forked from 170010011/fr
367 lines
10 KiB
Python
367 lines
10 KiB
Python
"""Laplacian matrix of graphs.
|
|
"""
|
|
import networkx as nx
|
|
from networkx.utils import not_implemented_for
|
|
|
|
__all__ = [
|
|
"laplacian_matrix",
|
|
"normalized_laplacian_matrix",
|
|
"directed_laplacian_matrix",
|
|
"directed_combinatorial_laplacian_matrix",
|
|
]
|
|
|
|
|
|
@not_implemented_for("directed")
|
|
def laplacian_matrix(G, nodelist=None, weight="weight"):
|
|
"""Returns the Laplacian matrix of G.
|
|
|
|
The graph Laplacian is the matrix L = D - A, where
|
|
A is the adjacency matrix and D is the diagonal matrix of node degrees.
|
|
|
|
Parameters
|
|
----------
|
|
G : graph
|
|
A NetworkX graph
|
|
|
|
nodelist : list, optional
|
|
The rows and columns are ordered according to the nodes in nodelist.
|
|
If nodelist is None, then the ordering is produced by G.nodes().
|
|
|
|
weight : string or None, optional (default='weight')
|
|
The edge data key used to compute each value in the matrix.
|
|
If None, then each edge has weight 1.
|
|
|
|
Returns
|
|
-------
|
|
L : SciPy sparse matrix
|
|
The Laplacian matrix of G.
|
|
|
|
Notes
|
|
-----
|
|
For MultiGraph/MultiDiGraph, the edges weights are summed.
|
|
|
|
See Also
|
|
--------
|
|
to_numpy_array
|
|
normalized_laplacian_matrix
|
|
laplacian_spectrum
|
|
"""
|
|
import scipy.sparse
|
|
|
|
if nodelist is None:
|
|
nodelist = list(G)
|
|
A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight, format="csr")
|
|
n, m = A.shape
|
|
diags = A.sum(axis=1)
|
|
D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format="csr")
|
|
return D - A
|
|
|
|
|
|
@not_implemented_for("directed")
|
|
def normalized_laplacian_matrix(G, nodelist=None, weight="weight"):
|
|
r"""Returns the normalized Laplacian matrix of G.
|
|
|
|
The normalized graph Laplacian is the matrix
|
|
|
|
.. math::
|
|
|
|
N = D^{-1/2} L D^{-1/2}
|
|
|
|
where `L` is the graph Laplacian and `D` is the diagonal matrix of
|
|
node degrees.
|
|
|
|
Parameters
|
|
----------
|
|
G : graph
|
|
A NetworkX graph
|
|
|
|
nodelist : list, optional
|
|
The rows and columns are ordered according to the nodes in nodelist.
|
|
If nodelist is None, then the ordering is produced by G.nodes().
|
|
|
|
weight : string or None, optional (default='weight')
|
|
The edge data key used to compute each value in the matrix.
|
|
If None, then each edge has weight 1.
|
|
|
|
Returns
|
|
-------
|
|
N : Scipy sparse matrix
|
|
The normalized Laplacian matrix of G.
|
|
|
|
Notes
|
|
-----
|
|
For MultiGraph/MultiDiGraph, the edges weights are summed.
|
|
See to_numpy_array for other options.
|
|
|
|
If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is
|
|
the adjacency matrix [2]_.
|
|
|
|
See Also
|
|
--------
|
|
laplacian_matrix
|
|
normalized_laplacian_spectrum
|
|
|
|
References
|
|
----------
|
|
.. [1] Fan Chung-Graham, Spectral Graph Theory,
|
|
CBMS Regional Conference Series in Mathematics, Number 92, 1997.
|
|
.. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized
|
|
Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
|
|
March 2007.
