forked from 170010011/fr
3843 lines
125 KiB
Python
3843 lines
125 KiB
Python
"""
|
|
ltisys -- a collection of classes and functions for modeling linear
|
|
time invariant systems.
|
|
"""
|
|
#
|
|
# Author: Travis Oliphant 2001
|
|
#
|
|
# Feb 2010: Warren Weckesser
|
|
# Rewrote lsim2 and added impulse2.
|
|
# Apr 2011: Jeffrey Armstrong <jeff@approximatrix.com>
|
|
# Added dlsim, dstep, dimpulse, cont2discrete
|
|
# Aug 2013: Juan Luis Cano
|
|
# Rewrote abcd_normalize.
|
|
# Jan 2015: Irvin Probst irvin DOT probst AT ensta-bretagne DOT fr
|
|
# Added pole placement
|
|
# Mar 2015: Clancy Rowley
|
|
# Rewrote lsim
|
|
# May 2015: Felix Berkenkamp
|
|
# Split lti class into subclasses
|
|
# Merged discrete systems and added dlti
|
|
|
|
import warnings
|
|
|
|
# np.linalg.qr fails on some tests with LinAlgError: zgeqrf returns -7
|
|
# use scipy's qr until this is solved
|
|
|
|
from scipy.linalg import qr as s_qr
|
|
from scipy import integrate, interpolate, linalg
|
|
from scipy.interpolate import interp1d
|
|
from .filter_design import (tf2zpk, zpk2tf, normalize, freqs, freqz, freqs_zpk,
|
|
freqz_zpk)
|
|
from .lti_conversion import (tf2ss, abcd_normalize, ss2tf, zpk2ss, ss2zpk,
|
|
cont2discrete)
|
|
|
|
import numpy
|
|
import numpy as np
|
|
from numpy import (real, atleast_1d, atleast_2d, squeeze, asarray, zeros,
|
|
dot, transpose, ones, zeros_like, linspace, nan_to_num)
|
|
import copy
|
|
|
|
__all__ = ['lti', 'dlti', 'TransferFunction', 'ZerosPolesGain', 'StateSpace',
|
|
'lsim', 'lsim2', 'impulse', 'impulse2', 'step', 'step2', 'bode',
|
|
'freqresp', 'place_poles', 'dlsim', 'dstep', 'dimpulse',
|
|
'dfreqresp', 'dbode']
|
|
|
|
|
|
class LinearTimeInvariant(object):
|
|
def __new__(cls, *system, **kwargs):
|
|
"""Create a new object, don't allow direct instances."""
|
|
if cls is LinearTimeInvariant:
|
|
raise NotImplementedError('The LinearTimeInvariant class is not '
|
|
'meant to be used directly, use `lti` '
|
|
'or `dlti` instead.')
|
|
return super(LinearTimeInvariant, cls).__new__(cls)
|
|
|
|
def __init__(self):
|
|
"""
|
|
Initialize the `lti` baseclass.
|
|
|
|
The heavy lifting is done by the subclasses.
|
|
"""
|
|
super(LinearTimeInvariant, self).__init__()
|
|
|
|
self.inputs = None
|
|
self.outputs = None
|
|
self._dt = None
|
|
|
|
@property
|
|
def dt(self):
|
|
"""Return the sampling time of the system, `None` for `lti` systems."""
|
|
return self._dt
|
|
|
|
@property
|
|
def _dt_dict(self):
|
|
if self.dt is None:
|
|
return {}
|
|
else:
|
|
return {'dt': self.dt}
|
|
|
|
@property
|
|
def zeros(self):
|
|
"""Zeros of the system."""
|
|
return self.to_zpk().zeros
|
|
|
|
@property
|
|
def poles(self):
|
|
"""Poles of the system."""
|
|
return self.to_zpk().poles
|
|
|
|
def _as_ss(self):
|
|
"""Convert to `StateSpace` system, without copying.
|
|
|
|
Returns
|
|
-------
|
|
sys: StateSpace
|
|
The `StateSpace` system. If the class is already an instance of
|
|
`StateSpace` then this instance is returned.
|
|
"""
|
|
if isinstance(self, StateSpace):
|
|
return self
|
|
else:
|
|
return self.to_ss()
|
|
|
|
def _as_zpk(self):
|
|
"""Convert to `ZerosPolesGain` system, without copying.
