forked from 170010011/fr
73 lines
2.4 KiB
Python
73 lines
2.4 KiB
Python
"""
|
|
The arraycrop module contains functions to crop values from the edges of an
|
|
n-dimensional array.
|
|
"""
|
|
|
|
import numpy as np
|
|
|
|
__all__ = ['crop']
|
|
|
|
|
|
def crop(ar, crop_width, copy=False, order='K'):
|
|
"""Crop array `ar` by `crop_width` along each dimension.
|
|
|
|
Parameters
|
|
----------
|
|
ar : array-like of rank N
|
|
Input array.
|
|
crop_width : {sequence, int}
|
|
Number of values to remove from the edges of each axis.
|
|
``((before_1, after_1),`` ... ``(before_N, after_N))`` specifies
|
|
unique crop widths at the start and end of each axis.
|
|
``((before, after),) or (before, after)`` specifies
|
|
a fixed start and end crop for every axis.
|
|
``(n,)`` or ``n`` for integer ``n`` is a shortcut for
|
|
before = after = ``n`` for all axes.
|
|
copy : bool, optional
|
|
If `True`, ensure the returned array is a contiguous copy. Normally,
|
|
a crop operation will return a discontiguous view of the underlying
|
|
input array.
|
|
order : {'C', 'F', 'A', 'K'}, optional
|
|
If ``copy==True``, control the memory layout of the copy. See
|
|
``np.copy``.
|
|
|
|
Returns
|
|
-------
|
|
cropped : array
|
|
The cropped array. If ``copy=False`` (default), this is a sliced
|
|
view of the input array.
|
|
"""
|
|
ar = np.array(ar, copy=False)
|
|
|
|
if isinstance(crop_width, int):
|
|
crops = [[crop_width, crop_width]] * ar.ndim
|
|
elif isinstance(crop_width[0], int):
|
|
if len(crop_width) == 1:
|
|
crops = [[crop_width[0], crop_width[0]]] * ar.ndim
|
|
elif len(crop_width) == 2:
|
|
crops = [crop_width] * ar.ndim
|
|
else:
|
|
raise ValueError(
|
|
f"crop_width has an invalid length: {len(crop_width)}\n"
|
|
"crop_width should be a sequence of N pairs, "
|
|
"a single pair, or a single integer"
|
|
)
|
|
elif len(crop_width) == 1:
|
|
crops = [crop_width[0]] * ar.ndim
|
|
elif len(crop_width) == ar.ndim:
|
|
crops = crop_width
|
|
else:
|
|
raise ValueError(
|
|
f"crop_width has an invalid length: {len(crop_width)}\n"
|
|
"crop_width should be a sequence of N pairs, "
|
|
"a single pair, or a single integer"
|
|
)
|
|
|
|
slices = tuple(slice(a, ar.shape[i] - b)
|
|
for i, (a, b) in enumerate(crops))
|
|
if copy:
|
|
cropped = np.array(ar[slices], order=order, copy=True)
|
|
else:
|
|
cropped = ar[slices]
|
|
return cropped
|