fr/fr_env/lib/python3.8/site-packages/sklearn/preprocessing/_encoders.py

845 lines
32 KiB
Python
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Authors: Andreas Mueller <amueller@ais.uni-bonn.de>
# Joris Van den Bossche <jorisvandenbossche@gmail.com>
# License: BSD 3 clause
import numpy as np
from scipy import sparse
import numbers
from ..base import BaseEstimator, TransformerMixin
from ..utils import check_array, is_scalar_nan
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args
from ..utils._encode import _encode, _check_unknown, _unique
__all__ = [
'OneHotEncoder',
'OrdinalEncoder'
]
class _BaseEncoder(TransformerMixin, BaseEstimator):
"""
Base class for encoders that includes the code to categorize and
transform the input features.
"""
def _check_X(self, X, force_all_finite=True):
"""
Perform custom check_array:
- convert list of strings to object dtype
- check for missing values for object dtype data (check_array does
not do that)
- return list of features (arrays): this list of features is
constructed feature by feature to preserve the data types
of pandas DataFrame columns, as otherwise information is lost
and cannot be used, eg for the `categories_` attribute.
"""
if not (hasattr(X, 'iloc') and getattr(X, 'ndim', 0) == 2):
# if not a dataframe, do normal check_array validation
X_temp = check_array(X, dtype=None,
force_all_finite=force_all_finite)
if (not hasattr(X, 'dtype')
and np.issubdtype(X_temp.dtype, np.str_)):
X = check_array(X, dtype=object,
force_all_finite=force_all_finite)
else:
X = X_temp
needs_validation = False
else:
# pandas dataframe, do validation later column by column, in order
# to keep the dtype information to be used in the encoder.
needs_validation = force_all_finite
n_samples, n_features = X.shape
X_columns = []
for i in range(n_features):
Xi = self._get_feature(X, feature_idx=i)
Xi = check_array(Xi, ensure_2d=False, dtype=None,
force_all_finite=needs_validation)
X_columns.append(Xi)
return X_columns, n_samples, n_features
def _get_feature(self, X, feature_idx):
if hasattr(X, 'iloc'):
# pandas dataframes
return X.iloc[:, feature_idx]
# numpy arrays, sparse arrays
return X[:, feature_idx]
def _fit(self, X, handle_unknown='error', force_all_finite=True):
X_list, n_samples, n_features = self._check_X(
X, force_all_finite=force_all_finite)
if self.categories != 'auto':
if len(self.categories) != n_features:
raise ValueError("Shape mismatch: if categories is an array,"
" it has to be of shape (n_features,).")
self.categories_ = []
for i in range(n_features):
Xi = X_list[i]
if self.categories == 'auto':
cats = _unique(Xi)
else:
cats = np.array(self.categories[i], dtype=Xi.dtype)
if Xi.dtype.kind not in 'OU':
sorted_cats = np.sort(cats)
error_msg = ("Unsorted categories are not "
"supported for numerical categories")
# if there are nans, nan should be the last element
stop_idx = -1 if np.isnan(sorted_cats[-1]) else None
if (np.any(sorted_cats[:stop_idx] != cats[:stop_idx]) or
(np.isnan(sorted_cats[-1]) and
not np.isnan(sorted_cats[-1]))):
raise ValueError(error_msg)
if handle_unknown == 'error':
diff = _check_unknown(Xi, cats)
if diff:
msg = ("Found unknown categories {0} in column {1}"
" during fit".format(diff, i))
raise ValueError(msg)
self.categories_.append(cats)
def _transform(self, X, handle_unknown='error', force_all_finite=True):
X_list, n_samples, n_features = self._check_X(
X, force_all_finite=force_all_finite)
X_int = np.zeros((n_samples, n_features), dtype=int)
X_mask = np.ones((n_samples, n_features), dtype=bool)
if n_features != len(self.categories_):
raise ValueError(
"The number of features in X is different to the number of "
"features of the fitted data. The fitted data had {} features "
"and the X has {} features."
