forked from 170010011/fr
98 lines
3.9 KiB
Python
98 lines
3.9 KiB
Python
import numpy as np
|
|
from scipy.spatial.distance import cdist
|
|
|
|
|
|
def match_descriptors(descriptors1, descriptors2, metric=None, p=2,
|
|
max_distance=np.inf, cross_check=True, max_ratio=1.0):
|
|
"""Brute-force matching of descriptors.
|
|
|
|
For each descriptor in the first set this matcher finds the closest
|
|
descriptor in the second set (and vice-versa in the case of enabled
|
|
cross-checking).
|
|
|
|
Parameters
|
|
----------
|
|
descriptors1 : (M, P) array
|
|
Descriptors of size P about M keypoints in the first image.
|
|
descriptors2 : (N, P) array
|
|
Descriptors of size P about N keypoints in the second image.
|
|
metric : {'euclidean', 'cityblock', 'minkowski', 'hamming', ...} , optional
|
|
The metric to compute the distance between two descriptors. See
|
|
`scipy.spatial.distance.cdist` for all possible types. The hamming
|
|
distance should be used for binary descriptors. By default the L2-norm
|
|
is used for all descriptors of dtype float or double and the Hamming
|
|
distance is used for binary descriptors automatically.
|
|
p : int, optional
|
|
The p-norm to apply for ``metric='minkowski'``.
|
|
max_distance : float, optional
|
|
Maximum allowed distance between descriptors of two keypoints
|
|
in separate images to be regarded as a match.
|
|
cross_check : bool, optional
|
|
If True, the matched keypoints are returned after cross checking i.e. a
|
|
matched pair (keypoint1, keypoint2) is returned if keypoint2 is the
|
|
best match for keypoint1 in second image and keypoint1 is the best
|
|
match for keypoint2 in first image.
|
|
max_ratio : float, optional
|
|
Maximum ratio of distances between first and second closest descriptor
|
|
in the second set of descriptors. This threshold is useful to filter
|
|
ambiguous matches between the two descriptor sets. The choice of this
|
|
value depends on the statistics of the chosen descriptor, e.g.,
|
|
for SIFT descriptors a value of 0.8 is usually chosen, see
|
|
D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints",
|
|
International Journal of Computer Vision, 2004.
|
|
|
|
Returns
|
|
-------
|
|
matches : (Q, 2) array
|
|
Indices of corresponding matches in first and second set of
|
|
descriptors, where ``matches[:, 0]`` denote the indices in the first
|
|
and ``matches[:, 1]`` the indices in the second set of descriptors.
|
|
|
|
"""
|
|
|
|
if descriptors1.shape[1] != descriptors2.shape[1]:
|
|
raise ValueError("Descriptor length must equal.")
|
|
|
|
if metric is None:
|
|
if np.issubdtype(descriptors1.dtype, bool):
|
|
metric = 'hamming'
|
|
else:
|
|
metric = 'euclidean'
|
|
|
|
kwargs = {}
|
|
# Scipy raises an error if p is passed as an extra argument when it isn't
|
|
# necessary for the chosen metric.
|
|
if metric == 'minkowski':
|
|
kwargs['p'] = p
|
|
distances = cdist(descriptors1, descriptors2, metric=metric, **kwargs)
|
|
|
|
indices1 = np.arange(descriptors1.shape[0])
|
|
indices2 = np.argmin(distances, axis=1)
|
|
|
|
if cross_check:
|
|
matches1 = np.argmin(distances, axis=0)
|
|
mask = indices1 == matches1[indices2]
|
|
indices1 = indices1[mask]
|
|
indices2 = indices2[mask]
|
|
|
|
if max_distance < np.inf:
|
|
mask = distances[indices1, indices2] < max_distance
|
|
indices1 = indices1[mask]
|
|
indices2 = indices2[mask]
|
|
|
|
if max_ratio < 1.0:
|
|
best_distances = distances[indices1, indices2]
|
|
distances[indices1, indices2] = np.inf
|
|
second_best_indices2 = np.argmin(distances[indices1], axis=1)
|
|
second_best_distances = distances[indices1, second_best_indices2]
|
|
second_best_distances[second_best_distances == 0] \
|
|
= np.finfo(np.double).eps
|
|
ratio = best_distances / second_best_distances
|
|
mask = ratio < max_ratio
|
|
indices1 = indices1[mask]
|
|
indices2 = indices2[mask]
|
|
|
|
matches = np.column_stack((indices1, indices2))
|
|
|
|
return matches
|