forked from 170010011/fr
1163 lines
41 KiB
Python
1163 lines
41 KiB
Python
import os
|
|
import mmap
|
|
import sys
|
|
import platform
|
|
import gc
|
|
import pickle
|
|
import itertools
|
|
from time import sleep
|
|
import subprocess
|
|
import threading
|
|
|
|
from joblib.test.common import with_numpy, np
|
|
from joblib.test.common import setup_autokill
|
|
from joblib.test.common import teardown_autokill
|
|
from joblib.test.common import with_multiprocessing
|
|
from joblib.test.common import with_dev_shm
|
|
from joblib.testing import raises, parametrize, skipif, xfail, param
|
|
from joblib.backports import make_memmap
|
|
from joblib.parallel import Parallel, delayed
|
|
|
|
from joblib.pool import MemmappingPool
|
|
from joblib.executor import _TestingMemmappingExecutor as TestExecutor
|
|
from joblib._memmapping_reducer import has_shareable_memory
|
|
from joblib._memmapping_reducer import ArrayMemmapForwardReducer
|
|
from joblib._memmapping_reducer import _strided_from_memmap
|
|
from joblib._memmapping_reducer import _get_temp_dir
|
|
from joblib._memmapping_reducer import _WeakArrayKeyMap
|
|
from joblib._memmapping_reducer import _get_backing_memmap
|
|
import joblib._memmapping_reducer as jmr
|
|
|
|
|
|
def setup_module():
|
|
setup_autokill(__name__, timeout=300)
|
|
|
|
|
|
def teardown_module():
|
|
teardown_autokill(__name__)
|
|
|
|
|
|
def check_memmap_and_send_back(array):
|
|
assert _get_backing_memmap(array) is not None
|
|
return array
|
|
|
|
|
|
def check_array(args):
|
|
"""Dummy helper function to be executed in subprocesses
|
|
|
|
Check that the provided array has the expected values in the provided
|
|
range.
|
|
|
|
"""
|
|
data, position, expected = args
|
|
np.testing.assert_array_equal(data[position], expected)
|
|
|
|
|
|
def inplace_double(args):
|
|
"""Dummy helper function to be executed in subprocesses
|
|
|
|
|
|
Check that the input array has the right values in the provided range
|
|
and perform an inplace modification to double the values in the range by
|
|
two.
|
|
|
|
"""
|
|
data, position, expected = args
|
|
assert data[position] == expected
|
|
data[position] *= 2
|
|
np.testing.assert_array_equal(data[position], 2 * expected)
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
def test_memmap_based_array_reducing(tmpdir):
|
|
"""Check that it is possible to reduce a memmap backed array"""
|
|
assert_array_equal = np.testing.assert_array_equal
|
|
filename = tmpdir.join('test.mmap').strpath
|
|
|
|
# Create a file larger than what will be used by a
|
|
buffer = np.memmap(filename, dtype=np.float64, shape=500, mode='w+')
|
|
|
|
# Fill the original buffer with negative markers to detect over of
|
|
# underflow in case of test failures
|
|
buffer[:] = - 1.0 * np.arange(buffer.shape[0], dtype=buffer.dtype)
|
|
buffer.flush()
|
|
|
|
# Memmap a 2D fortran array on a offseted subsection of the previous
|
|
# buffer
|
|
a = np.memmap(filename, dtype=np.float64, shape=(3, 5, 4),
|
|
mode='r+', order='F', offset=4)
|
|
a[:] = np.arange(60).reshape(a.shape)
|
|
|
|
# Build various views that share the buffer with the original memmap
|
|
|
|
# b is an memmap sliced view on an memmap instance
|
|
b = a[1:-1, 2:-1, 2:4]
|
|
|
|
# c and d are array views
|
|
c = np.asarray(b)
|
|
d = c.T
|
|
|
|
# Array reducer with auto dumping disabled
|
|
reducer = ArrayMemmapForwardReducer(None, tmpdir.strpath, 'c', True)
|
|
|
|
def reconstruct_array_or_memmap(x):
|
|
cons, args = reducer(x)
|
|
return cons(*args)
|
|
|
|
# Reconstruct original memmap
|
|
a_reconstructed = reconstruct_array_or_memmap(a)
|
|
assert has_shareable_memory(a_reconstructed)
|
|
assert isinstance(a_reconstructed, np.memmap)
|
|
assert_array_equal(a_reconstructed, a)
|
|
|
|
# Reconstruct strided memmap view
|
|
b_reconstructed = reconstruct_array_or_memmap(b)
|
|
assert has_shareable_memory(b_reconstructed)
|
|
assert_array_equal(b_reconstructed, b)
|
|
|
|
# Reconstruct arrays views on memmap base
|
|
c_reconstructed = reconstruct_array_or_memmap(c)
|
|
assert not isinstance(c_reconstructed, np.memmap)
|
|
assert has_shareable_memory(c_reconstructed)
|
|
assert_array_equal(c_reconstructed, c)
|
|
|
|
d_reconstructed = reconstruct_array_or_memmap(d)
|
|
assert not isinstance(d_reconstructed, np.memmap)
|
|
assert has_shareable_memory(d_reconstructed)
|
|
assert_array_equal(d_reconstructed, d)
|
|
|
|
# Test graceful degradation on fake memmap instances with in-memory
|
|
# buffers
|
|
a3 = a * 3
|
|
assert not has_shareable_memory(a3)
|
|
a3_reconstructed = reconstruct_array_or_memmap(a3)
|
|
assert not has_shareable_memory(a3_reconstructed)
|
|
assert not isinstance(a3_reconstructed, np.memmap)
|
|
assert_array_equal(a3_reconstructed, a * 3)
|
|
|
|
# Test graceful degradation on arrays derived from fake memmap instances
|
|
b3 = np.asarray(a3)
|
|
assert not has_shareable_memory(b3)
|
|
|
|
b3_reconstructed = reconstruct_array_or_memmap(b3)
|
|
assert isinstance(b3_reconstructed, np.ndarray)
|
|
assert not has_shareable_memory(b3_reconstructed)
|
|
assert_array_equal(b3_reconstructed, b3)
|
|
|
|
|
|
@skipif(sys.platform != "win32",
|
|
reason="PermissionError only easily triggerable on Windows")
|
|
def test_resource_tracker_retries_when_permissionerror(tmpdir):