|
|
|
|
Returns
|
|
-------
|
|
sys: ZerosPolesGain
|
|
The `ZerosPolesGain` system. If the class is already an instance of
|
|
`ZerosPolesGain` then this instance is returned.
|
|
"""
|
|
if isinstance(self, ZerosPolesGain):
|
|
return self
|
|
else:
|
|
return self.to_zpk()
|
|
|
|
def _as_tf(self):
|
|
"""Convert to `TransferFunction` system, without copying.
|
|
|
|
Returns
|
|
-------
|
|
sys: ZerosPolesGain
|
|
The `TransferFunction` system. If the class is already an instance of
|
|
`TransferFunction` then this instance is returned.
|
|
"""
|
|
if isinstance(self, TransferFunction):
|
|
return self
|
|
else:
|
|
return self.to_tf()
|
|
|
|
|
|
class lti(LinearTimeInvariant):
|
|
"""
|
|
Continuous-time linear time invariant system base class.
|
|
|
|
Parameters
|
|
----------
|
|
*system : arguments
|
|
The `lti` class can be instantiated with either 2, 3 or 4 arguments.
|
|
The following gives the number of arguments and the corresponding
|
|
continuous-time subclass that is created:
|
|
|
|
* 2: `TransferFunction`: (numerator, denominator)
|
|
* 3: `ZerosPolesGain`: (zeros, poles, gain)
|
|
* 4: `StateSpace`: (A, B, C, D)
|
|
|
|
Each argument can be an array or a sequence.
|
|
|
|
See Also
|
|
--------
|
|
ZerosPolesGain, StateSpace, TransferFunction, dlti
|
|
|
|
Notes
|
|
-----
|
|
`lti` instances do not exist directly. Instead, `lti` creates an instance
|
|
of one of its subclasses: `StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`.
|
|
|
|
If (numerator, denominator) is passed in for ``*system``, coefficients for
|
|
both the numerator and denominator should be specified in descending
|
|
exponent order (e.g., ``s^2 + 3s + 5`` would be represented as ``[1, 3,
|
|
5]``).
|
|
|
|
Changing the value of properties that are not directly part of the current
|
|
system representation (such as the `zeros` of a `StateSpace` system) is
|
|
very inefficient and may lead to numerical inaccuracies. It is better to
|
|
convert to the specific system representation first. For example, call
|
|
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
|
|
>>> signal.lti(1, 2, 3, 4)
|
|
StateSpaceContinuous(
|
|
array([[1]]),
|
|
array([[2]]),
|
|
array([[3]]),
|
|
array([[4]]),
|
|
dt: None
|
|
)
|
|
|
|
>>> signal.lti([1, 2], [3, 4], 5)
|
|
ZerosPolesGainContinuous(
|
|
array([1, 2]),
|
|
array([3, 4]),
|
|
5,
|
|
dt: None
|
|
)
|
|
|
|
>>> signal.lti([3, 4], [1, 2])
|
|
TransferFunctionContinuous(
|
|
array([3., 4.]),
|
|
array([1., 2.]),
|
|
dt: None
|
|
)
|
|
|
|
"""
|
|
def __new__(cls, *system):
|
|
"""Create an instance of the appropriate subclass."""
|
|
if cls is lti:
|
|
N = len(system)
|
|
if N == 2:
|
|
return TransferFunctionContinuous.__new__(
|
|
TransferFunctionContinuous, *system)
|
|
elif N == 3:
|
|
return ZerosPolesGainContinuous.__new__(
|
|
ZerosPolesGainContinuous, *system)
|
|
elif N == 4:
|
|
return StateSpaceContinuous.__new__(StateSpaceContinuous,
|
|
*system)
|
|
else:
|
|
raise ValueError("`system` needs to be an instance of `lti` "
|
|
"or have 2, 3 or 4 arguments.")
|
|
# __new__ was called from a subclass, let it call its own functions
|
|
return super(lti, cls).__new__(cls)
|
|
|
|
def __init__(self, *system):
|
|
"""
|
|
Initialize the `lti` baseclass.
|
|
|
|
The heavy lifting is done by the subclasses.
