
|
|
----------
|
|
d : array_like
|
|
Degrees, can be real-valued.
|
|
m : array_like
|
|
Minutes, can be real-valued.
|
|
s : array_like
|
|
Seconds, can be real-valued.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Values of the inputs in radians.
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
There are many ways to specify an angle.
|
|
|
|
>>> sc.radian(90, 0, 0)
|
|
1.5707963267948966
|
|
>>> sc.radian(0, 60 * 90, 0)
|
|
1.5707963267948966
|
|
>>> sc.radian(0, 0, 60**2 * 90)
|
|
1.5707963267948966
|
|
|
|
The inputs can be real-valued.
|
|
|
|
>>> sc.radian(1.5, 0, 0)
|
|
0.02617993877991494
|
|
>>> sc.radian(1, 30, 0)
|
|
0.02617993877991494
|
|
|
|
""")
|
|
|
|
add_newdoc("rel_entr",
|
|
r"""
|
|
rel_entr(x, y, out=None)
|
|
|
|
Elementwise function for computing relative entropy.
|
|
|
|
.. math::
|
|
|
|
\mathrm{rel\_entr}(x, y) =
|
|
\begin{cases}
|
|
x \log(x / y) & x > 0, y > 0 \\
|
|
0 & x = 0, y \ge 0 \\
|
|
\infty & \text{otherwise}
|
|
\end{cases}
|
|
|
|
Parameters
|
|
----------
|
|
x, y : array_like
|
|
Input arrays
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Relative entropy of the inputs
|
|
|
|
See Also
|
|
--------
|
|
entr, kl_div
|
|
|
|
Notes
|
|
-----
|
|
.. versionadded:: 0.15.0
|
|
|
|
This function is jointly convex in x and y.
|
|
|
|
The origin of this function is in convex programming; see
|
|
[1]_. Given two discrete probability distributions :math:`p_1,
|
|
\ldots, p_n` and :math:`q_1, \ldots, q_n`, to get the relative
|
|
entropy of statistics compute the sum
|
|
|
|
.. math::
|
|
|
|
\sum_{i = 1}^n \mathrm{rel\_entr}(p_i, q_i).
|
|
|
|
See [2]_ for details.
|
|
|
|
References
|
|
----------
|
|
.. [1] Grant, Boyd, and Ye, "CVX: Matlab Software for Disciplined Convex
|
|
Programming", http://cvxr.com/cvx/
|
|
.. [2] Kullback-Leibler divergence,
|
|
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
|
|
|
|
""")
|
|
|
|
add_newdoc("rgamma",
|
|
r"""
|
|
rgamma(z, out=None)
|
|
|
|
Reciprocal of the gamma function.
|
|
|
|
Defined as :math:`1 / \Gamma(z)`, where :math:`\Gamma` is the
|
|
gamma function. For more on the gamma function see `gamma`.
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Real or complex valued input
|
|
out : ndarray, optional
|
|
Optional output array for the function results
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Function results
|
|
|
|
Notes
|
|
-----
|
|
The gamma function has no zeros and has simple poles at
|
|
nonpositive integers, so `rgamma` is an entire function with zeros
|
|
at the nonpositive integers. See the discussion in [dlmf]_ for
|
|
more details.
|
|
|
|
See Also
|
|
--------
|
|
gamma, gammaln, loggamma
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] Nist, Digital Library of Mathematical functions,
|
|
https://dlmf.nist.gov/5.2#i
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is the reciprocal of the gamma function.
|
|
|
|
>>> sc.rgamma([1, 2, 3, 4])
|
|
array([1. , 1. , 0.5 , 0.16666667])
|
|
>>> 1 / sc.gamma([1, 2, 3, 4])
|
|
array([1. , 1. , 0.5 , 0.16666667])
|
|
|
|
It is zero at nonpositive integers.
|
|
|
|
>>> sc.rgamma([0, -1, -2, -3])
|
|
array([0., 0., 0., 0.])
|
|
|
|
It rapidly underflows to zero along the positive real axis.
|
|
|
|
>>> sc.rgamma([10, 100, 179])
|
|
array([2.75573192e-006, 1.07151029e-156, 0.00000000e+000])
|
|
|
|
""")
|
|
|
|
add_newdoc("round",
|
|
"""
|
|
round(x, out=None)
|
|
|
|
Round to the nearest integer.
|
|
|
|
Returns the nearest integer to `x`. If `x` ends in 0.5 exactly,
|
|
the nearest even integer is chosen.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real valued input.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
The nearest integers to the elements of `x`. The result is of
|
|
floating type, not integer type.