|
|
# Test resource_tracker retry mechanism when unlinking memmaps. See more
|
|
# thorough information in the ``unlink_file`` documentation of joblib.
|
|
filename = tmpdir.join('test.mmap').strpath
|
|
cmd = """if 1:
|
|
import os
|
|
import numpy as np
|
|
import time
|
|
from joblib.externals.loky.backend import resource_tracker
|
|
resource_tracker.VERBOSE = 1
|
|
|
|
# Start the resource tracker
|
|
resource_tracker.ensure_running()
|
|
time.sleep(1)
|
|
|
|
# Create a file containing numpy data
|
|
memmap = np.memmap(r"{filename}", dtype=np.float64, shape=10, mode='w+')
|
|
memmap[:] = np.arange(10).astype(np.int8).data
|
|
memmap.flush()
|
|
assert os.path.exists(r"{filename}")
|
|
del memmap
|
|
|
|
# Create a np.memmap backed by this file
|
|
memmap = np.memmap(r"{filename}", dtype=np.float64, shape=10, mode='w+')
|
|
resource_tracker.register(r"{filename}", "file")
|
|
|
|
# Ask the resource_tracker to delete the file backing the np.memmap , this
|
|
# should raise PermissionError that the resource_tracker will log.
|
|
resource_tracker.maybe_unlink(r"{filename}", "file")
|
|
|
|
# Wait for the resource_tracker to process the maybe_unlink before cleaning
|
|
# up the memmap
|
|
time.sleep(2)
|
|
""".format(filename=filename)
|
|
p = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE,
|
|
stdout=subprocess.PIPE)
|
|
p.wait()
|
|
out, err = p.communicate()
|
|
assert p.returncode == 0
|
|
assert out == b''
|
|
msg = 'tried to unlink {}, got PermissionError'.format(filename)
|
|
assert msg in err.decode()
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
def test_high_dimension_memmap_array_reducing(tmpdir):
|
|
assert_array_equal = np.testing.assert_array_equal
|
|
|
|
filename = tmpdir.join('test.mmap').strpath
|
|
|
|
# Create a high dimensional memmap
|
|
a = np.memmap(filename, dtype=np.float64, shape=(100, 15, 15, 3),
|
|
mode='w+')
|
|
a[:] = np.arange(100 * 15 * 15 * 3).reshape(a.shape)
|
|
|
|
# Create some slices/indices at various dimensions
|
|
b = a[0:10]
|
|
c = a[:, 5:10]
|
|
d = a[:, :, :, 0]
|
|
e = a[1:3:4]
|
|
|
|
# Array reducer with auto dumping disabled
|
|
reducer = ArrayMemmapForwardReducer(None, tmpdir.strpath, 'c', True)
|
|
|
|
def reconstruct_array_or_memmap(x):
|
|
cons, args = reducer(x)
|
|
return cons(*args)
|
|
|
|
a_reconstructed = reconstruct_array_or_memmap(a)
|
|
assert has_shareable_memory(a_reconstructed)
|
|
assert isinstance(a_reconstructed, np.memmap)
|
|
assert_array_equal(a_reconstructed, a)
|
|
|
|
b_reconstructed = reconstruct_array_or_memmap(b)
|
|
assert has_shareable_memory(b_reconstructed)
|
|
assert_array_equal(b_reconstructed, b)
|
|
|
|
c_reconstructed = reconstruct_array_or_memmap(c)
|
|
assert has_shareable_memory(c_reconstructed)
|
|
assert_array_equal(c_reconstructed, c)
|
|
|
|
d_reconstructed = reconstruct_array_or_memmap(d)
|
|
assert has_shareable_memory(d_reconstructed)
|
|
assert_array_equal(d_reconstructed, d)
|
|
|
|
e_reconstructed = reconstruct_array_or_memmap(e)
|
|
assert has_shareable_memory(e_reconstructed)
|
|
assert_array_equal(e_reconstructed, e)
|
|
|
|
|
|
@with_numpy
|
|
def test__strided_from_memmap(tmpdir):
|
|
fname = tmpdir.join('test.mmap').strpath
|
|
size = 5 * mmap.ALLOCATIONGRANULARITY
|
|
offset = mmap.ALLOCATIONGRANULARITY + 1
|
|
# This line creates the mmap file that is reused later
|
|
memmap_obj = np.memmap(fname, mode='w+', shape=size + offset)
|
|
# filename, dtype, mode, offset, order, shape, strides, total_buffer_len
|
|
memmap_obj = _strided_from_memmap(fname, dtype='uint8', mode='r',
|
|
offset=offset, order='C', shape=size,
|
|
strides=None, total_buffer_len=None,
|
|
unlink_on_gc_collect=False)
|
|
assert isinstance(memmap_obj, np.memmap)
|
|
assert memmap_obj.offset == offset
|
|
memmap_backed_obj = _strided_from_memmap(
|
|
fname, dtype='uint8', mode='r', offset=offset, order='C',
|
|
shape=(size // 2,), strides=(2,), total_buffer_len=size,
|
|
unlink_on_gc_collect=False
|
|
)
|
|
assert _get_backing_memmap(memmap_backed_obj).offset == offset
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
|
ids=["multiprocessing", "loky"])
|
|
def test_pool_with_memmap(factory, tmpdir):
|
|
"""Check that subprocess can access and update shared memory memmap"""