|
|
"""
|
|
super(lti, self).__init__(*system)
|
|
|
|
def impulse(self, X0=None, T=None, N=None):
|
|
"""
|
|
Return the impulse response of a continuous-time system.
|
|
See `impulse` for details.
|
|
"""
|
|
return impulse(self, X0=X0, T=T, N=N)
|
|
|
|
def step(self, X0=None, T=None, N=None):
|
|
"""
|
|
Return the step response of a continuous-time system.
|
|
See `step` for details.
|
|
"""
|
|
return step(self, X0=X0, T=T, N=N)
|
|
|
|
def output(self, U, T, X0=None):
|
|
"""
|
|
Return the response of a continuous-time system to input `U`.
|
|
See `lsim` for details.
|
|
"""
|
|
return lsim(self, U, T, X0=X0)
|
|
|
|
def bode(self, w=None, n=100):
|
|
"""
|
|
Calculate Bode magnitude and phase data of a continuous-time system.
|
|
|
|
Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
|
|
[dB] and phase [deg]. See `bode` for details.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> sys = signal.TransferFunction([1], [1, 1])
|
|
>>> w, mag, phase = sys.bode()
|
|
|
|
>>> plt.figure()
|
|
>>> plt.semilogx(w, mag) # Bode magnitude plot
|
|
>>> plt.figure()
|
|
>>> plt.semilogx(w, phase) # Bode phase plot
|
|
>>> plt.show()
|
|
|
|
"""
|
|
return bode(self, w=w, n=n)
|
|
|
|
def freqresp(self, w=None, n=10000):
|
|
"""
|
|
Calculate the frequency response of a continuous-time system.
|
|
|
|
Returns a 2-tuple containing arrays of frequencies [rad/s] and
|
|
complex magnitude.
|
|
See `freqresp` for details.
|
|
"""
|
|
return freqresp(self, w=w, n=n)
|
|
|
|
def to_discrete(self, dt, method='zoh', alpha=None):
|
|
"""Return a discretized version of the current system.
|
|
|
|
Parameters: See `cont2discrete` for details.
|
|
|
|
Returns
|
|
-------
|
|
sys: instance of `dlti`
|
|
"""
|
|
raise NotImplementedError('to_discrete is not implemented for this '
|
|
'system class.')
|
|
|
|
|
|
class dlti(LinearTimeInvariant):
|
|
"""
|
|
Discrete-time linear time invariant system base class.
|
|
|
|
Parameters
|
|
----------
|
|
*system: arguments
|
|
The `dlti` class can be instantiated with either 2, 3 or 4 arguments.
|
|
The following gives the number of arguments and the corresponding
|
|
discrete-time subclass that is created:
|
|
|
|
* 2: `TransferFunction`: (numerator, denominator)
|
|
* 3: `ZerosPolesGain`: (zeros, poles, gain)
|
|
* 4: `StateSpace`: (A, B, C, D)
|
|
|
|
Each argument can be an array or a sequence.
|
|
dt: float, optional
|
|
Sampling time [s] of the discrete-time systems. Defaults to ``True``
|
|
(unspecified sampling time). Must be specified as a keyword argument,
|
|
for example, ``dt=0.1``.
|
|
|
|
See Also
|
|
--------
|
|
ZerosPolesGain, StateSpace, TransferFunction, lti
|
|
|
|
Notes
|
|
-----
|
|
`dlti` instances do not exist directly. Instead, `dlti` creates an instance
|
|
of one of its subclasses: `StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`.
|
|
|
|
Changing the value of properties that are not directly part of the current
|
|
system representation (such as the `zeros` of a `StateSpace` system) is
|
|
very inefficient and may lead to numerical inaccuracies. It is better to
|
|
convert to the specific system representation first. For example, call
|
|
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
|
|
|
If (numerator, denominator) is passed in for ``*system``, coefficients for
|
|
both the numerator and denominator should be specified in descending
|
|
exponent order (e.g., ``z^2 + 3z + 5`` would be represented as ``[1, 3,
|
|
5]``).