.format(len(self.categories_,), n_features)
)
for i in range(n_features):
Xi = X_list[i]
diff, valid_mask = _check_unknown(Xi, self.categories_[i],
return_mask=True)
if not np.all(valid_mask):
if handle_unknown == 'error':
msg = ("Found unknown categories {0} in column {1}"
" during transform".format(diff, i))
raise ValueError(msg)
else:
# Set the problematic rows to an acceptable value and
# continue `The rows are marked `X_mask` and will be
# removed later.
X_mask[:, i] = valid_mask
# cast Xi into the largest string type necessary
# to handle different lengths of numpy strings
if (self.categories_[i].dtype.kind in ('U', 'S')
and self.categories_[i].itemsize > Xi.itemsize):
Xi = Xi.astype(self.categories_[i].dtype)
else:
Xi = Xi.copy()
Xi[~valid_mask] = self.categories_[i][0]
# We use check_unknown=False, since _check_unknown was
# already called above.
X_int[:, i] = _encode(Xi, uniques=self.categories_[i],
check_unknown=False)
return X_int, X_mask
def _more_tags(self):
return {'X_types': ['categorical']}
class OneHotEncoder(_BaseEncoder):
"""
Encode categorical features as a one-hot numeric array.
The input to this transformer should be an array-like of integers or
strings, denoting the values taken on by categorical (discrete) features.
The features are encoded using a one-hot (aka 'one-of-K' or 'dummy')
encoding scheme. This creates a binary column for each category and
returns a sparse matrix or dense array (depending on the ``sparse``
parameter)
By default, the encoder derives the categories based on the unique values
in each feature. Alternatively, you can also specify the `categories`
manually.
This encoding is needed for feeding categorical data to many scikit-learn
estimators, notably linear models and SVMs with the standard kernels.
Note: a one-hot encoding of y labels should use a LabelBinarizer
instead.
Read more in the :ref:`User Guide <preprocessing_categorical_features>`.
.. versionchanged:: 0.20
Parameters
----------
categories : 'auto' or a list of array-like, default='auto'
Categories (unique values) per feature:
- 'auto' : Determine categories automatically from the training data.
- list : ``categories[i]`` holds the categories expected in the ith
column. The passed categories should not mix strings and numeric
values within a single feature, and should be sorted in case of
numeric values.
The used categories can be found in the ``categories_`` attribute.
.. versionadded:: 0.20
drop : {'first', 'if_binary'} or a array-like of shape (n_features,), \
default=None
Specifies a methodology to use to drop one of the categories per
feature. This is useful in situations where perfectly collinear
features cause problems, such as when feeding the resulting data
into a neural network or an unregularized regression.
However, dropping one category breaks the symmetry of the original
representation and can therefore induce a bias in downstream models,
for instance for penalized linear classification or regression models.
- None : retain all features (the default).
- 'first' : drop the first category in each feature. If only one
category is present, the feature will be dropped entirely.
- 'if_binary' : drop the first category in each feature with two
categories. Features with 1 or more than 2 categories are
left intact.
- array : ``drop[i]`` is the category in feature ``X[:, i]`` that
should be dropped.
.. versionchanged:: 0.23
Added option 'if_binary'.
sparse : bool, default=True
Will return sparse matrix if set True else will return an array.
dtype : number type, default=float
Desired dtype of output.
handle_unknown : {'error', 'ignore'}, default='error'
Whether to raise an error or ignore if an unknown categorical feature
is present during transform (default is to raise). When this parameter
is set to 'ignore' and an unknown category is encountered during
transform, the resulting one-hot encoded columns for this feature
will be all zeros. In the inverse transform, an unknown category
will be denoted as None.
Attributes
----------
categories_ : list of arrays
The categories of each feature determined during fitting
(in order of the features in X and corresponding with the output
of ``transform``). This includes the category specified in ``drop``
(if any).
drop_idx_ : array of shape (n_features,)
- ``drop_idx_[i]`` is the index in ``categories_[i]`` of the category
to be dropped for each feature.
- ``drop_idx_[i] = None`` if no category is to be dropped from the
feature with index ``i``, e.g. when `drop='if_binary'` and the
feature isn't binary.
- ``drop_idx_ = None`` if all the transformed features will be
retained.