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It rounds to even.
|
|
|
|
>>> sc.round([0.5, 1.5])
|
|
array([0., 2.])
|
|
|
|
""")
|
|
|
|
add_newdoc("shichi",
|
|
r"""
|
|
shichi(x, out=None)
|
|
|
|
Hyperbolic sine and cosine integrals.
|
|
|
|
The hyperbolic sine integral is
|
|
|
|
.. math::
|
|
|
|
\int_0^x \frac{\sinh{t}}{t}dt
|
|
|
|
and the hyperbolic cosine integral is
|
|
|
|
.. math::
|
|
|
|
\gamma + \log(x) + \int_0^x \frac{\cosh{t} - 1}{t} dt
|
|
|
|
where :math:`\gamma` is Euler's constant and :math:`\log` is the
|
|
principle branch of the logarithm.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real or complex points at which to compute the hyperbolic sine
|
|
and cosine integrals.
|
|
|
|
Returns
|
|
-------
|
|
si : ndarray
|
|
Hyperbolic sine integral at ``x``
|
|
ci : ndarray
|
|
Hyperbolic cosine integral at ``x``
|
|
|
|
Notes
|
|
-----
|
|
For real arguments with ``x < 0``, ``chi`` is the real part of the
|
|
hyperbolic cosine integral. For such points ``chi(x)`` and ``chi(x
|
|
+ 0j)`` differ by a factor of ``1j*pi``.
|
|
|
|
For real arguments the function is computed by calling Cephes'
|
|
[1]_ *shichi* routine. For complex arguments the algorithm is based
|
|
on Mpmath's [2]_ *shi* and *chi* routines.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
.. [2] Fredrik Johansson and others.
|
|
"mpmath: a Python library for arbitrary-precision floating-point arithmetic"
|
|
(Version 0.19) http://mpmath.org/
|
|
""")
|
|
|
|
add_newdoc("sici",
|
|
r"""
|
|
sici(x, out=None)
|
|
|
|
Sine and cosine integrals.
|
|
|
|
The sine integral is
|
|
|
|
.. math::
|
|
|
|
\int_0^x \frac{\sin{t}}{t}dt
|
|
|
|
and the cosine integral is
|
|
|
|
.. math::
|
|
|
|
\gamma + \log(x) + \int_0^x \frac{\cos{t} - 1}{t}dt
|
|
|
|
where :math:`\gamma` is Euler's constant and :math:`\log` is the
|
|
principle branch of the logarithm.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Real or complex points at which to compute the sine and cosine
|
|
integrals.
|
|
|
|
Returns
|
|
-------
|
|
si : ndarray
|
|
Sine integral at ``x``
|
|
ci : ndarray
|
|
Cosine integral at ``x``
|
|
|
|
Notes
|
|
-----
|
|
For real arguments with ``x < 0``, ``ci`` is the real part of the
|
|
cosine integral. For such points ``ci(x)`` and ``ci(x + 0j)``
|
|
differ by a factor of ``1j*pi``.
|
|
|
|
For real arguments the function is computed by calling Cephes'
|
|
[1]_ *sici* routine. For complex arguments the algorithm is based
|
|
on Mpmath's [2]_ *si* and *ci* routines.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
.. [2] Fredrik Johansson and others.
|
|
"mpmath: a Python library for arbitrary-precision floating-point arithmetic"
|
|
(Version 0.19) http://mpmath.org/
|
|
""")
|
|
|
|
add_newdoc("sindg",
|
|
"""
|
|
sindg(x, out=None)
|
|
|
|
Sine of the angle `x` given in degrees.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Angle, given in degrees.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Sine at the input.
|
|
|
|
See Also
|
|
--------
|
|
cosdg, tandg, cotdg
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is more accurate than using sine directly.
|
|
|
|
>>> x = 180 * np.arange(3)
|
|
>>> sc.sindg(x)
|
|
array([ 0., -0., 0.])
|
|
>>> np.sin(x * np.pi / 180)
|
|
array([ 0.0000000e+00, 1.2246468e-16, -2.4492936e-16])
|
|
|
|
""")
|
|
|
|
add_newdoc("smirnov",
|
|
r"""
|
|
smirnov(n, d)
|
|
|
|
Kolmogorov-Smirnov complementary cumulative distribution function
|
|
|
|
Returns the exact Kolmogorov-Smirnov complementary cumulative
|
|
distribution function,(aka the Survival Function) of Dn+ (or Dn-)
|
|
for a one-sided test of equality between an empirical and a
|
|
theoretical distribution. It is equal to the probability that the
|
|
maximum difference between a theoretical distribution and an empirical
|
|
one based on `n` samples is greater than d.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Number of samples
|
|
d : float array_like
|
|
Deviation between the Empirical CDF (ECDF) and the target CDF.