|
|
"""
|
|
import numpy as np
|
|
import scipy
|
|
import scipy.sparse
|
|
|
|
if nodelist is None:
|
|
nodelist = list(G)
|
|
A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight, format="csr")
|
|
n, m = A.shape
|
|
diags = A.sum(axis=1).flatten()
|
|
D = scipy.sparse.spdiags(diags, [0], m, n, format="csr")
|
|
L = D - A
|
|
with scipy.errstate(divide="ignore"):
|
|
diags_sqrt = 1.0 / np.sqrt(diags)
|
|
diags_sqrt[np.isinf(diags_sqrt)] = 0
|
|
DH = scipy.sparse.spdiags(diags_sqrt, [0], m, n, format="csr")
|
|
return DH.dot(L.dot(DH))
|
|
|
|
|
|
###############################################################################
|
|
# Code based on
|
|
# https://bitbucket.org/bedwards/networkx-community/src/370bd69fc02f/networkx/algorithms/community/
|
|
|
|
|
|
@not_implemented_for("undirected")
|
|
@not_implemented_for("multigraph")
|
|
def directed_laplacian_matrix(
|
|
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
|
):
|
|
r"""Returns the directed Laplacian matrix of G.
|
|
|
|
The graph directed Laplacian is the matrix
|
|
|
|
.. math::
|
|
|
|
L = I - (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} ) / 2
|
|
|
|
where `I` is the identity matrix, `P` is the transition matrix of the
|
|
graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and
|
|
zeros elsewhere.
|
|
|
|
Depending on the value of walk_type, `P` can be the transition matrix
|
|
induced by a random walk, a lazy random walk, or a random walk with
|
|
teleportation (PageRank).
|
|
|
|
Parameters
|
|
----------
|
|
G : DiGraph
|
|
A NetworkX graph
|
|
|
|
nodelist : list, optional
|
|
The rows and columns are ordered according to the nodes in nodelist.
|
|
If nodelist is None, then the ordering is produced by G.nodes().
|
|
|
|
weight : string or None, optional (default='weight')
|
|
The edge data key used to compute each value in the matrix.
|
|
If None, then each edge has weight 1.
|
|
|
|
walk_type : string or None, optional (default=None)
|
|
If None, `P` is selected depending on the properties of the
|
|
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
|
|
|
|
alpha : real
|
|
(1 - alpha) is the teleportation probability used with pagerank
|
|
|
|
Returns
|
|
-------
|
|
L : NumPy matrix
|
|
Normalized Laplacian of G.
|
|
|
|
Notes
|
|
-----
|
|
Only implemented for DiGraphs
|
|
|
|
See Also
|
|
--------
|
|
laplacian_matrix
|
|
|
|
References
|
|
----------
|
|
.. [1] Fan Chung (2005).
|
|
Laplacians and the Cheeger inequality for directed graphs.
|
|
Annals of Combinatorics, 9(1), 2005
|
|
"""
|
|
import numpy as np
|
|
from scipy.sparse import spdiags, linalg
|
|
|
|
P = _transition_matrix(
|
|
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
|
)
|
|
|
|
n, m = P.shape
|
|
|
|
evals, evecs = linalg.eigs(P.T, k=1)
|
|
v = evecs.flatten().real
|
|
p = v / v.sum()
|
|
sqrtp = np.sqrt(p)
|
|
Q = spdiags(sqrtp, [0], n, n) * P * spdiags(1.0 / sqrtp, [0], n, n)
|
|
I = np.identity(len(G))
|
|
|
|
return I - (Q + Q.T) / 2.0
|
|
|
|
|
|
@not_implemented_for("undirected")
|
|
@not_implemented_for("multigraph")
|
|
def directed_combinatorial_laplacian_matrix(
|
|
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
|
):
|
|
r"""Return the directed combinatorial Laplacian matrix of G.
|
|
|
|
The graph directed combinatorial Laplacian is the matrix
|
|
|
|
.. math::
|
|
|
|
L = \Phi - (\Phi P + P^T \Phi) / 2
|
|
|
|
where `P` is the transition matrix of the graph and and `\Phi` a matrix
|
|
with the Perron vector of `P` in the diagonal and zeros elsewhere.
|
|
|
|
Depending on the value of walk_type, `P` can be the transition matrix
|
|
induced by a random walk, a lazy random walk, or a random walk with
|
|
teleportation (PageRank).
|
|
|
|
Parameters
|
|
----------
|
|
G : DiGraph
|
|
A NetworkX graph
|
|
|
|
nodelist : list, optional
|
|
The rows and columns are ordered according to the nodes in nodelist.
|
|
If nodelist is None, then the ordering is produced by G.nodes().
|
|
|
|
weight : string or None, optional (default='weight')
|
|
The edge data key used to compute each value in the matrix.