|
|
assert_array_equal = np.testing.assert_array_equal
|
|
|
|
# Fork the subprocess before allocating the objects to be passed
|
|
pool_temp_folder = tmpdir.mkdir('pool').strpath
|
|
p = factory(10, max_nbytes=2, temp_folder=pool_temp_folder)
|
|
try:
|
|
filename = tmpdir.join('test.mmap').strpath
|
|
a = np.memmap(filename, dtype=np.float32, shape=(3, 5), mode='w+')
|
|
a.fill(1.0)
|
|
|
|
p.map(inplace_double, [(a, (i, j), 1.0)
|
|
for i in range(a.shape[0])
|
|
for j in range(a.shape[1])])
|
|
|
|
assert_array_equal(a, 2 * np.ones(a.shape))
|
|
|
|
# Open a copy-on-write view on the previous data
|
|
b = np.memmap(filename, dtype=np.float32, shape=(5, 3), mode='c')
|
|
|
|
p.map(inplace_double, [(b, (i, j), 2.0)
|
|
for i in range(b.shape[0])
|
|
for j in range(b.shape[1])])
|
|
|
|
# Passing memmap instances to the pool should not trigger the creation
|
|
# of new files on the FS
|
|
assert os.listdir(pool_temp_folder) == []
|
|
|
|
# the original data is untouched
|
|
assert_array_equal(a, 2 * np.ones(a.shape))
|
|
assert_array_equal(b, 2 * np.ones(b.shape))
|
|
|
|
# readonly maps can be read but not updated
|
|
c = np.memmap(filename, dtype=np.float32, shape=(10,), mode='r',
|
|
offset=5 * 4)
|
|
|
|
with raises(AssertionError):
|
|
p.map(check_array, [(c, i, 3.0) for i in range(c.shape[0])])
|
|
|
|
# depending on the version of numpy one can either get a RuntimeError
|
|
# or a ValueError
|
|
with raises((RuntimeError, ValueError)):
|
|
p.map(inplace_double, [(c, i, 2.0) for i in range(c.shape[0])])
|
|
finally:
|
|
# Clean all filehandlers held by the pool
|
|
p.terminate()
|
|
del p
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
|
ids=["multiprocessing", "loky"])
|
|
def test_pool_with_memmap_array_view(factory, tmpdir):
|
|
"""Check that subprocess can access and update shared memory array"""
|
|
assert_array_equal = np.testing.assert_array_equal
|
|
|
|
# Fork the subprocess before allocating the objects to be passed
|
|
pool_temp_folder = tmpdir.mkdir('pool').strpath
|
|
p = factory(10, max_nbytes=2, temp_folder=pool_temp_folder)
|
|
try:
|
|
|
|
filename = tmpdir.join('test.mmap').strpath
|
|
a = np.memmap(filename, dtype=np.float32, shape=(3, 5), mode='w+')
|
|
a.fill(1.0)
|
|
|
|
# Create an ndarray view on the memmap instance
|
|
a_view = np.asarray(a)
|
|
assert not isinstance(a_view, np.memmap)
|
|
assert has_shareable_memory(a_view)
|
|
|
|
p.map(inplace_double, [(a_view, (i, j), 1.0)
|
|
for i in range(a.shape[0])
|
|
for j in range(a.shape[1])])
|
|
|
|
# Both a and the a_view have been updated
|
|
assert_array_equal(a, 2 * np.ones(a.shape))
|
|
assert_array_equal(a_view, 2 * np.ones(a.shape))
|
|
|
|
# Passing memmap array view to the pool should not trigger the
|
|
# creation of new files on the FS
|
|
assert os.listdir(pool_temp_folder) == []
|
|
|
|
finally:
|
|
p.terminate()
|
|
del p
|
|
|
|
|
|
@with_numpy
|
|
@parametrize("backend", ["multiprocessing", "loky"])
|
|
def test_permission_error_windows_reference_cycle(backend):
|
|
# Non regression test for:
|
|
# https://github.com/joblib/joblib/issues/806
|
|
#
|
|
# The issue happens when trying to delete a memory mapped file that has
|
|
# not yet been closed by one of the worker processes.
|
|
cmd = """if 1:
|
|
import numpy as np
|
|
from joblib import Parallel, delayed
|
|
|
|
|
|
data = np.random.rand(int(2e6)).reshape((int(1e6), 2))
|
|
|
|
# Build a complex cyclic reference that is likely to delay garbage
|
|
# collection of the memmapped array in the worker processes.
|
|
first_list = current_list = [data]
|
|
for i in range(10):
|
|
current_list = [current_list]
|
|
first_list.append(current_list)
|
|
|
|
if __name__ == "__main__":
|
|
results = Parallel(n_jobs=2, backend="{b}")(
|
|
delayed(len)(current_list) for i in range(10))
|
|
assert results == [1] * 10
|
|
""".format(b=backend)
|
|
p = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE,
|
|
stdout=subprocess.PIPE)
|
|
p.wait()
|
|
out, err = p.communicate()
|
|
assert p.returncode == 0, out.decode() + "\n\n" + err.decode()
|
|
|
|
|
|
@with_numpy
|
|
@parametrize("backend", ["multiprocessing", "loky"])
|
|
def test_permission_error_windows_memmap_sent_to_parent(backend):