|
|
|
|
.. versionadded:: 0.18.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
|
|
>>> signal.dlti(1, 2, 3, 4)
|
|
StateSpaceDiscrete(
|
|
array([[1]]),
|
|
array([[2]]),
|
|
array([[3]]),
|
|
array([[4]]),
|
|
dt: True
|
|
)
|
|
|
|
>>> signal.dlti(1, 2, 3, 4, dt=0.1)
|
|
StateSpaceDiscrete(
|
|
array([[1]]),
|
|
array([[2]]),
|
|
array([[3]]),
|
|
array([[4]]),
|
|
dt: 0.1
|
|
)
|
|
|
|
>>> signal.dlti([1, 2], [3, 4], 5, dt=0.1)
|
|
ZerosPolesGainDiscrete(
|
|
array([1, 2]),
|
|
array([3, 4]),
|
|
5,
|
|
dt: 0.1
|
|
)
|
|
|
|
>>> signal.dlti([3, 4], [1, 2], dt=0.1)
|
|
TransferFunctionDiscrete(
|
|
array([3., 4.]),
|
|
array([1., 2.]),
|
|
dt: 0.1
|
|
)
|
|
|
|
"""
|
|
def __new__(cls, *system, **kwargs):
|
|
"""Create an instance of the appropriate subclass."""
|
|
if cls is dlti:
|
|
N = len(system)
|
|
if N == 2:
|
|
return TransferFunctionDiscrete.__new__(
|
|
TransferFunctionDiscrete, *system, **kwargs)
|
|
elif N == 3:
|
|
return ZerosPolesGainDiscrete.__new__(ZerosPolesGainDiscrete,
|
|
*system, **kwargs)
|
|
elif N == 4:
|
|
return StateSpaceDiscrete.__new__(StateSpaceDiscrete, *system,
|
|
**kwargs)
|
|
else:
|
|
raise ValueError("`system` needs to be an instance of `dlti` "
|
|
"or have 2, 3 or 4 arguments.")
|
|
# __new__ was called from a subclass, let it call its own functions
|
|
return super(dlti, cls).__new__(cls)
|
|
|
|
def __init__(self, *system, **kwargs):
|
|
"""
|
|
Initialize the `lti` baseclass.
|
|
|
|
The heavy lifting is done by the subclasses.
|
|
"""
|
|
dt = kwargs.pop('dt', True)
|
|
super(dlti, self).__init__(*system, **kwargs)
|
|
|
|
self.dt = dt
|
|
|
|
@property
|
|
def dt(self):
|
|
"""Return the sampling time of the system."""
|
|
return self._dt
|
|
|
|
@dt.setter
|
|
def dt(self, dt):
|
|
self._dt = dt
|
|
|
|
def impulse(self, x0=None, t=None, n=None):
|
|
"""
|
|
Return the impulse response of the discrete-time `dlti` system.
|
|
See `dimpulse` for details.
|
|
"""
|
|
return dimpulse(self, x0=x0, t=t, n=n)
|
|
|
|
def step(self, x0=None, t=None, n=None):
|
|
"""
|
|
Return the step response of the discrete-time `dlti` system.
|
|
See `dstep` for details.
|
|
"""
|
|
return dstep(self, x0=x0, t=t, n=n)
|
|
|
|
def output(self, u, t, x0=None):
|
|
"""
|
|
Return the response of the discrete-time system to input `u`.
|
|
See `dlsim` for details.
|
|
"""
|
|
return dlsim(self, u, t, x0=x0)
|
|
|
|
def bode(self, w=None, n=100):
|
|
"""
|
|
Calculate Bode magnitude and phase data of a discrete-time system.
|
|
|
|
Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
|
|
[dB] and phase [deg]. See `dbode` for details.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
Transfer function: H(z) = 1 / (z^2 + 2z + 3) with sampling time 0.5s
|
|
|
|
>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.5)
|
|
|
|
Equivalent: signal.dbode(sys)
|
|
|
|
>>> w, mag, phase = sys.bode()
|
|
|
|
>>> plt.figure()
|
|
>>> plt.semilogx(w, mag) # Bode magnitude plot
|
|
>>> plt.figure()
|
|
>>> plt.semilogx(w, phase) # Bode phase plot
|
|
>>> plt.show()
|
|
|
|
"""
|
|
return dbode(self, w=w, n=n)
|
|
|
|
def freqresp(self, w=None, n=10000, whole=False):
|
|
"""
|
|
Calculate the frequency response of a discrete-time system.