|
|
If None, then each edge has weight 1.
|
|
|
|
walk_type : string or None, optional (default=None)
|
|
If None, `P` is selected depending on the properties of the
|
|
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
|
|
|
|
alpha : real
|
|
(1 - alpha) is the teleportation probability used with pagerank
|
|
|
|
Returns
|
|
-------
|
|
L : NumPy matrix
|
|
Combinatorial Laplacian of G.
|
|
|
|
Notes
|
|
-----
|
|
Only implemented for DiGraphs
|
|
|
|
See Also
|
|
--------
|
|
laplacian_matrix
|
|
|
|
References
|
|
----------
|
|
.. [1] Fan Chung (2005).
|
|
Laplacians and the Cheeger inequality for directed graphs.
|
|
Annals of Combinatorics, 9(1), 2005
|
|
"""
|
|
from scipy.sparse import spdiags, linalg
|
|
|
|
P = _transition_matrix(
|
|
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
|
)
|
|
|
|
n, m = P.shape
|
|
|
|
evals, evecs = linalg.eigs(P.T, k=1)
|
|
v = evecs.flatten().real
|
|
p = v / v.sum()
|
|
Phi = spdiags(p, [0], n, n)
|
|
|
|
Phi = Phi.todense()
|
|
|
|
return Phi - (Phi * P + P.T * Phi) / 2.0
|
|
|
|
|
|
def _transition_matrix(G, nodelist=None, weight="weight", walk_type=None, alpha=0.95):
|
|
"""Returns the transition matrix of G.
|
|
|
|
This is a row stochastic giving the transition probabilities while
|
|
performing a random walk on the graph. Depending on the value of walk_type,
|
|
P can be the transition matrix induced by a random walk, a lazy random walk,
|
|
or a random walk with teleportation (PageRank).
|
|
|
|
Parameters
|
|
----------
|
|
G : DiGraph
|
|
A NetworkX graph
|
|
|
|
nodelist : list, optional
|
|
The rows and columns are ordered according to the nodes in nodelist.
|
|
If nodelist is None, then the ordering is produced by G.nodes().
|
|
|
|
weight : string or None, optional (default='weight')
|
|
The edge data key used to compute each value in the matrix.
|
|
If None, then each edge has weight 1.
|
|
|
|
walk_type : string or None, optional (default=None)
|
|
If None, `P` is selected depending on the properties of the
|
|
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
|
|
|
|
alpha : real
|
|
(1 - alpha) is the teleportation probability used with pagerank
|
|
|
|
Returns
|
|
-------
|
|
P : NumPy matrix
|
|
transition matrix of G.
|
|
|
|
Raises
|
|
------
|
|
NetworkXError
|
|
If walk_type not specified or alpha not in valid range
|
|
"""
|
|
import numpy as np
|
|
from scipy.sparse import identity, spdiags
|
|
|
|
if walk_type is None:
|
|
if nx.is_strongly_connected(G):
|
|
if nx.is_aperiodic(G):
|
|
walk_type = "random"
|
|
else:
|
|
walk_type = "lazy"
|
|
else:
|
|
walk_type = "pagerank"
|
|
|
|
M = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight, dtype=float)
|
|
n, m = M.shape
|
|
if walk_type in ["random", "lazy"]:
|
|
DI = spdiags(1.0 / np.array(M.sum(axis=1).flat), [0], n, n)
|
|
if walk_type == "random":
|
|
P = DI * M
|
|
else:
|
|
I = identity(n)
|
|
P = (I + DI * M) / 2.0
|
|
|
|
elif walk_type == "pagerank":
|
|
if not (0 < alpha < 1):
|
|
raise nx.NetworkXError("alpha must be between 0 and 1")
|
|
# this is using a dense representation
|
|
M = M.todense()
|
|
# add constant to dangling nodes' row
|
|
dangling = np.where(M.sum(axis=1) == 0)
|
|
for d in dangling[0]:
|
|
M[d] = 1.0 / n
|
|
# normalize
|
|
M = M / M.sum(axis=1)
|
|
P = alpha * M + (1 - alpha) / n
|
|
else:
|
|
raise nx.NetworkXError("walk_type must be random, lazy, or pagerank")
|
|
|
|
return P
|