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
The value(s) of smirnov(n, d), Prob(Dn+ >= d) (Also Prob(Dn- >= d))
|
|
|
|
Notes
|
|
-----
|
|
`smirnov` is used by `stats.kstest` in the application of the
|
|
Kolmogorov-Smirnov Goodness of Fit test. For historial reasons this
|
|
function is exposed in `scpy.special`, but the recommended way to achieve
|
|
the most accurate CDF/SF/PDF/PPF/ISF computations is to use the
|
|
`stats.ksone` distribution.
|
|
|
|
See Also
|
|
--------
|
|
smirnovi : The Inverse Survival Function for the distribution
|
|
scipy.stats.ksone : Provides the functionality as a continuous distribution
|
|
kolmogorov, kolmogi : Functions for the two-sided distribution
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import smirnov
|
|
|
|
Show the probability of a gap at least as big as 0, 0.5 and 1.0 for a sample of size 5
|
|
|
|
>>> smirnov(5, [0, 0.5, 1.0])
|
|
array([ 1. , 0.056, 0. ])
|
|
|
|
Compare a sample of size 5 drawn from a source N(0.5, 1) distribution against
|
|
a target N(0, 1) CDF.
|
|
|
|
>>> from scipy.stats import norm
|
|
>>> n = 5
|
|
>>> gendist = norm(0.5, 1) # Normal distribution, mean 0.5, stddev 1
|
|
>>> np.random.seed(seed=233423) # Set the seed for reproducibility
|
|
>>> x = np.sort(gendist.rvs(size=n))
|
|
>>> x
|
|
array([-0.20946287, 0.71688765, 0.95164151, 1.44590852, 3.08880533])
|
|
>>> target = norm(0, 1)
|
|
>>> cdfs = target.cdf(x)
|
|
>>> cdfs
|
|
array([ 0.41704346, 0.76327829, 0.82936059, 0.92589857, 0.99899518])
|
|
# Construct the Empirical CDF and the K-S statistics (Dn+, Dn-, Dn)
|
|
>>> ecdfs = np.arange(n+1, dtype=float)/n
|
|
>>> cols = np.column_stack([x, ecdfs[1:], cdfs, cdfs - ecdfs[:n], ecdfs[1:] - cdfs])
|
|
>>> np.set_printoptions(precision=3)
|
|
>>> cols
|
|
array([[ -2.095e-01, 2.000e-01, 4.170e-01, 4.170e-01, -2.170e-01],
|
|
[ 7.169e-01, 4.000e-01, 7.633e-01, 5.633e-01, -3.633e-01],
|
|
[ 9.516e-01, 6.000e-01, 8.294e-01, 4.294e-01, -2.294e-01],
|
|
[ 1.446e+00, 8.000e-01, 9.259e-01, 3.259e-01, -1.259e-01],
|
|
[ 3.089e+00, 1.000e+00, 9.990e-01, 1.990e-01, 1.005e-03]])
|
|
>>> gaps = cols[:, -2:]
|
|
>>> Dnpm = np.max(gaps, axis=0)
|
|
>>> print('Dn-=%f, Dn+=%f' % (Dnpm[0], Dnpm[1]))
|
|
Dn-=0.563278, Dn+=0.001005
|
|
>>> probs = smirnov(n, Dnpm)
|
|
>>> print(chr(10).join(['For a sample of size %d drawn from a N(0, 1) distribution:' % n,
|
|
... ' Smirnov n=%d: Prob(Dn- >= %f) = %.4f' % (n, Dnpm[0], probs[0]),
|
|
... ' Smirnov n=%d: Prob(Dn+ >= %f) = %.4f' % (n, Dnpm[1], probs[1])]))
|
|
For a sample of size 5 drawn from a N(0, 1) distribution:
|
|
Smirnov n=5: Prob(Dn- >= 0.563278) = 0.0250
|
|
Smirnov n=5: Prob(Dn+ >= 0.001005) = 0.9990
|
|
|
|
Plot the Empirical CDF against the target N(0, 1) CDF
|
|
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label='Empirical CDF')
|
|
>>> x3 = np.linspace(-3, 3, 100)
|
|
>>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')
|
|
>>> plt.ylim([0, 1]); plt.grid(True); plt.legend();
|
|
# Add vertical lines marking Dn+ and Dn-
|
|
>>> iminus, iplus = np.argmax(gaps, axis=0)
|
|
>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r', linestyle='dashed', lw=4)
|
|
>>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='m', linestyle='dashed', lw=4)
|
|
>>> plt.show()
|
|
""")
|
|
|
|
add_newdoc("smirnovi",
|
|
"""
|
|
smirnovi(n, p)
|
|
|
|
Inverse to `smirnov`
|
|
|
|
Returns `d` such that ``smirnov(n, d) == p``, the critical value
|
|
corresponding to `p`.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Number of samples
|
|
p : float array_like
|
|
Probability
|
|
|
|
Returns
|
|
-------
|
|
float
|
|
The value(s) of smirnovi(n, p), the critical values.