|
|
# Second non-regression test for:
|
|
# https://github.com/joblib/joblib/issues/806
|
|
# previously, child process would not convert temporary memmaps to numpy
|
|
# arrays when sending the data back to the parent process. This would lead
|
|
# to permission errors on windows when deleting joblib's temporary folder,
|
|
# as the memmaped files handles would still opened in the parent process.
|
|
cmd = '''if 1:
|
|
import os
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
from joblib import Parallel, delayed
|
|
from testutils import return_slice_of_data
|
|
|
|
data = np.ones(int(2e6))
|
|
|
|
if __name__ == '__main__':
|
|
# warm-up call to launch the workers and start the resource_tracker
|
|
_ = Parallel(n_jobs=2, verbose=5, backend='{b}')(
|
|
delayed(id)(i) for i in range(20))
|
|
|
|
time.sleep(0.5)
|
|
|
|
slice_of_data = Parallel(n_jobs=2, verbose=5, backend='{b}')(
|
|
delayed(return_slice_of_data)(data, 0, 20) for _ in range(10))
|
|
'''.format(b=backend)
|
|
|
|
for _ in range(3):
|
|
env = os.environ.copy()
|
|
env['PYTHONPATH'] = os.path.dirname(__file__)
|
|
p = subprocess.Popen([sys.executable, '-c', cmd],
|
|
stderr=subprocess.PIPE,
|
|
stdout=subprocess.PIPE, env=env)
|
|
p.wait()
|
|
out, err = p.communicate()
|
|
assert p.returncode == 0, err
|
|
assert out == b''
|
|
if sys.version_info[:3] not in [(3, 8, 0), (3, 8, 1)]:
|
|
# In early versions of Python 3.8, a reference leak
|
|
# https://github.com/cloudpipe/cloudpickle/issues/327, holds
|
|
# references to pickled objects, generating race condition during
|
|
# cleanup finalizers of joblib and noisy resource_tracker outputs.
|
|
assert b'resource_tracker' not in err
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("backend", ["multiprocessing", "loky"])
|
|
def test_parallel_isolated_temp_folders(backend):
|
|
# Test that consecutive Parallel call use isolated subfolders, even
|
|
# for the loky backend that reuses its executor instance across calls.
|
|
array = np.arange(int(1e2))
|
|
[filename_1] = Parallel(n_jobs=2, backend=backend, max_nbytes=10)(
|
|
delayed(getattr)(array, 'filename') for _ in range(1)
|
|
)
|
|
[filename_2] = Parallel(n_jobs=2, backend=backend, max_nbytes=10)(
|
|
delayed(getattr)(array, 'filename') for _ in range(1)
|
|
)
|
|
assert os.path.dirname(filename_2) != os.path.dirname(filename_1)
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("backend", ["multiprocessing", "loky"])
|
|
def test_managed_backend_reuse_temp_folder(backend):
|
|
# Test that calls to a managed parallel object reuse the same memmaps.
|
|
array = np.arange(int(1e2))
|
|
with Parallel(n_jobs=2, backend=backend, max_nbytes=10) as p:
|
|
[filename_1] = p(
|
|
delayed(getattr)(array, 'filename') for _ in range(1)
|
|
)
|
|
[filename_2] = p(
|
|
delayed(getattr)(array, 'filename') for _ in range(1)
|
|
)
|
|
assert os.path.dirname(filename_2) == os.path.dirname(filename_1)
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
def test_memmapping_temp_folder_thread_safety():
|
|
# Concurrent calls to Parallel with the loky backend will use the same
|
|
# executor, and thus the same reducers. Make sure that those reducers use
|
|
# different temporary folders depending on which Parallel objects called
|
|
# them, which is necessary to limit potential race conditions during the
|
|
# garbage collection of temporary memmaps.
|
|
array = np.arange(int(1e2))
|
|
|
|
temp_dirs_thread_1 = set()
|
|
temp_dirs_thread_2 = set()
|
|
|
|
def concurrent_get_filename(array, temp_dirs):
|
|
with Parallel(backend='loky', n_jobs=2, max_nbytes=10) as p:
|
|
for i in range(10):
|
|
[filename] = p(
|
|
delayed(getattr)(array, 'filename') for _ in range(1)
|
|
)
|
|
temp_dirs.add(os.path.dirname(filename))
|
|
|
|
t1 = threading.Thread(
|
|
target=concurrent_get_filename, args=(array, temp_dirs_thread_1)
|
|
)
|
|
t2 = threading.Thread(
|
|
target=concurrent_get_filename, args=(array, temp_dirs_thread_2)
|
|
)
|
|
|
|
t1.start()
|
|
t2.start()
|
|
|
|
t1.join()
|
|
t2.join()
|
|
|
|
assert len(temp_dirs_thread_1) == 1
|
|
assert len(temp_dirs_thread_2) == 1
|
|
|
|
assert temp_dirs_thread_1 != temp_dirs_thread_2
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
def test_multithreaded_parallel_termination_resource_tracker_silent():
|
|
# test that concurrent termination attempts of a same executor does not
|
|
# emit any spurious error from the resource_tracker. We test various
|
|
# situations making 0, 1 or both parallel call sending a task that will
|
|
# make the worker (and thus the whole Parallel call) error out.
|
|
cmd = '''if 1:
|
|
import os
|
|
import numpy as np
|
|
from joblib import Parallel, delayed
|
|
from joblib.externals.loky.backend import resource_tracker
|
|
from concurrent.futures import ThreadPoolExecutor, wait
|
|
|
|
resource_tracker.VERBOSE = 0
|
|
|
|
array = np.arange(int(1e2))
|
|
|
|
temp_dirs_thread_1 = set()
|
|
temp_dirs_thread_2 = set()
|
|
|
|
|
|
def raise_error(array):
|
|
raise ValueError
|
|
|
|
|
|
def parallel_get_filename(array, temp_dirs):
|
|
with Parallel(backend="loky", n_jobs=2, max_nbytes=10) as p:
|
|
for i in range(10):
|
|
[filename] = p(
|
|
delayed(getattr)(array, "filename") for _ in range(1)
|
|
)
|
|
temp_dirs.add(os.path.dirname(filename))
|
|
|
|
|
|
def parallel_raise(array, temp_dirs):
|
|
with Parallel(backend="loky", n_jobs=2, max_nbytes=10) as p:
|
|
for i in range(10):
|
|
[filename] = p(
|
|
delayed(raise_error)(array) for _ in range(1)
|
|
)
|
|
temp_dirs.add(os.path.dirname(filename))
|
|
|
|
|
|
executor = ThreadPoolExecutor(max_workers=2)
