forked from 170010011/fr
115 lines
3.4 KiB
Python
115 lines
3.4 KiB
Python
import numpy as np
|
|
from scipy.special import (ellipkinc as ellip_F, ellipeinc as ellip_E)
|
|
|
|
|
|
def ellipsoid(a, b, c, spacing=(1., 1., 1.), levelset=False):
|
|
"""
|
|
Generates ellipsoid with semimajor axes aligned with grid dimensions
|
|
on grid with specified `spacing`.
|
|
|
|
Parameters
|
|
----------
|
|
a : float
|
|
Length of semimajor axis aligned with x-axis.
|
|
b : float
|
|
Length of semimajor axis aligned with y-axis.
|
|
c : float
|
|
Length of semimajor axis aligned with z-axis.
|
|
spacing : tuple of floats, length 3
|
|
Spacing in (x, y, z) spatial dimensions.
|
|
levelset : bool
|
|
If True, returns the level set for this ellipsoid (signed level
|
|
set about zero, with positive denoting interior) as np.float64.
|
|
False returns a binarized version of said level set.
|
|
|
|
Returns
|
|
-------
|
|
ellip : (N, M, P) array
|
|
Ellipsoid centered in a correctly sized array for given `spacing`.
|
|
Boolean dtype unless `levelset=True`, in which case a float array is
|
|
returned with the level set above 0.0 representing the ellipsoid.
|
|
|
|
"""
|
|
if (a <= 0) or (b <= 0) or (c <= 0):
|
|
raise ValueError('Parameters a, b, and c must all be > 0')
|
|
|
|
offset = np.r_[1, 1, 1] * np.r_[spacing]
|
|
|
|
# Calculate limits, and ensure output volume is odd & symmetric
|
|
low = np.ceil((- np.r_[a, b, c] - offset))
|
|
high = np.floor((np.r_[a, b, c] + offset + 1))
|
|
|
|
for dim in range(3):
|
|
if (high[dim] - low[dim]) % 2 == 0:
|
|
low[dim] -= 1
|
|
num = np.arange(low[dim], high[dim], spacing[dim])
|
|
if 0 not in num:
|
|
low[dim] -= np.max(num[num < 0])
|
|
|
|
# Generate (anisotropic) spatial grid
|
|
x, y, z = np.mgrid[low[0]:high[0]:spacing[0],
|
|
low[1]:high[1]:spacing[1],
|
|
low[2]:high[2]:spacing[2]]
|
|
|
|
if not levelset:
|
|
arr = ((x / float(a)) ** 2 +
|
|
(y / float(b)) ** 2 +
|
|
(z / float(c)) ** 2) <= 1
|
|
else:
|
|
arr = ((x / float(a)) ** 2 +
|
|
(y / float(b)) ** 2 +
|
|
(z / float(c)) ** 2) - 1
|
|
|
|
return arr
|
|
|
|
|
|
def ellipsoid_stats(a, b, c):
|
|
"""
|
|
Calculates analytical surface area and volume for ellipsoid with
|
|
semimajor axes aligned with grid dimensions of specified `spacing`.
|
|
|
|
Parameters
|
|
----------
|
|
a : float
|
|
Length of semimajor axis aligned with x-axis.
|
|
b : float
|
|
Length of semimajor axis aligned with y-axis.
|
|
c : float
|
|
Length of semimajor axis aligned with z-axis.
|
|
|
|
Returns
|
|
-------
|
|
vol : float
|
|
Calculated volume of ellipsoid.
|
|
surf : float
|
|
Calculated surface area of ellipsoid.
|
|
|
|
"""
|
|
if (a <= 0) or (b <= 0) or (c <= 0):
|
|
raise ValueError('Parameters a, b, and c must all be > 0')
|
|
|
|
# Calculate volume & surface area
|
|
# Surface calculation requires a >= b >= c and a != c.
|
|
abc = [a, b, c]
|
|
abc.sort(reverse=True)
|
|
a = abc[0]
|
|
b = abc[1]
|
|
c = abc[2]
|
|
|
|
# Volume
|
|
vol = 4 / 3. * np.pi * a * b * c
|
|
|
|
# Analytical ellipsoid surface area
|
|
phi = np.arcsin((1. - (c ** 2 / (a ** 2.))) ** 0.5)
|
|
d = float((a ** 2 - c ** 2) ** 0.5)
|
|
m = (a ** 2 * (b ** 2 - c ** 2) /
|
|
float(b ** 2 * (a ** 2 - c ** 2)))
|
|
F = ellip_F(phi, m)
|
|
E = ellip_E(phi, m)
|
|
|
|
surf = 2 * np.pi * (c ** 2 +
|
|
b * c ** 2 / d * F +
|
|
b * d * E)
|
|
|
|
return vol, surf
|