|
|
|
|
Returns a 2-tuple containing arrays of frequencies [rad/s] and
|
|
complex magnitude.
|
|
See `dfreqresp` for details.
|
|
|
|
"""
|
|
return dfreqresp(self, w=w, n=n, whole=whole)
|
|
|
|
|
|
class TransferFunction(LinearTimeInvariant):
|
|
r"""Linear Time Invariant system class in transfer function form.
|
|
|
|
Represents the system as the continuous-time transfer function
|
|
:math:`H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j` or the
|
|
discrete-time transfer function
|
|
:math:`H(s)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j`, where
|
|
:math:`b` are elements of the numerator `num`, :math:`a` are elements of
|
|
the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
|
|
`TransferFunction` systems inherit additional
|
|
functionality from the `lti`, respectively the `dlti` classes, depending on
|
|
which system representation is used.
|
|
|
|
Parameters
|
|
----------
|
|
*system: arguments
|
|
The `TransferFunction` class can be instantiated with 1 or 2
|
|
arguments. The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 2: array_like: (numerator, denominator)
|
|
dt: float, optional
|
|
Sampling time [s] of the discrete-time systems. Defaults to `None`
|
|
(continuous-time). Must be specified as a keyword argument, for
|
|
example, ``dt=0.1``.
|
|
|
|
See Also
|
|
--------
|
|
ZerosPolesGain, StateSpace, lti, dlti
|
|
tf2ss, tf2zpk, tf2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
|
|
state-space matrices) is very inefficient and may lead to numerical
|
|
inaccuracies. It is better to convert to the specific system
|
|
representation first. For example, call ``sys = sys.to_ss()`` before
|
|
accessing/changing the A, B, C, D system matrices.
|
|
|
|
If (numerator, denominator) is passed in for ``*system``, coefficients
|
|
for both the numerator and denominator should be specified in descending
|
|
exponent order (e.g. ``s^2 + 3s + 5`` or ``z^2 + 3z + 5`` would be
|
|
represented as ``[1, 3, 5]``)
|
|
|
|
Examples
|
|
--------
|
|
Construct the transfer function:
|
|
|
|
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
|
|
|
|
>>> from scipy import signal
|
|
|
|
>>> num = [1, 3, 3]
|
|
>>> den = [1, 2, 1]
|
|
|
|
>>> signal.TransferFunction(num, den)
|
|
TransferFunctionContinuous(
|
|
array([1., 3., 3.]),
|
|
array([1., 2., 1.]),
|
|
dt: None
|
|
)
|
|
|
|
Construct the transfer function with a sampling time of 0.1 seconds:
|
|
|
|
.. math:: H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}
|
|
|
|
>>> signal.TransferFunction(num, den, dt=0.1)
|
|
TransferFunctionDiscrete(
|
|
array([1., 3., 3.]),
|
|
array([1., 2., 1.]),
|
|
dt: 0.1
|
|
)
|
|
|
|
"""
|
|
def __new__(cls, *system, **kwargs):
|
|
"""Handle object conversion if input is an instance of lti."""
|
|
if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
|
|
return system[0].to_tf()
|
|
|
|
# Choose whether to inherit from `lti` or from `dlti`
|
|
if cls is TransferFunction:
|
|
if kwargs.get('dt') is None:
|
|
return TransferFunctionContinuous.__new__(
|
|
TransferFunctionContinuous,
|
|
*system,
|
|
**kwargs)
|
|
else:
|
|
return TransferFunctionDiscrete.__new__(
|
|
TransferFunctionDiscrete,
|
|
*system,
|
|
**kwargs)
|
|
|
|
# No special conversion needed
|
|
return super(TransferFunction, cls).__new__(cls)
|
|
|
|
def __init__(self, *system, **kwargs):
|
|
"""Initialize the state space LTI system."""