|
|
|
|
# both function calls will use the same loky executor, but with a
|
|
# different Parallel object.
|
|
future_1 = executor.submit({f1}, array, temp_dirs_thread_1)
|
|
future_2 = executor.submit({f2}, array, temp_dirs_thread_2)
|
|
|
|
# Wait for both threads to terminate their backend
|
|
wait([future_1, future_2])
|
|
|
|
future_1.result()
|
|
future_2.result()
|
|
'''
|
|
functions_and_returncodes = [
|
|
("parallel_get_filename", "parallel_get_filename", 0),
|
|
("parallel_get_filename", "parallel_raise", 1),
|
|
("parallel_raise", "parallel_raise", 1)
|
|
]
|
|
|
|
for f1, f2, returncode in functions_and_returncodes:
|
|
p = subprocess.Popen([sys.executable, '-c', cmd.format(f1=f1, f2=f2)],
|
|
stderr=subprocess.PIPE, stdout=subprocess.PIPE)
|
|
p.wait()
|
|
out, err = p.communicate()
|
|
assert p.returncode == returncode, out.decode()
|
|
assert b"resource_tracker" not in err, err.decode()
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
def test_nested_loop_error_in_grandchild_resource_tracker_silent():
|
|
# Safety smoke test: test that nested parallel calls using the loky backend
|
|
# don't yield noisy resource_tracker outputs when the grandchild errors
|
|
# out.
|
|
cmd = '''if 1:
|
|
from joblib import Parallel, delayed
|
|
|
|
|
|
def raise_error(i):
|
|
raise ValueError
|
|
|
|
|
|
def nested_loop(f):
|
|
Parallel(backend="loky", n_jobs=2)(
|
|
delayed(f)(i) for i in range(10)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
Parallel(backend="loky", n_jobs=2)(
|
|
delayed(nested_loop)(func) for func in [raise_error]
|
|
)
|
|
'''
|
|
p = subprocess.Popen([sys.executable, '-c', cmd],
|
|
stderr=subprocess.PIPE, stdout=subprocess.PIPE)
|
|
p.wait()
|
|
out, err = p.communicate()
|
|
assert p.returncode == 1, out.decode()
|
|
assert b"resource_tracker" not in err, err.decode()
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("backend", ["multiprocessing", "loky"])
|
|
def test_many_parallel_calls_on_same_object(backend):
|
|
# After #966 got merged, consecutive Parallel objects were sharing temp
|
|
# folder, which would lead to race conditions happening during the
|
|
# temporary resources management with the resource_tracker. This is a
|
|
# non-regression test that makes sure that consecutive Parallel operations
|
|
# on the same object do not error out.
|
|
cmd = '''if 1:
|
|
import os
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
from joblib import Parallel, delayed
|
|
from testutils import return_slice_of_data
|
|
|
|
data = np.ones(100)
|
|
|
|
if __name__ == '__main__':
|
|
for i in range(5):
|
|
slice_of_data = Parallel(
|
|
n_jobs=2, max_nbytes=1, backend='{b}')(
|
|
delayed(return_slice_of_data)(data, 0, 20)
|
|
for _ in range(10)
|
|
)
|
|
slice_of_data = Parallel(
|
|
n_jobs=2, max_nbytes=1, backend='{b}')(
|
|
delayed(return_slice_of_data)(data, 0, 20)
|
|
for _ in range(10)
|
|
)
|
|
'''.format(b=backend)
|
|
|
|
for _ in range(3):
|
|
env = os.environ.copy()
|
|
env['PYTHONPATH'] = os.path.dirname(__file__)
|
|
p = subprocess.Popen([sys.executable, '-c', cmd],
|
|
stderr=subprocess.PIPE,
|
|
stdout=subprocess.PIPE, env=env)
|
|
p.wait()
|
|
out, err = p.communicate()
|
|
assert p.returncode == 0, err
|
|
assert out == b''
|
|
if sys.version_info[:3] not in [(3, 8, 0), (3, 8, 1)]:
|
|
# In early versions of Python 3.8, a reference leak
|
|
# https://github.com/cloudpipe/cloudpickle/issues/327, holds
|
|
# references to pickled objects, generating race condition during
|
|
# cleanup finalizers of joblib and noisy resource_tracker outputs.
|
|
assert b'resource_tracker' not in err
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("backend", ["multiprocessing", "loky"])
|
|
def test_memmap_returned_as_regular_array(backend):
|
|
data = np.ones(int(1e3))
|
|
# Check that child processes send temporary memmaps back as numpy arrays.
|
|
[result] = Parallel(n_jobs=2, backend=backend, max_nbytes=100)(
|
|
delayed(check_memmap_and_send_back)(data) for _ in range(1))
|
|
assert _get_backing_memmap(result) is None
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("backend", ["multiprocessing", param("loky", marks=xfail)])
|
|
def test_resource_tracker_silent_when_reference_cycles(backend):
|
|
# There is a variety of reasons that can make joblib with loky backend
|
|
# output noisy warnings when a reference cycle is preventing a memmap from
|
|
# being garbage collected. Especially, joblib's main process finalizer
|
|
# deletes the temporary folder if it was not done before, which can
|
|
# interact badly with the resource_tracker. We don't risk leaking any
|
|
# resources, but this will likely make joblib output a lot of low-level
|
|
# confusing messages. This test is marked as xfail for now: but a next PR
|
|
# should fix this behavior.
|
|
# Note that the script in ``cmd`` is the exact same script as in
|
|
# test_permission_error_windows_reference_cycle.
|
|
cmd = """if 1:
|
|
import numpy as np
|
|
from joblib import Parallel, delayed
|
|
|
|
|
|
data = np.random.rand(int(2e6)).reshape((int(1e6), 2))