|
|
|
|
Notes
|
|
-----
|
|
`smirnov` is used by `stats.kstest` in the application of the
|
|
Kolmogorov-Smirnov Goodness of Fit test. For historial reasons this
|
|
function is exposed in `scpy.special`, but the recommended way to achieve
|
|
the most accurate CDF/SF/PDF/PPF/ISF computations is to use the
|
|
`stats.ksone` distribution.
|
|
|
|
See Also
|
|
--------
|
|
smirnov : The Survival Function (SF) for the distribution
|
|
scipy.stats.ksone : Provides the functionality as a continuous distribution
|
|
kolmogorov, kolmogi, scipy.stats.kstwobign : Functions for the two-sided distribution
|
|
""")
|
|
|
|
add_newdoc("_smirnovc",
|
|
"""
|
|
_smirnovc(n, d)
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("_smirnovci",
|
|
"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("_smirnovp",
|
|
"""
|
|
_smirnovp(n, p)
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("spence",
|
|
r"""
|
|
spence(z, out=None)
|
|
|
|
Spence's function, also known as the dilogarithm.
|
|
|
|
It is defined to be
|
|
|
|
.. math::
|
|
\int_0^z \frac{\log(t)}{1 - t}dt
|
|
|
|
for complex :math:`z`, where the contour of integration is taken
|
|
to avoid the branch cut of the logarithm. Spence's function is
|
|
analytic everywhere except the negative real axis where it has a
|
|
branch cut.
|
|
|
|
Parameters
|
|
----------
|
|
z : array_like
|
|
Points at which to evaluate Spence's function
|
|
|
|
Returns
|
|
-------
|
|
s : ndarray
|
|
Computed values of Spence's function
|
|
|
|
Notes
|
|
-----
|
|
There is a different convention which defines Spence's function by
|
|
the integral
|
|
|
|
.. math::
|
|
-\int_0^z \frac{\log(1 - t)}{t}dt;
|
|
|
|
this is our ``spence(1 - z)``.
|
|
""")
|
|
|
|
add_newdoc("stdtr",
|
|
"""
|
|
stdtr(df, t)
|
|
|
|
Student t distribution cumulative distribution function
|
|
|
|
Returns the integral from minus infinity to t of the Student t
|
|
distribution with df > 0 degrees of freedom::
|
|
|
|
gamma((df+1)/2)/(sqrt(df*pi)*gamma(df/2)) *
|
|
integral((1+x**2/df)**(-df/2-1/2), x=-inf..t)
|
|
|
|
""")
|
|
|
|
add_newdoc("stdtridf",
|
|
"""
|
|
stdtridf(p, t)
|
|
|
|
Inverse of `stdtr` vs df
|
|
|
|
Returns the argument df such that stdtr(df, t) is equal to `p`.
|
|
""")
|
|
|
|
add_newdoc("stdtrit",
|
|
"""
|
|
stdtrit(df, p)
|
|
|
|
Inverse of `stdtr` vs `t`
|
|
|
|
Returns the argument `t` such that stdtr(df, t) is equal to `p`.
|
|
""")
|
|
|
|
add_newdoc("struve",
|
|
r"""
|
|
struve(v, x)
|
|
|
|
Struve function.
|
|
|
|
Return the value of the Struve function of order `v` at `x`. The Struve
|
|
function is defined as,
|
|
|
|
.. math::
|
|
H_v(x) = (z/2)^{v + 1} \sum_{n=0}^\infty \frac{(-1)^n (z/2)^{2n}}{\Gamma(n + \frac{3}{2}) \Gamma(n + v + \frac{3}{2})},
|
|
|
|
where :math:`\Gamma` is the gamma function.