.. versionchanged:: 0.23
Added the possibility to contain `None` values.
See Also
--------
OrdinalEncoder : Performs an ordinal (integer)
encoding of the categorical features.
sklearn.feature_extraction.DictVectorizer : Performs a one-hot encoding of
dictionary items (also handles string-valued features).
sklearn.feature_extraction.FeatureHasher : Performs an approximate one-hot
encoding of dictionary items or strings.
LabelBinarizer : Binarizes labels in a one-vs-all
fashion.
MultiLabelBinarizer : Transforms between iterable of
iterables and a multilabel format, e.g. a (samples x classes) binary
matrix indicating the presence of a class label.
Examples
--------
Given a dataset with two features, we let the encoder find the unique
values per feature and transform the data to a binary one-hot encoding.
>>> from sklearn.preprocessing import OneHotEncoder
One can discard categories not seen during `fit`:
>>> enc = OneHotEncoder(handle_unknown='ignore')
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OneHotEncoder(handle_unknown='ignore')
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 1], ['Male', 4]]).toarray()
array([[1., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.]])
>>> enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])
array([['Male', 1],
[None, 2]], dtype=object)
>>> enc.get_feature_names(['gender', 'group'])
array(['gender_Female', 'gender_Male', 'group_1', 'group_2', 'group_3'],
dtype=object)
One can always drop the first column for each feature:
>>> drop_enc = OneHotEncoder(drop='first').fit(X)
>>> drop_enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> drop_enc.transform([['Female', 1], ['Male', 2]]).toarray()
array([[0., 0., 0.],
[1., 1., 0.]])
Or drop a column for feature only having 2 categories:
>>> drop_binary_enc = OneHotEncoder(drop='if_binary').fit(X)
>>> drop_binary_enc.transform([['Female', 1], ['Male', 2]]).toarray()
array([[0., 1., 0., 0.],
[1., 0., 1., 0.]])
"""
@_deprecate_positional_args
def __init__(self, *, categories='auto', drop=None, sparse=True,
dtype=np.float64, handle_unknown='error'):
self.categories = categories
self.sparse = sparse
self.dtype = dtype
self.handle_unknown = handle_unknown
self.drop = drop
def _validate_keywords(self):
if self.handle_unknown not in ('error', 'ignore'):
msg = ("handle_unknown should be either 'error' or 'ignore', "
"got {0}.".format(self.handle_unknown))
raise ValueError(msg)
# If we have both dropped columns and ignored unknown
# values, there will be ambiguous cells. This creates difficulties
# in interpreting the model.
if self.drop is not None and self.handle_unknown != 'error':
raise ValueError(
"`handle_unknown` must be 'error' when the drop parameter is "
"specified, as both would create categories that are all "
"zero.")
def _compute_drop_idx(self):
if self.drop is None:
return None
elif isinstance(self.drop, str):
if self.drop == 'first':
return np.zeros(len(self.categories_), dtype=object)
elif self.drop == 'if_binary':
return np.array([0 if len(cats) == 2 else None
for cats in self.categories_], dtype=object)
else:
msg = (
"Wrong input for parameter `drop`. Expected "
"'first', 'if_binary', None or array of objects, got {}"
)
raise ValueError(msg.format(type(self.drop)))
else:
try:
self.drop = np.asarray(self.drop, dtype=object)
droplen = len(self.drop)
except (ValueError, TypeError):
msg = (
"Wrong input for parameter `drop`. Expected "
"'first', 'if_binary', None or array of objects, got {}"
)
raise ValueError(msg.format(type(self.drop)))
if droplen != len(self.categories_):
msg = ("`drop` should have length equal to the number "
"of features ({}), got {}")
raise ValueError(msg.format(len(self.categories_),
len(self.drop)))
missing_drops = []
drop_indices = []
for col_idx, (val, cat_list) in enumerate(zip(self.drop,
self.categories_)):
if not is_scalar_nan(val):
drop_idx = np.where(cat_list == val)[0]
if drop_idx.size: # found drop idx
drop_indices.append(drop_idx[0])
else:
missing_drops.append((col_idx, val))
continue
# val is nan, find nan in categories manually
for cat_idx, cat in enumerate(cat_list):
if is_scalar_nan(cat):
drop_indices.append(cat_idx)
break
else: # loop did not break thus drop is missing
missing_drops.append((col_idx, val))
if any(missing_drops):
msg = ("The following categories were supposed to be "
"dropped, but were not found in the training "
"data.\n{}".format(
"\n".join(
["Category: {}, Feature: {}".format(c, v)
for c, v in missing_drops])))
raise ValueError(msg)
return np.array(drop_indices, dtype=object)
def fit(self, X, y=None):
"""
Fit OneHotEncoder to X.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to determine the categories of each feature.