|
|
|
|
# Build a complex cyclic reference that is likely to delay garbage
|
|
# collection of the memmapped array in the worker processes.
|
|
first_list = current_list = [data]
|
|
for i in range(10):
|
|
current_list = [current_list]
|
|
first_list.append(current_list)
|
|
|
|
if __name__ == "__main__":
|
|
results = Parallel(n_jobs=2, backend="{b}")(
|
|
delayed(len)(current_list) for i in range(10))
|
|
assert results == [1] * 10
|
|
""".format(b=backend)
|
|
p = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE,
|
|
stdout=subprocess.PIPE)
|
|
p.wait()
|
|
out, err = p.communicate()
|
|
assert p.returncode == 0, out.decode()
|
|
assert b"resource_tracker" not in err, err.decode()
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
|
ids=["multiprocessing", "loky"])
|
|
def test_memmapping_pool_for_large_arrays(factory, tmpdir):
|
|
"""Check that large arrays are not copied in memory"""
|
|
|
|
# Check that the tempfolder is empty
|
|
assert os.listdir(tmpdir.strpath) == []
|
|
|
|
# Build an array reducers that automaticaly dump large array content
|
|
# to filesystem backed memmap instances to avoid memory explosion
|
|
p = factory(3, max_nbytes=40, temp_folder=tmpdir.strpath, verbose=2)
|
|
try:
|
|
# The temporary folder for the pool is not provisioned in advance
|
|
assert os.listdir(tmpdir.strpath) == []
|
|
assert not os.path.exists(p._temp_folder)
|
|
|
|
small = np.ones(5, dtype=np.float32)
|
|
assert small.nbytes == 20
|
|
p.map(check_array, [(small, i, 1.0) for i in range(small.shape[0])])
|
|
|
|
# Memory has been copied, the pool filesystem folder is unused
|
|
assert os.listdir(tmpdir.strpath) == []
|
|
|
|
# Try with a file larger than the memmap threshold of 40 bytes
|
|
large = np.ones(100, dtype=np.float64)
|
|
assert large.nbytes == 800
|
|
p.map(check_array, [(large, i, 1.0) for i in range(large.shape[0])])
|
|
|
|
# The data has been dumped in a temp folder for subprocess to share it
|
|
# without per-child memory copies
|
|
assert os.path.isdir(p._temp_folder)
|
|
dumped_filenames = os.listdir(p._temp_folder)
|
|
assert len(dumped_filenames) == 1
|
|
|
|
# Check that memory mapping is not triggered for arrays with
|
|
# dtype='object'
|
|
objects = np.array(['abc'] * 100, dtype='object')
|
|
results = p.map(has_shareable_memory, [objects])
|
|
assert not results[0]
|
|
|
|
finally:
|
|
# check FS garbage upon pool termination
|
|
p.terminate()
|
|
for i in range(10):
|
|
sleep(.1)
|
|
if not os.path.exists(p._temp_folder):
|
|
break
|
|
else: # pragma: no cover
|
|
raise AssertionError(
|
|
'temporary folder of {} was not deleted'.format(p)
|
|
)
|
|
del p
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("backend", ["multiprocessing", "loky"])
|
|
def test_child_raises_parent_exits_cleanly(backend):
|
|
# When a task executed by a child process raises an error, the parent
|
|
# process's backend is notified, and calls abort_everything.
|
|
# In loky, abort_everything itself calls shutdown(kill_workers=True) which
|
|
# sends SIGKILL to the worker, preventing it from running the finalizers
|
|
# supposed to signal the resource_tracker when the worker is done using
|
|
# objects relying on a shared resource (e.g np.memmaps). Because this
|
|
# behavior is prone to :
|
|
# - cause a resource leak
|
|
# - make the resource tracker emit noisy resource warnings
|
|
# we explicitly test that, when the said situation occurs:
|
|
# - no resources are actually leaked
|
|
# - the temporary resources are deleted as soon as possible (typically, at
|
|
# the end of the failing Parallel call)
|
|
# - the resource_tracker does not emit any warnings.
|
|
cmd = """if 1:
|
|
import os
|
|
|
|
import numpy as np
|
|
from joblib import Parallel, delayed
|
|
from testutils import print_filename_and_raise
|
|
|
|
data = np.random.rand(1000)
|
|
|
|
|
|
def get_temp_folder(parallel_obj, backend):
|
|
if "{b}" == "loky":
|
|
return p._backend._workers._temp_folder
|
|
else:
|
|
return p._backend._pool._temp_folder
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
with Parallel(n_jobs=2, backend="{b}", max_nbytes=100) as p:
|
|
temp_folder = get_temp_folder(p, "{b}")
|
|
p(delayed(print_filename_and_raise)(data)
|
|
for i in range(1))
|
|
except ValueError:
|
|
# the temporary folder should be deleted by the end of this
|
|
# call
|
|
assert not os.path.exists(temp_folder)
|
|
""".format(b=backend)
|
|
env = os.environ.copy()
|
|
env['PYTHONPATH'] = os.path.dirname(__file__)
|
|
p = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE,
|
|
stdout=subprocess.PIPE, env=env)
|
|
p.wait()
|
|
out, err = p.communicate()
|
|
out, err = out.decode(), err.decode()
|
|
filename = out.split('\n')[0]
|
|
assert p.returncode == 0, out
|
|
assert err == '' # no resource_tracker warnings.
|
|
assert not os.path.exists(filename)
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
|
ids=["multiprocessing", "loky"])
|
|
def test_memmapping_pool_for_large_arrays_disabled(factory, tmpdir):
|
|
"""Check that large arrays memmapping can be disabled"""
|
|
# Set max_nbytes to None to disable the auto memmapping feature
|
|
p = factory(3, max_nbytes=None, temp_folder=tmpdir.strpath)
|
|
try:
|
|
|
|
# Check that the tempfolder is empty
|
|
assert os.listdir(tmpdir.strpath) == []
|
|
|
|
# Try with a file largish than the memmap threshold of 40 bytes
|
|
large = np.ones(100, dtype=np.float64)
|
|
assert large.nbytes == 800
|
|
p.map(check_array, [(large, i, 1.0) for i in range(large.shape[0])])
|
|
|
|
# Check that the tempfolder is still empty
|
|
assert os.listdir(tmpdir.strpath) == []
|
|
|
|
finally:
|
|
# Cleanup open file descriptors
|
|
p.terminate()
|
|
del p
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@with_dev_shm
|
|
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
|
ids=["multiprocessing", "loky"])
|
|
def test_memmapping_on_large_enough_dev_shm(factory):
|
|
"""Check that memmapping uses /dev/shm when possible"""
|
|
orig_size = jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE
|
|
try:
