forked from 170010011/fr
181 lines
5.5 KiB
Python
181 lines
5.5 KiB
Python
import numpy as np
|
|
|
|
from ..util import img_as_float
|
|
from .._shared.utils import check_nD
|
|
|
|
|
|
class FeatureDetector(object):
|
|
|
|
def __init__(self):
|
|
self.keypoints_ = np.array([])
|
|
|
|
def detect(self, image):
|
|
"""Detect keypoints in image.
|
|
|
|
Parameters
|
|
----------
|
|
image : 2D array
|
|
Input image.
|
|
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
|
|
class DescriptorExtractor(object):
|
|
|
|
def __init__(self):
|
|
self.descriptors_ = np.array([])
|
|
|
|
def extract(self, image, keypoints):
|
|
"""Extract feature descriptors in image for given keypoints.
|
|
|
|
Parameters
|
|
----------
|
|
image : 2D array
|
|
Input image.
|
|
keypoints : (N, 2) array
|
|
Keypoint locations as ``(row, col)``.
|
|
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
|
|
def plot_matches(ax, image1, image2, keypoints1, keypoints2, matches,
|
|
keypoints_color='k', matches_color=None, only_matches=False,
|
|
alignment='horizontal'):
|
|
"""Plot matched features.
|
|
|
|
Parameters
|
|
----------
|
|
ax : matplotlib.axes.Axes
|
|
Matches and image are drawn in this ax.
|
|
image1 : (N, M [, 3]) array
|
|
First grayscale or color image.
|
|
image2 : (N, M [, 3]) array
|
|
Second grayscale or color image.
|
|
keypoints1 : (K1, 2) array
|
|
First keypoint coordinates as ``(row, col)``.
|
|
keypoints2 : (K2, 2) array
|
|
Second keypoint coordinates as ``(row, col)``.
|
|
matches : (Q, 2) array
|
|
Indices of corresponding matches in first and second set of
|
|
descriptors, where ``matches[:, 0]`` denote the indices in the first
|
|
and ``matches[:, 1]`` the indices in the second set of descriptors.
|
|
keypoints_color : matplotlib color, optional
|
|
Color for keypoint locations.
|
|
matches_color : matplotlib color, optional
|
|
Color for lines which connect keypoint matches. By default the
|
|
color is chosen randomly.
|
|
only_matches : bool, optional
|
|
Whether to only plot matches and not plot the keypoint locations.
|
|
alignment : {'horizontal', 'vertical'}, optional
|
|
Whether to show images side by side, ``'horizontal'``, or one above
|
|
the other, ``'vertical'``.
|
|
|
|
"""
|
|
|
|
image1 = img_as_float(image1)
|
|
image2 = img_as_float(image2)
|
|
|
|
new_shape1 = list(image1.shape)
|
|
new_shape2 = list(image2.shape)
|
|
|
|
if image1.shape[0] < image2.shape[0]:
|
|
new_shape1[0] = image2.shape[0]
|
|
elif image1.shape[0] > image2.shape[0]:
|
|
new_shape2[0] = image1.shape[0]
|
|
|
|
if image1.shape[1] < image2.shape[1]:
|
|
new_shape1[1] = image2.shape[1]
|
|
elif image1.shape[1] > image2.shape[1]:
|
|
new_shape2[1] = image1.shape[1]
|
|
|
|
if new_shape1 != image1.shape:
|
|
new_image1 = np.zeros(new_shape1, dtype=image1.dtype)
|
|
new_image1[:image1.shape[0], :image1.shape[1]] = image1
|
|
image1 = new_image1
|
|
|
|
if new_shape2 != image2.shape:
|
|
new_image2 = np.zeros(new_shape2, dtype=image2.dtype)
|
|
new_image2[:image2.shape[0], :image2.shape[1]] = image2
|
|
image2 = new_image2
|
|
|
|
offset = np.array(image1.shape)
|
|
if alignment == 'horizontal':
|
|
image = np.concatenate([image1, image2], axis=1)
|
|
offset[0] = 0
|
|
elif alignment == 'vertical':
|
|
image = np.concatenate([image1, image2], axis=0)
|
|
offset[1] = 0
|
|
else:
|
|
mesg = ("plot_matches accepts either 'horizontal' or 'vertical' for "
|
|
"alignment, but '{}' was given. See "
|
|
"https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.plot_matches " # noqa
|
|
"for details.").format(alignment)
|
|
raise ValueError(mesg)
|
|
|
|
if not only_matches:
|
|
ax.scatter(keypoints1[:, 1], keypoints1[:, 0],
|
|
facecolors='none', edgecolors=keypoints_color)
|
|
ax.scatter(keypoints2[:, 1] + offset[1], keypoints2[:, 0] + offset[0],
|
|
facecolors='none', edgecolors=keypoints_color)
|
|
|
|
ax.imshow(image, cmap='gray')
|
|
ax.axis((0, image1.shape[1] + offset[1], image1.shape[0] + offset[0], 0))
|
|
|
|
for i in range(matches.shape[0]):
|
|
idx1 = matches[i, 0]
|
|
idx2 = matches[i, 1]
|
|
|
|
if matches_color is None:
|
|
color = np.random.rand(3)
|
|
else:
|
|
color = matches_color
|
|
|
|
ax.plot((keypoints1[idx1, 1], keypoints2[idx2, 1] + offset[1]),
|
|
(keypoints1[idx1, 0], keypoints2[idx2, 0] + offset[0]),
|
|
'-', color=color)
|
|
|
|
|
|
def _prepare_grayscale_input_2D(image):
|
|
image = np.squeeze(image)
|
|
check_nD(image, 2)
|
|
return img_as_float(image)
|
|
|
|
|
|
def _prepare_grayscale_input_nD(image):
|
|
image = np.squeeze(image)
|
|
check_nD(image, range(2, 6))
|
|
return img_as_float(image)
|
|
|
|
|
|
def _mask_border_keypoints(image_shape, keypoints, distance):
|
|
"""Mask coordinates that are within certain distance from the image border.
|
|
|
|
Parameters
|
|
----------
|
|
image_shape : (2, ) array_like
|
|
Shape of the image as ``(rows, cols)``.
|
|
keypoints : (N, 2) array
|
|
Keypoint coordinates as ``(rows, cols)``.
|
|
distance : int
|
|
Image border distance.
|
|
|
|
Returns
|
|
-------
|
|
mask : (N, ) bool array
|
|
Mask indicating if pixels are within the image (``True``) or in the
|
|
border region of the image (``False``).
|
|
|
|
"""
|
|
|
|
rows = image_shape[0]
|
|
cols = image_shape[1]
|
|
|
|
mask = (((distance - 1) < keypoints[:, 0])
|
|
& (keypoints[:, 0] < (rows - distance + 1))
|
|
& ((distance - 1) < keypoints[:, 1])
|
|
& (keypoints[:, 1] < (cols - distance + 1)))
|
|
|
|
return mask
|