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order of the Struve function (float).
|
|
x : array_like
|
|
Argument of the Struve function (float; must be positive unless `v` is
|
|
an integer).
|
|
|
|
Returns
|
|
-------
|
|
H : ndarray
|
|
Value of the Struve function of order `v` at `x`.
|
|
|
|
Notes
|
|
-----
|
|
Three methods discussed in [1]_ are used to evaluate the Struve function:
|
|
|
|
- power series
|
|
- expansion in Bessel functions (if :math:`|z| < |v| + 20`)
|
|
- asymptotic large-z expansion (if :math:`z \geq 0.7v + 12`)
|
|
|
|
Rounding errors are estimated based on the largest terms in the sums, and
|
|
the result associated with the smallest error is returned.
|
|
|
|
See also
|
|
--------
|
|
modstruve
|
|
|
|
References
|
|
----------
|
|
.. [1] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/11
|
|
|
|
""")
|
|
|
|
add_newdoc("tandg",
|
|
"""
|
|
tandg(x, out=None)
|
|
|
|
Tangent of angle `x` given in degrees.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Angle, given in degrees.
|
|
out : ndarray, optional
|
|
Optional output array for the function results.
|
|
|
|
Returns
|
|
-------
|
|
scalar or ndarray
|
|
Tangent at the input.
|
|
|
|
See Also
|
|
--------
|
|
sindg, cosdg, cotdg
|
|
|
|
Examples
|
|
--------
|
|
>>> import scipy.special as sc
|
|
|
|
It is more accurate than using tangent directly.
|
|
|
|
>>> x = 180 * np.arange(3)
|
|
>>> sc.tandg(x)
|
|
array([0., 0., 0.])
|
|
>>> np.tan(x * np.pi / 180)
|
|
array([ 0.0000000e+00, -1.2246468e-16, -2.4492936e-16])
|
|
|
|
""")
|
|
|
|
add_newdoc("tklmbda",
|
|
"""
|
|
tklmbda(x, lmbda)
|
|
|
|
Tukey-Lambda cumulative distribution function
|
|
|
|
""")
|
|
|
|
add_newdoc("wofz",
|
|
"""
|
|
wofz(z)
|
|
|
|
Faddeeva function
|
|
|
|
Returns the value of the Faddeeva function for complex argument::
|
|
|
|
exp(-z**2) * erfc(-i*z)
|
|
|
|
See Also
|
|
--------
|
|
dawsn, erf, erfc, erfcx, erfi
|
|
|
|
References
|
|
----------
|
|
.. [1] Steven G. Johnson, Faddeeva W function implementation.
|
|
http://ab-initio.mit.edu/Faddeeva
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> x = np.linspace(-3, 3)
|
|
>>> z = special.wofz(x)
|
|
|
|
>>> plt.plot(x, z.real, label='wofz(x).real')
|
|
>>> plt.plot(x, z.imag, label='wofz(x).imag')
|
|
>>> plt.xlabel('$x$')
|
|
>>> plt.legend(framealpha=1, shadow=True)
|
|
>>> plt.grid(alpha=0.25)
|
|
>>> plt.show()
|
|
|
|
""")
|
|
|
|
add_newdoc("xlogy",
|
|
"""
|
|
xlogy(x, y)
|
|
|
|
Compute ``x*log(y)`` so that the result is 0 if ``x = 0``.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Multiplier
|
|
y : array_like
|
|
Argument
|
|
|
|
Returns
|
|
-------
|
|
z : array_like
|
|
Computed x*log(y)
|
|
|
|
Notes
|
|
-----
|
|
|
|
.. versionadded:: 0.13.0
|
|
|
|
""")
|
|
|
|
add_newdoc("xlog1py",
|
|
"""
|
|
xlog1py(x, y)
|
|
|
|
Compute ``x*log1p(y)`` so that the result is 0 if ``x = 0``.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Multiplier
|
|
y : array_like
|
|
Argument
|
|
|
|
Returns
|
|
-------
|
|
z : array_like
|
|
Computed x*log1p(y)
|
|
|
|
Notes
|
|
-----
|
|
|
|
.. versionadded:: 0.13.0
|
|
|
|
""")
|
|
|
|
add_newdoc("y0",
|
|
r"""
|
|
y0(x)
|
|
|
|
Bessel function of the second kind of order 0.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float).