y : None
Ignored. This parameter exists only for compatibility with
:class:`~sklearn.pipeline.Pipeline`.
Returns
-------
self
"""
self._validate_keywords()
self._fit(X, handle_unknown=self.handle_unknown,
force_all_finite='allow-nan')
self.drop_idx_ = self._compute_drop_idx()
return self
def fit_transform(self, X, y=None):
"""
Fit OneHotEncoder to X, then transform X.
Equivalent to fit(X).transform(X) but more convenient.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to encode.
y : None
Ignored. This parameter exists only for compatibility with
:class:`~sklearn.pipeline.Pipeline`.
Returns
-------
X_out : sparse matrix if sparse=True else a 2-d array
Transformed input.
"""
self._validate_keywords()
return super().fit_transform(X, y)
def transform(self, X):
"""
Transform X using one-hot encoding.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to encode.
Returns
-------
X_out : sparse matrix if sparse=True else a 2-d array
Transformed input.
"""
check_is_fitted(self)
# validation of X happens in _check_X called by _transform
X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown,
force_all_finite='allow-nan')
n_samples, n_features = X_int.shape
if self.drop_idx_ is not None:
to_drop = self.drop_idx_.copy()
# We remove all the dropped categories from mask, and decrement all
# categories that occur after them to avoid an empty column.
keep_cells = X_int != to_drop
n_values = []
for i, cats in enumerate(self.categories_):
n_cats = len(cats)
# drop='if_binary' but feature isn't binary
if to_drop[i] is None:
# set to cardinality to not drop from X_int
to_drop[i] = n_cats
n_values.append(n_cats)
else: # dropped
n_values.append(n_cats - 1)
to_drop = to_drop.reshape(1, -1)
X_int[X_int > to_drop] -= 1
X_mask &= keep_cells
else:
n_values = [len(cats) for cats in self.categories_]
mask = X_mask.ravel()
feature_indices = np.cumsum([0] + n_values)
indices = (X_int + feature_indices[:-1]).ravel()[mask]
indptr = np.empty(n_samples + 1, dtype=int)
indptr[0] = 0
np.sum(X_mask, axis=1, out=indptr[1:])
np.cumsum(indptr[1:], out=indptr[1:])
data = np.ones(indptr[-1])
out = sparse.csr_matrix((data, indices, indptr),
shape=(n_samples, feature_indices[-1]),
dtype=self.dtype)
if not self.sparse:
return out.toarray()
else:
return out
def inverse_transform(self, X):
"""
Convert the data back to the original representation.
In case unknown categories are encountered (all zeros in the
one-hot encoding), ``None`` is used to represent this category.
Parameters
----------
X : array-like or sparse matrix, shape [n_samples, n_encoded_features]
The transformed data.
Returns
-------
X_tr : array-like, shape [n_samples, n_features]
Inverse transformed array.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse='csr')
n_samples, _ = X.shape
n_features = len(self.categories_)
if self.drop_idx_ is None:
n_transformed_features = sum(len(cats)
for cats in self.categories_)
else:
n_transformed_features = sum(
len(cats) - 1 if to_drop is not None else len(cats)
for cats, to_drop in zip(self.categories_, self.drop_idx_)
)
# validate shape of passed X
msg = ("Shape of the passed X data is not correct. Expected {0} "
"columns, got {1}.")