|
|
# Conversion of lti instances is handled in __new__
|
|
if isinstance(system[0], LinearTimeInvariant):
|
|
return
|
|
|
|
# Remove system arguments, not needed by parents anymore
|
|
super(TransferFunction, self).__init__(**kwargs)
|
|
|
|
self._num = None
|
|
self._den = None
|
|
|
|
self.num, self.den = normalize(*system)
|
|
|
|
def __repr__(self):
|
|
"""Return representation of the system's transfer function"""
|
|
return '{0}(\n{1},\n{2},\ndt: {3}\n)'.format(
|
|
self.__class__.__name__,
|
|
repr(self.num),
|
|
repr(self.den),
|
|
repr(self.dt),
|
|
)
|
|
|
|
@property
|
|
def num(self):
|
|
"""Numerator of the `TransferFunction` system."""
|
|
return self._num
|
|
|
|
@num.setter
|
|
def num(self, num):
|
|
self._num = atleast_1d(num)
|
|
|
|
# Update dimensions
|
|
if len(self.num.shape) > 1:
|
|
self.outputs, self.inputs = self.num.shape
|
|
else:
|
|
self.outputs = 1
|
|
self.inputs = 1
|
|
|
|
@property
|
|
def den(self):
|
|
"""Denominator of the `TransferFunction` system."""
|
|
return self._den
|
|
|
|
@den.setter
|
|
def den(self, den):
|
|
self._den = atleast_1d(den)
|
|
|
|
def _copy(self, system):
|
|
"""
|
|
Copy the parameters of another `TransferFunction` object
|
|
|
|
Parameters
|
|
----------
|
|
system : `TransferFunction`
|
|
The `StateSpace` system that is to be copied
|
|
|
|
"""
|
|
self.num = system.num
|
|
self.den = system.den
|
|
|
|
def to_tf(self):
|
|
"""
|
|
Return a copy of the current `TransferFunction` system.
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `TransferFunction`
|
|
The current system (copy)
|
|
|
|
"""
|
|
return copy.deepcopy(self)
|
|
|
|
def to_zpk(self):
|
|
"""
|
|
Convert system representation to `ZerosPolesGain`.
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `ZerosPolesGain`
|
|
Zeros, poles, gain representation of the current system
|
|
|
|
"""
|
|
return ZerosPolesGain(*tf2zpk(self.num, self.den),
|
|
**self._dt_dict)
|
|
|
|
def to_ss(self):
|
|
"""
|
|
Convert system representation to `StateSpace`.
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `StateSpace`
|
|
State space model of the current system
|
|
|
|
"""
|
|
return StateSpace(*tf2ss(self.num, self.den),
|
|
**self._dt_dict)
|
|
|
|
@staticmethod
|
|
def _z_to_zinv(num, den):
|
|
"""Change a transfer function from the variable `z` to `z**-1`.
|
|
|
|
Parameters
|
|
----------
|
|
num, den: 1d array_like
|
|
Sequences representing the coefficients of the numerator and
|
|
denominator polynomials, in order of descending degree of 'z'.
|
|
That is, ``5z**2 + 3z + 2`` is presented as ``[5, 3, 2]``.
|
|
|
|
Returns
|
|
-------
|
|
num, den: 1d array_like
|
|
Sequences representing the coefficients of the numerator and
|
|
denominator polynomials, in order of ascending degree of 'z**-1'.
|
|
That is, ``5 + 3 z**-1 + 2 z**-2`` is presented as ``[5, 3, 2]``.
|
|
"""
|
|
diff = len(num) - len(den)
|
|
if diff > 0:
|
|
den = np.hstack((np.zeros(diff), den))
|
|
elif diff < 0:
|
|
num = np.hstack((np.zeros(-diff), num))
|
|
return num, den
|
|
|
|
@staticmethod
|
|
def _zinv_to_z(num, den):
|
|
"""Change a transfer function from the variable `z` to `z**-1`.
|
|
|
|
Parameters
|
|
----------
|
|
num, den: 1d array_like
|
|
Sequences representing the coefficients of the numerator and
|
|
denominator polynomials, in order of ascending degree of 'z**-1'.
|
|
That is, ``5 + 3 z**-1 + 2 z**-2`` is presented as ``[5, 3, 2]``.
|
|
|
|
Returns
|
|
-------
|
|
num, den: 1d array_like
|
|
Sequences representing the coefficients of the numerator and
|
|
denominator polynomials, in order of descending degree of 'z'.