|
|
|
|
Returns
|
|
-------
|
|
Y : ndarray
|
|
Value of the Bessel function of the second kind of order 0 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
|
|
The domain is divided into the intervals [0, 5] and (5, infinity). In the
|
|
first interval a rational approximation :math:`R(x)` is employed to
|
|
compute,
|
|
|
|
.. math::
|
|
|
|
Y_0(x) = R(x) + \frac{2 \log(x) J_0(x)}{\pi},
|
|
|
|
where :math:`J_0` is the Bessel function of the first kind of order 0.
|
|
|
|
In the second interval, the Hankel asymptotic expansion is employed with
|
|
two rational functions of degree 6/6 and 7/7.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `y0`.
|
|
|
|
See also
|
|
--------
|
|
j0
|
|
yv
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("y1",
|
|
"""
|
|
y1(x)
|
|
|
|
Bessel function of the second kind of order 1.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Argument (float).
|
|
|
|
Returns
|
|
-------
|
|
Y : ndarray
|
|
Value of the Bessel function of the second kind of order 1 at `x`.
|
|
|
|
Notes
|
|
-----
|
|
|
|
The domain is divided into the intervals [0, 8] and (8, infinity). In the
|
|
first interval a 25 term Chebyshev expansion is used, and computing
|
|
:math:`J_1` (the Bessel function of the first kind) is required. In the
|
|
second, the asymptotic trigonometric representation is employed using two
|
|
rational functions of degree 5/5.
|
|
|
|
This function is a wrapper for the Cephes [1]_ routine `y1`.
|
|
|
|
See also
|
|
--------
|
|
j1
|
|
yn
|
|
yv
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("yn",
|
|
r"""
|
|
yn(n, x)
|
|
|
|
Bessel function of the second kind of integer order and real argument.
|
|
|
|
Parameters
|
|
----------
|
|
n : array_like
|
|
Order (integer).
|
|
z : array_like
|
|
Argument (float).
|
|
|
|
Returns
|
|
-------
|
|
Y : ndarray
|
|
Value of the Bessel function, :math:`Y_n(x)`.
|
|
|
|
Notes
|
|
-----
|
|
Wrapper for the Cephes [1]_ routine `yn`.
|
|
|
|
The function is evaluated by forward recurrence on `n`, starting with
|
|
values computed by the Cephes routines `y0` and `y1`. If `n = 0` or 1,
|
|
the routine for `y0` or `y1` is called directly.
|
|
|
|
See also
|
|
--------
|
|
yv : For real order and real or complex argument.
|
|
|
|
References
|
|
----------
|
|
.. [1] Cephes Mathematical Functions Library,
|
|
http://www.netlib.org/cephes/
|
|
""")
|
|
|
|
add_newdoc("yv",
|
|
r"""
|
|
yv(v, z)
|
|
|
|
Bessel function of the second kind of real order and complex argument.
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order (float).
|
|
z : array_like
|
|
Argument (float or complex).
|
|
|
|
Returns
|
|
-------
|
|
Y : ndarray
|
|
Value of the Bessel function of the second kind, :math:`Y_v(x)`.
|
|
|
|
Notes
|
|
-----
|
|
For positive `v` values, the computation is carried out using the
|
|
AMOS [1]_ `zbesy` routine, which exploits the connection to the Hankel
|
|
Bessel functions :math:`H_v^{(1)}` and :math:`H_v^{(2)}`,
|
|
|
|
.. math:: Y_v(z) = \frac{1}{2\imath} (H_v^{(1)} - H_v^{(2)}).
|
|
|
|
For negative `v` values the formula,
|
|
|
|
.. math:: Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v)
|
|
|
|
is used, where :math:`J_v(z)` is the Bessel function of the first kind,
|
|
computed using the AMOS routine `zbesj`. Note that the second term is
|
|
exactly zero for integer `v`; to improve accuracy the second term is
|
|
explicitly omitted for `v` values such that `v = floor(v)`.
|
|
|
|
See also
|
|
--------
|
|
yve : :math:`Y_v` with leading exponential behavior stripped off.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
|
|
""")
|
|
|
|
add_newdoc("yve",
|
|
r"""
|
|
yve(v, z)
|
|
|
|
Exponentially scaled Bessel function of the second kind of real order.
|
|
|
|
Returns the exponentially scaled Bessel function of the second
|
|
kind of real order `v` at complex `z`::
|
|
|
|
yve(v, z) = yv(v, z) * exp(-abs(z.imag))
|
|
|
|
Parameters
|
|
----------
|
|
v : array_like
|
|
Order (float).
