fr/fr_env/lib/python3.8/site-packages/skimage/exposure/histogram_matching.py

71 lines
2.4 KiB
Python

import numpy as np
def _match_cumulative_cdf(source, template):
"""
Return modified source array so that the cumulative density function of
its values matches the cumulative density function of the template.
"""
src_values, src_unique_indices, src_counts = np.unique(source.ravel(),
return_inverse=True,
return_counts=True)
tmpl_values, tmpl_counts = np.unique(template.ravel(), return_counts=True)
# calculate normalized quantiles for each array
src_quantiles = np.cumsum(src_counts) / source.size
tmpl_quantiles = np.cumsum(tmpl_counts) / template.size
interp_a_values = np.interp(src_quantiles, tmpl_quantiles, tmpl_values)
return interp_a_values[src_unique_indices].reshape(source.shape)
def match_histograms(image, reference, *, multichannel=False):
"""Adjust an image so that its cumulative histogram matches that of another.
The adjustment is applied separately for each channel.
Parameters
----------
image : ndarray
Input image. Can be gray-scale or in color.
reference : ndarray
Image to match histogram of. Must have the same number of channels as
image.
multichannel : bool, optional
Apply the matching separately for each channel.
Returns
-------
matched : ndarray
Transformed input image.
Raises
------
ValueError
Thrown when the number of channels in the input image and the reference
differ.
References
----------
.. [1] http://paulbourke.net/miscellaneous/equalisation/
"""
if image.ndim != reference.ndim:
raise ValueError('Image and reference must have the same number '
'of channels.')
if multichannel:
if image.shape[-1] != reference.shape[-1]:
raise ValueError('Number of channels in the input image and '
'reference image must match!')
matched = np.empty(image.shape, dtype=image.dtype)
for channel in range(image.shape[-1]):
matched_channel = _match_cumulative_cdf(image[..., channel],
reference[..., channel])
matched[..., channel] = matched_channel
else:
matched = _match_cumulative_cdf(image, reference)
return matched