if X.shape[1] != n_transformed_features:
raise ValueError(msg.format(n_transformed_features, X.shape[1]))
# create resulting array of appropriate dtype
dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
X_tr = np.empty((n_samples, n_features), dtype=dt)
j = 0
found_unknown = {}
for i in range(n_features):
if self.drop_idx_ is None or self.drop_idx_[i] is None:
cats = self.categories_[i]
else:
cats = np.delete(self.categories_[i], self.drop_idx_[i])
n_categories = len(cats)
# Only happens if there was a column with a unique
# category. In this case we just fill the column with this
# unique category value.
if n_categories == 0:
X_tr[:, i] = self.categories_[i][self.drop_idx_[i]]
j += n_categories
continue
sub = X[:, j:j + n_categories]
# for sparse X argmax returns 2D matrix, ensure 1D array
labels = np.asarray(sub.argmax(axis=1)).flatten()
X_tr[:, i] = cats[labels]
if self.handle_unknown == 'ignore':
unknown = np.asarray(sub.sum(axis=1) == 0).flatten()
# ignored unknown categories: we have a row of all zero
if unknown.any():
found_unknown[i] = unknown
else:
dropped = np.asarray(sub.sum(axis=1) == 0).flatten()
if dropped.any():
if self.drop_idx_ is None:
all_zero_samples = np.flatnonzero(dropped)
raise ValueError(
f"Samples {all_zero_samples} can not be inverted "
"when drop=None and handle_unknown='error' "
"because they contain all zeros")
# we can safely assume that all of the nulls in each column
# are the dropped value
X_tr[dropped, i] = self.categories_[i][
self.drop_idx_[i]
]
j += n_categories
# if ignored are found: potentially need to upcast result to
# insert None values
if found_unknown:
if X_tr.dtype != object:
X_tr = X_tr.astype(object)
for idx, mask in found_unknown.items():
X_tr[mask, idx] = None
return X_tr
def get_feature_names(self, input_features=None):
"""
Return feature names for output features.
Parameters
----------
input_features : list of str of shape (n_features,)
String names for input features if available. By default,
"x0", "x1", ... "xn_features" is used.
Returns
-------
output_feature_names : ndarray of shape (n_output_features,)
Array of feature names.
"""
check_is_fitted(self)
cats = self.categories_
if input_features is None:
input_features = ['x%d' % i for i in range(len(cats))]
elif len(input_features) != len(self.categories_):
raise ValueError(
"input_features should have length equal to number of "
"features ({}), got {}".format(len(self.categories_),
len(input_features)))
feature_names = []
for i in range(len(cats)):
names = [
input_features[i] + '_' + str(t) for t in cats[i]]
if self.drop_idx_ is not None and self.drop_idx_[i] is not None:
names.pop(self.drop_idx_[i])
feature_names.extend(names)
return np.array(feature_names, dtype=object)
class OrdinalEncoder(_BaseEncoder):
"""
Encode categorical features as an integer array.
The input to this transformer should be an array-like of integers or
strings, denoting the values taken on by categorical (discrete) features.
The features are converted to ordinal integers. This results in
a single column of integers (0 to n_categories - 1) per feature.
Read more in the :ref:`User Guide <preprocessing_categorical_features>`.
.. versionadded:: 0.20
Parameters
----------
categories : 'auto' or a list of array-like, default='auto'
Categories (unique values) per feature:
- 'auto' : Determine categories automatically from the training data.
- list : ``categories[i]`` holds the categories expected in the ith
column. The passed categories should not mix strings and numeric
values, and should be sorted in case of numeric values.
The used categories can be found in the ``categories_`` attribute.
dtype : number type, default np.float64
Desired dtype of output.
handle_unknown : {'error', 'use_encoded_value'}, default='error'
When set to 'error' an error will be raised in case an unknown
categorical feature is present during transform. When set to
'use_encoded_value', the encoded value of unknown categories will be
set to the value given for the parameter `unknown_value`. In
:meth:`inverse_transform`, an unknown category will be denoted as None.
.. versionadded:: 0.24
unknown_value : int or np.nan, default=None
When the parameter handle_unknown is set to 'use_encoded_value', this
parameter is required and will set the encoded value of unknown
categories. It has to be distinct from the values used to encode any of
the categories in `fit`. If set to np.nan, the `dtype` parameter must
be a float dtype.