|
|
z : array_like
|
|
Argument (float or complex).
|
|
|
|
Returns
|
|
-------
|
|
Y : ndarray
|
|
Value of the exponentially scaled Bessel function.
|
|
|
|
Notes
|
|
-----
|
|
For positive `v` values, the computation is carried out using the
|
|
AMOS [1]_ `zbesy` routine, which exploits the connection to the Hankel
|
|
Bessel functions :math:`H_v^{(1)}` and :math:`H_v^{(2)}`,
|
|
|
|
.. math:: Y_v(z) = \frac{1}{2\imath} (H_v^{(1)} - H_v^{(2)}).
|
|
|
|
For negative `v` values the formula,
|
|
|
|
.. math:: Y_{-v}(z) = Y_v(z) \cos(\pi v) + J_v(z) \sin(\pi v)
|
|
|
|
is used, where :math:`J_v(z)` is the Bessel function of the first kind,
|
|
computed using the AMOS routine `zbesj`. Note that the second term is
|
|
exactly zero for integer `v`; to improve accuracy the second term is
|
|
explicitly omitted for `v` values such that `v = floor(v)`.
|
|
|
|
References
|
|
----------
|
|
.. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions
|
|
of a Complex Argument and Nonnegative Order",
|
|
http://netlib.org/amos/
|
|
""")
|
|
|
|
add_newdoc("_zeta",
|
|
"""
|
|
_zeta(x, q)
|
|
|
|
Internal function, Hurwitz zeta.
|
|
|
|
""")
|
|
|
|
add_newdoc("zetac",
|
|
"""
|
|
zetac(x)
|
|
|
|
Riemann zeta function minus 1.
|
|
|
|
This function is defined as
|
|
|
|
.. math:: \\zeta(x) = \\sum_{k=2}^{\\infty} 1 / k^x,
|
|
|
|
where ``x > 1``. For ``x < 1`` the analytic continuation is
|
|
computed. For more information on the Riemann zeta function, see
|
|
[dlmf]_.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like of float
|
|
Values at which to compute zeta(x) - 1 (must be real).
|
|
|
|
Returns
|
|
-------
|
|
out : array_like
|
|
Values of zeta(x) - 1.
|
|
|
|
See Also
|
|
--------
|
|
zeta
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.special import zetac, zeta
|
|
|
|
Some special values:
|
|
|
|
>>> zetac(2), np.pi**2/6 - 1
|
|
(0.64493406684822641, 0.6449340668482264)
|
|
|
|
>>> zetac(-1), -1.0/12 - 1
|
|
(-1.0833333333333333, -1.0833333333333333)
|
|
|
|
Compare ``zetac(x)`` to ``zeta(x) - 1`` for large `x`:
|
|
|
|
>>> zetac(60), zeta(60) - 1
|
|
(8.673617380119933e-19, 0.0)
|
|
|
|
References
|
|
----------
|
|
.. [dlmf] NIST Digital Library of Mathematical Functions
|
|
https://dlmf.nist.gov/25
|
|
|
|
""")
|
|
|
|
add_newdoc("_riemann_zeta",
|
|
"""
|
|
Internal function, use `zeta` instead.
|
|
""")
|
|
|
|
add_newdoc("_struve_asymp_large_z",
|
|
"""
|
|
_struve_asymp_large_z(v, z, is_h)
|
|
|
|
Internal function for testing `struve` & `modstruve`
|
|
|
|
Evaluates using asymptotic expansion
|
|
|
|
Returns
|
|
-------
|
|
v, err
|
|
""")
|
|
|
|
add_newdoc("_struve_power_series",
|
|
"""
|
|
_struve_power_series(v, z, is_h)
|
|
|
|
Internal function for testing `struve` & `modstruve`
|
|
|
|
Evaluates using power series
|
|
|
|
Returns
|
|
-------
|
|
v, err
|
|
""")
|
|
|
|
add_newdoc("_struve_bessel_series",
|
|
"""
|
|
_struve_bessel_series(v, z, is_h)
|
|
|
|
Internal function for testing `struve` & `modstruve`
|
|
|
|
Evaluates using Bessel function series
|
|
|
|
Returns
|
|
-------
|
|
v, err
|
|
""")
|
|
|
|
add_newdoc("_spherical_jn",
|
|
"""
|
|
Internal function, use `spherical_jn` instead.
|
|
""")
|
|
|
|
add_newdoc("_spherical_jn_d",
|
|
"""
|
|
Internal function, use `spherical_jn` instead.