|
|
# Make joblib believe that it can use /dev/shm even when running on a
|
|
# CI container where the size of the /dev/shm is not very large (that
|
|
# is at least 32 MB instead of 2 GB by default).
|
|
jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE = int(32e6)
|
|
p = factory(3, max_nbytes=10)
|
|
try:
|
|
# Check that the pool has correctly detected the presence of the
|
|
# shared memory filesystem.
|
|
pool_temp_folder = p._temp_folder
|
|
folder_prefix = '/dev/shm/joblib_memmapping_folder_'
|
|
assert pool_temp_folder.startswith(folder_prefix)
|
|
assert os.path.exists(pool_temp_folder)
|
|
|
|
# Try with a file larger than the memmap threshold of 10 bytes
|
|
a = np.ones(100, dtype=np.float64)
|
|
assert a.nbytes == 800
|
|
p.map(id, [a] * 10)
|
|
# a should have been memmapped to the pool temp folder: the joblib
|
|
# pickling procedure generate one .pkl file:
|
|
assert len(os.listdir(pool_temp_folder)) == 1
|
|
|
|
# create a new array with content that is different from 'a' so
|
|
# that it is mapped to a different file in the temporary folder of
|
|
# the pool.
|
|
b = np.ones(100, dtype=np.float64) * 2
|
|
assert b.nbytes == 800
|
|
p.map(id, [b] * 10)
|
|
# A copy of both a and b are now stored in the shared memory folder
|
|
assert len(os.listdir(pool_temp_folder)) == 2
|
|
finally:
|
|
# Cleanup open file descriptors
|
|
p.terminate()
|
|
del p
|
|
|
|
for i in range(100):
|
|
# The temp folder is cleaned up upon pool termination
|
|
if not os.path.exists(pool_temp_folder):
|
|
break
|
|
sleep(.1)
|
|
else: # pragma: no cover
|
|
raise AssertionError('temporary folder of pool was not deleted')
|
|
finally:
|
|
jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE = orig_size
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@with_dev_shm
|
|
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
|
ids=["multiprocessing", "loky"])
|
|
def test_memmapping_on_too_small_dev_shm(factory):
|
|
orig_size = jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE
|
|
try:
|
|
# Make joblib believe that it cannot use /dev/shm unless there is
|
|
# 42 exabytes of available shared memory in /dev/shm
|
|
jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE = int(42e18)
|
|
|
|
p = factory(3, max_nbytes=10)
|
|
try:
|
|
# Check that the pool has correctly detected the presence of the
|
|
# shared memory filesystem.
|
|
pool_temp_folder = p._temp_folder
|
|
assert not pool_temp_folder.startswith('/dev/shm')
|
|
finally:
|
|
# Cleanup open file descriptors
|
|
p.terminate()
|
|
del p
|
|
|
|
# The temp folder is cleaned up upon pool termination
|
|
assert not os.path.exists(pool_temp_folder)
|
|
finally:
|
|
jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE = orig_size
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
|
ids=["multiprocessing", "loky"])
|
|
def test_memmapping_pool_for_large_arrays_in_return(factory, tmpdir):
|
|
"""Check that large arrays are not copied in memory in return"""
|
|
assert_array_equal = np.testing.assert_array_equal
|
|
|
|
# Build an array reducers that automaticaly dump large array content
|
|
# but check that the returned datastructure are regular arrays to avoid
|
|
# passing a memmap array pointing to a pool controlled temp folder that
|
|
# might be confusing to the user
|
|
|
|
# The MemmappingPool user can always return numpy.memmap object explicitly
|
|
# to avoid memory copy
|
|
p = factory(3, max_nbytes=10, temp_folder=tmpdir.strpath)
|
|
try:
|
|
res = p.apply_async(np.ones, args=(1000,))
|
|
large = res.get()
|
|
assert not has_shareable_memory(large)
|
|
assert_array_equal(large, np.ones(1000))
|
|
finally:
|
|
p.terminate()
|
|
del p
|
|
|
|
|
|
def _worker_multiply(a, n_times):
|
|
"""Multiplication function to be executed by subprocess"""
|
|
assert has_shareable_memory(a)
|
|
return a * n_times
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
|
ids=["multiprocessing", "loky"])
|
|
def test_workaround_against_bad_memmap_with_copied_buffers(factory, tmpdir):
|
|
"""Check that memmaps with a bad buffer are returned as regular arrays
|
|
|
|
Unary operations and ufuncs on memmap instances return a new memmap
|
|
instance with an in-memory buffer (probably a numpy bug).
|
|
"""
|
|
assert_array_equal = np.testing.assert_array_equal
|
|
|
|
p = factory(3, max_nbytes=10, temp_folder=tmpdir.strpath)
|
|
try:
|
|
# Send a complex, large-ish view on a array that will be converted to
|
|
# a memmap in the worker process
|
|
a = np.asarray(np.arange(6000).reshape((1000, 2, 3)),
|
|
order='F')[:, :1, :]
|
|
|
|
# Call a non-inplace multiply operation on the worker and memmap and
|
|
# send it back to the parent.
|
|
b = p.apply_async(_worker_multiply, args=(a, 3)).get()
|
|
assert not has_shareable_memory(b)
|
|
assert_array_equal(b, 3 * a)
|
|
finally:
|
|
p.terminate()
|
|
del p
|
|
|
|
|
|
def identity(arg):
|
|
return arg
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
@parametrize(
|
|
"factory,retry_no",
|
|
list(itertools.product(
|
|
[MemmappingPool, TestExecutor.get_memmapping_executor], range(3))),
|
|
ids=['{}, {}'.format(x, y) for x, y in itertools.product(
|
|
["multiprocessing", "loky"], map(str, range(3)))])
|
|
def test_pool_memmap_with_big_offset(factory, retry_no, tmpdir):