.. versionadded:: 0.24
Attributes
----------
categories_ : list of arrays
The categories of each feature determined during ``fit`` (in order of
the features in X and corresponding with the output of ``transform``).
This does not include categories that weren't seen during ``fit``.
See Also
--------
OneHotEncoder : Performs a one-hot encoding of categorical features.
LabelEncoder : Encodes target labels with values between 0 and
``n_classes-1``.
Examples
--------
Given a dataset with two features, we let the encoder find the unique
values per feature and transform the data to an ordinal encoding.
>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OrdinalEncoder()
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[0., 2.],
[1., 0.]])
>>> enc.inverse_transform([[1, 0], [0, 1]])
array([['Male', 1],
['Female', 2]], dtype=object)
"""
@_deprecate_positional_args
def __init__(self, *, categories='auto', dtype=np.float64,
handle_unknown='error', unknown_value=None):
self.categories = categories
self.dtype = dtype
self.handle_unknown = handle_unknown
self.unknown_value = unknown_value
def fit(self, X, y=None):
"""
Fit the OrdinalEncoder to X.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to determine the categories of each feature.
y : None
Ignored. This parameter exists only for compatibility with
:class:`~sklearn.pipeline.Pipeline`.
Returns
-------
self
"""
if self.handle_unknown == 'use_encoded_value':
if is_scalar_nan(self.unknown_value):
if np.dtype(self.dtype).kind != 'f':
raise ValueError(
f"When unknown_value is np.nan, the dtype "
"parameter should be "
f"a float dtype. Got {self.dtype}."
)
elif not isinstance(self.unknown_value, numbers.Integral):
raise TypeError(f"unknown_value should be an integer or "
f"np.nan when "
f"handle_unknown is 'use_encoded_value', "
f"got {self.unknown_value}.")
elif self.unknown_value is not None:
raise TypeError(f"unknown_value should only be set when "
f"handle_unknown is 'use_encoded_value', "
f"got {self.unknown_value}.")
self._fit(X)
if self.handle_unknown == 'use_encoded_value':
for feature_cats in self.categories_:
if 0 <= self.unknown_value < len(feature_cats):
raise ValueError(f"The used value for unknown_value "
f"{self.unknown_value} is one of the "
f"values already used for encoding the "
f"seen categories.")
return self
def transform(self, X):
"""
Transform X to ordinal codes.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to encode.
Returns
-------
X_out : sparse matrix or a 2-d array
Transformed input.
"""
X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
X_trans = X_int.astype(self.dtype, copy=False)
# create separate category for unknown values
if self.handle_unknown == 'use_encoded_value':
X_trans[~X_mask] = self.unknown_value
return X_trans
def inverse_transform(self, X):
"""
Convert the data back to the original representation.
Parameters
----------
X : array-like or sparse matrix, shape [n_samples, n_encoded_features]
The transformed data.
Returns
-------
X_tr : array-like, shape [n_samples, n_features]
Inverse transformed array.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse='csr')
n_samples, _ = X.shape
n_features = len(self.categories_)
# validate shape of passed X
msg = ("Shape of the passed X data is not correct. Expected {0} "
"columns, got {1}.")
if X.shape[1] != n_features:
raise ValueError(msg.format(n_features, X.shape[1]))
# create resulting array of appropriate dtype
dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
X_tr = np.empty((n_samples, n_features), dtype=dt)
found_unknown = {}
for i in range(n_features):
labels = X[:, i].astype('int64', copy=False)
if self.handle_unknown == 'use_encoded_value':
unknown_labels = labels == self.unknown_value
X_tr[:, i] = self.categories_[i][np.where(
unknown_labels, 0, labels)]
found_unknown[i] = unknown_labels
else:
X_tr[:, i] = self.categories_[i][labels]
# insert None values for unknown values
if found_unknown:
X_tr = X_tr.astype(object, copy=False)
for idx, mask in found_unknown.items():
X_tr[mask, idx] = None
return X_tr