|
|
""")
|
|
|
|
add_newdoc("_spherical_yn",
|
|
"""
|
|
Internal function, use `spherical_yn` instead.
|
|
""")
|
|
|
|
add_newdoc("_spherical_yn_d",
|
|
"""
|
|
Internal function, use `spherical_yn` instead.
|
|
""")
|
|
|
|
add_newdoc("_spherical_in",
|
|
"""
|
|
Internal function, use `spherical_in` instead.
|
|
""")
|
|
|
|
add_newdoc("_spherical_in_d",
|
|
"""
|
|
Internal function, use `spherical_in` instead.
|
|
""")
|
|
|
|
add_newdoc("_spherical_kn",
|
|
"""
|
|
Internal function, use `spherical_kn` instead.
|
|
""")
|
|
|
|
add_newdoc("_spherical_kn_d",
|
|
"""
|
|
Internal function, use `spherical_kn` instead.
|
|
""")
|
|
|
|
add_newdoc("loggamma",
|
|
r"""
|
|
loggamma(z, out=None)
|
|
|
|
Principal branch of the logarithm of the gamma function.
|
|
|
|
Defined to be :math:`\log(\Gamma(x))` for :math:`x > 0` and
|
|
extended to the complex plane by analytic continuation. The
|
|
function has a single branch cut on the negative real axis.
|
|
|
|
.. versionadded:: 0.18.0
|
|
|
|
Parameters
|
|
----------
|
|
z : array-like
|
|
Values in the complex plain at which to compute ``loggamma``
|
|
out : ndarray, optional
|
|
Output array for computed values of ``loggamma``
|
|
|
|
Returns
|
|
-------
|
|
loggamma : ndarray
|
|
Values of ``loggamma`` at z.
|
|
|
|
Notes
|
|
-----
|
|
It is not generally true that :math:`\log\Gamma(z) =
|
|
\log(\Gamma(z))`, though the real parts of the functions do
|
|
agree. The benefit of not defining `loggamma` as
|
|
:math:`\log(\Gamma(z))` is that the latter function has a
|
|
complicated branch cut structure whereas `loggamma` is analytic
|
|
except for on the negative real axis.
|
|
|
|
The identities
|
|
|
|
.. math::
|
|
\exp(\log\Gamma(z)) &= \Gamma(z) \\
|
|
\log\Gamma(z + 1) &= \log(z) + \log\Gamma(z)
|
|
|
|
make `loggamma` useful for working in complex logspace.
|
|
|
|
On the real line `loggamma` is related to `gammaln` via
|
|
``exp(loggamma(x + 0j)) = gammasgn(x)*exp(gammaln(x))``, up to
|
|
rounding error.
|
|
|
|
The implementation here is based on [hare1997]_.
|
|
|
|
See also
|
|
--------
|
|
gammaln : logarithm of the absolute value of the gamma function
|
|
gammasgn : sign of the gamma function
|
|
|
|
References
|
|
----------
|
|
.. [hare1997] D.E.G. Hare,
|
|
*Computing the Principal Branch of log-Gamma*,
|
|
Journal of Algorithms, Volume 25, Issue 2, November 1997, pages 221-236.
|
|
""")
|
|
|
|
add_newdoc("_sinpi",
|
|
"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("_cospi",
|
|
"""
|
|
Internal function, do not use.
|
|
""")
|
|
|
|
add_newdoc("owens_t",
|
|
"""
|
|
owens_t(h, a)
|
|
|
|
Owen's T Function.
|
|
|
|
The function T(h, a) gives the probability of the event
|
|
(X > h and 0 < Y < a * X) where X and Y are independent
|
|
standard normal random variables.
|
|
|
|
Parameters
|
|
----------
|
|
h: array_like
|
|
Input value.
|
|
a: array_like
|
|
Input value.
|
|
|
|
Returns
|
|
-------
|
|
t: scalar or ndarray
|
|
Probability of the event (X > h and 0 < Y < a * X),
|
|
where X and Y are independent standard normal random variables.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import special
|
|
>>> a = 3.5
|
|
>>> h = 0.78
|
|
>>> special.owens_t(h, a)
|
|
0.10877216734852274
|
|
|
|
References
|
|
----------
|
|
.. [1] M. Patefield and D. Tandy, "Fast and accurate calculation of
|
|
Owen's T Function", Statistical Software vol. 5, pp. 1-25, 2000.
|
|
""")
|
|
|
|
add_newdoc("_factorial",
|
|
"""
|
|
Internal function, do not use.
|
|
""")
|