|
|
# Test that numpy memmap offset is set correctly if greater than
|
|
# mmap.ALLOCATIONGRANULARITY, see
|
|
# https://github.com/joblib/joblib/issues/451 and
|
|
# https://github.com/numpy/numpy/pull/8443 for more details.
|
|
fname = tmpdir.join('test.mmap').strpath
|
|
size = 5 * mmap.ALLOCATIONGRANULARITY
|
|
offset = mmap.ALLOCATIONGRANULARITY + 1
|
|
obj = make_memmap(fname, mode='w+', shape=size, dtype='uint8',
|
|
offset=offset)
|
|
|
|
p = factory(2, temp_folder=tmpdir.strpath)
|
|
result = p.apply_async(identity, args=(obj,)).get()
|
|
assert isinstance(result, np.memmap)
|
|
assert result.offset == offset
|
|
np.testing.assert_array_equal(obj, result)
|
|
p.terminate()
|
|
|
|
|
|
def test_pool_get_temp_dir(tmpdir):
|
|
pool_folder_name = 'test.tmpdir'
|
|
pool_folder, shared_mem = _get_temp_dir(pool_folder_name, tmpdir.strpath)
|
|
assert shared_mem is False
|
|
assert pool_folder == tmpdir.join('test.tmpdir').strpath
|
|
|
|
pool_folder, shared_mem = _get_temp_dir(pool_folder_name, temp_folder=None)
|
|
if sys.platform.startswith('win'):
|
|
assert shared_mem is False
|
|
assert pool_folder.endswith(pool_folder_name)
|
|
|
|
|
|
@with_numpy
|
|
@skipif(sys.platform == 'win32', reason='This test fails with a '
|
|
'PermissionError on Windows')
|
|
@parametrize("mmap_mode", ["r+", "w+"])
|
|
def test_numpy_arrays_use_different_memory(mmap_mode):
|
|
def func(arr, value):
|
|
arr[:] = value
|
|
return arr
|
|
|
|
arrays = [np.zeros((10, 10), dtype='float64') for i in range(10)]
|
|
|
|
results = Parallel(mmap_mode=mmap_mode, max_nbytes=0, n_jobs=2)(
|
|
delayed(func)(arr, i) for i, arr in enumerate(arrays))
|
|
|
|
for i, arr in enumerate(results):
|
|
np.testing.assert_array_equal(arr, i)
|
|
|
|
|
|
@with_numpy
|
|
def test_weak_array_key_map():
|
|
|
|
def assert_empty_after_gc_collect(container, retries=100):
|
|
for i in range(retries):
|
|
if len(container) == 0:
|
|
return
|
|
gc.collect()
|
|
sleep(.1)
|
|
assert len(container) == 0
|
|
|
|
a = np.ones(42)
|
|
m = _WeakArrayKeyMap()
|
|
m.set(a, 'a')
|
|
assert m.get(a) == 'a'
|
|
|
|
b = a
|
|
assert m.get(b) == 'a'
|
|
m.set(b, 'b')
|
|
assert m.get(a) == 'b'
|
|
|
|
del a
|
|
gc.collect()
|
|
assert len(m._data) == 1
|
|
assert m.get(b) == 'b'
|
|
|
|
del b
|
|
assert_empty_after_gc_collect(m._data)
|
|
|
|
c = np.ones(42)
|
|
m.set(c, 'c')
|
|
assert len(m._data) == 1
|
|
assert m.get(c) == 'c'
|
|
|
|
with raises(KeyError):
|
|
m.get(np.ones(42))
|
|
|
|
del c
|
|
assert_empty_after_gc_collect(m._data)
|
|
|
|
# Check that creating and dropping numpy arrays with potentially the same
|
|
# object id will not cause the map to get confused.
|
|
def get_set_get_collect(m, i):
|
|
a = np.ones(42)
|
|
with raises(KeyError):
|
|
m.get(a)
|
|
m.set(a, i)
|
|
assert m.get(a) == i
|
|
return id(a)
|
|
|
|
unique_ids = set([get_set_get_collect(m, i) for i in range(1000)])
|
|
if platform.python_implementation() == 'CPython':
|
|
# On CPython (at least) the same id is often reused many times for the
|
|
# temporary arrays created under the local scope of the
|
|
# get_set_get_collect function without causing any spurious lookups /
|
|
# insertions in the map.
|
|
assert len(unique_ids) < 100
|
|
|
|
|
|
def test_weak_array_key_map_no_pickling():
|
|
m = _WeakArrayKeyMap()
|
|
with raises(pickle.PicklingError):
|
|
pickle.dumps(m)
|
|
|
|
|
|
@with_numpy
|
|
@with_multiprocessing
|
|
def test_direct_mmap(tmpdir):
|
|
testfile = str(tmpdir.join('arr.dat'))
|
|
a = np.arange(10, dtype='uint8')
|
|
a.tofile(testfile)
|
|
|
|
def _read_array():
|
|
with open(testfile) as fd:
|
|
mm = mmap.mmap(fd.fileno(), 0, access=mmap.ACCESS_READ, offset=0)
|
|
return np.ndarray((10,), dtype=np.uint8, buffer=mm, offset=0)
|
|
|
|
def func(x):
|
|
return x**2
|
|
|
|
arr = _read_array()
|
|
|
|
# this is expected to work and gives the reference
|
|
ref = Parallel(n_jobs=2)(delayed(func)(x) for x in [a])
|
|
|
|
# now test that it work with the mmap array
|
|
results = Parallel(n_jobs=2)(delayed(func)(x) for x in [arr])
|
|
np.testing.assert_array_equal(results, ref)
|
|
|
|
# also test with a mmap array read in the subprocess
|
|
def worker():
|
|
return _read_array()
|
|
|
|
results = Parallel(n_jobs=2)(delayed(worker)() for _ in range(1))
|
|
np.testing.assert_array_equal(results[0], arr)
|