|
|
That is, ``5z**2 + 3z + 2`` is presented as ``[5, 3, 2]``.
|
|
"""
|
|
diff = len(num) - len(den)
|
|
if diff > 0:
|
|
den = np.hstack((den, np.zeros(diff)))
|
|
elif diff < 0:
|
|
num = np.hstack((num, np.zeros(-diff)))
|
|
return num, den
|
|
|
|
|
|
class TransferFunctionContinuous(TransferFunction, lti):
|
|
r"""
|
|
Continuous-time Linear Time Invariant system in transfer function form.
|
|
|
|
Represents the system as the transfer function
|
|
:math:`H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j`, where
|
|
:math:`b` are elements of the numerator `num`, :math:`a` are elements of
|
|
the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
|
|
Continuous-time `TransferFunction` systems inherit additional
|
|
functionality from the `lti` class.
|
|
|
|
Parameters
|
|
----------
|
|
*system: arguments
|
|
The `TransferFunction` class can be instantiated with 1 or 2
|
|
arguments. The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `lti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 2: array_like: (numerator, denominator)
|
|
|
|
See Also
|
|
--------
|
|
ZerosPolesGain, StateSpace, lti
|
|
tf2ss, tf2zpk, tf2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
|
|
state-space matrices) is very inefficient and may lead to numerical
|
|
inaccuracies. It is better to convert to the specific system
|
|
representation first. For example, call ``sys = sys.to_ss()`` before
|
|
accessing/changing the A, B, C, D system matrices.
|
|
|
|
If (numerator, denominator) is passed in for ``*system``, coefficients
|
|
for both the numerator and denominator should be specified in descending
|
|
exponent order (e.g. ``s^2 + 3s + 5`` would be represented as
|
|
``[1, 3, 5]``)
|
|
|
|
Examples
|
|
--------
|
|
Construct the transfer function:
|
|
|
|
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
|
|
|
|
>>> from scipy import signal
|
|
|
|
>>> num = [1, 3, 3]
|
|
>>> den = [1, 2, 1]
|
|
|
|
>>> signal.TransferFunction(num, den)
|
|
TransferFunctionContinuous(
|
|
array([ 1., 3., 3.]),
|
|
array([ 1., 2., 1.]),
|
|
dt: None
|
|
)
|
|
|
|
"""
|
|
def to_discrete(self, dt, method='zoh', alpha=None):
|
|
"""
|
|
Returns the discretized `TransferFunction` system.
|
|
|
|
Parameters: See `cont2discrete` for details.
|
|
|
|
Returns
|
|
-------
|
|
sys: instance of `dlti` and `StateSpace`
|
|
"""
|
|
return TransferFunction(*cont2discrete((self.num, self.den),
|
|
dt,
|
|
method=method,
|
|
alpha=alpha)[:-1],
|
|
dt=dt)
|
|
|
|
|
|
class TransferFunctionDiscrete(TransferFunction, dlti):
|
|
r"""
|
|
Discrete-time Linear Time Invariant system in transfer function form.
|
|
|
|
Represents the system as the transfer function
|
|
:math:`H(z)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j`, where
|
|
:math:`b` are elements of the numerator `num`, :math:`a` are elements of
|
|
the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
|
|
Discrete-time `TransferFunction` systems inherit additional functionality
|
|
from the `dlti` class.
|
|
|
|
Parameters
|
|
----------
|
|
*system: arguments
|
|
The `TransferFunction` class can be instantiated with 1 or 2
|
|
arguments. The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `dlti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 2: array_like: (numerator, denominator)
|
|
dt: float, optional
|
|
Sampling time [s] of the discrete-time systems. Defaults to `True`
|
|
(unspecified sampling time). Must be specified as a keyword argument,
|
|
for example, ``dt=0.1``.
|
|
|
|
See Also
|
|
--------
|
|
ZerosPolesGain, StateSpace, dlti
|
|
tf2ss, tf2zpk, tf2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
|
|
state-space matrices) is very inefficient and may lead to numerical
|
|
inaccuracies.
|
|
|
|
If (numerator, denominator) is passed in for ``*system``, coefficients
|
|
for both the numerator and denominator should be specified in descending
|
|
exponent order (e.g., ``z^2 + 3z + 5`` would be represented as
|
|
``[1, 3, 5]``).
|
|
|
|
Examples
|
|
--------
|
|
Construct the transfer function with a sampling time of 0.5 seconds:
|
|
|
|
.. math:: H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}
|
|
|
|
>>> from scipy import signal
|
|
|
|
>>> num = [1, 3, 3]
|
|
>>> den = [1, 2, 1]
|
|
|
|
>>> signal.TransferFunction(num, den, 0.5)
|
|
TransferFunctionDiscrete(
|
|
array([ 1., 3., 3.]),
|
|
array([ 1., 2., 1.]),
|
|
dt: 0.5
|
|
)
|
|
|
|
"""
|
|
pass
|
|
|
|
|
|
class ZerosPolesGain(LinearTimeInvariant):
|
|
r"""
|
|
Linear Time Invariant system class in zeros, poles, gain form.
|
|
|
|
Represents the system as the continuous- or discrete-time transfer function
|
|
:math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is
|
|
the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`.
|
|
`ZerosPolesGain` systems inherit additional functionality from the `lti`,
|
|
respectively the `dlti` classes, depending on which system representation
|
|
is used.
|
|
|
|
Parameters
|
|
----------
|
|
*system : arguments
|
|
The `ZerosPolesGain` class can be instantiated with 1 or 3
|
|
arguments. The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 3: array_like: (zeros, poles, gain)
|
|
dt: float, optional
|
|
Sampling time [s] of the discrete-time systems. Defaults to `None`
|
|
(continuous-time). Must be specified as a keyword argument, for
|
|
example, ``dt=0.1``.
|
|
|
|
|
|
See Also
|
|
--------
|
|
TransferFunction, StateSpace, lti, dlti
|
|
zpk2ss, zpk2tf, zpk2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
|
|
state-space matrices) is very inefficient and may lead to numerical
|
|
inaccuracies. It is better to convert to the specific system
|
|
representation first. For example, call ``sys = sys.to_ss()`` before
|
|
accessing/changing the A, B, C, D system matrices.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
|
|
Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4)
|
|
|
|
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
|
|
ZerosPolesGainContinuous(
|
|
array([1, 2]),
|
|
array([3, 4]),
|
|
5,
|
|
dt: None
|
|
)
|
|
|
|
Transfer function: H(z) = 5(z - 1)(z - 2) / (z - 3)(z - 4)
|
|
|
|
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1)
|
|
ZerosPolesGainDiscrete(
|
|
array([1, 2]),
|
|
array([3, 4]),
|
|
5,
|
|
dt: 0.1
|
|
)
|
|
|
|
"""
|
|
def __new__(cls, *system, **kwargs):
|
|
"""Handle object conversion if input is an instance of `lti`"""
|
|
if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
|
|
return system[0].to_zpk()
|
|
|
|
# Choose whether to inherit from `lti` or from `dlti`
|
|
if cls is ZerosPolesGain:
|
|
if kwargs.get('dt') is None:
|
|
return ZerosPolesGainContinuous.__new__(
|
|
ZerosPolesGainContinuous,
|
|
*system,
|
|
**kwargs)
|
|
else:
|
|
return ZerosPolesGainDiscrete.__new__(
|
|
ZerosPolesGainDiscrete,
|
|
*system,
|
|
**kwargs
|
|
)
|
|
|
|
# No special conversion needed
|
|
return super(ZerosPolesGain, cls).__new__(cls)
|
|
|
|
def __init__(self, *system, **kwargs):
|
|
"""Initialize the zeros, poles, gain system."""
|
|
# Conversion of lti instances is handled in __new__
|
|
if isinstance(system[0], LinearTimeInvariant):
|
|
return
|
|
|
|
super(ZerosPolesGain, self).__init__(**kwargs)
|
|
|
|
self._zeros = None
|
|
self._poles = None
|
|
self._gain = None
|
|
|
|
self.zeros, self.poles, self.gain = system
|
|
|
|
def __repr__(self):
|
|
"""Return representation of the `ZerosPolesGain` system."""
|
|
return '{0}(\n{1},\n{2},\n{3},\ndt: {4}\n)'.format(
|
|
self.__class__.__name__,
|
|
repr(self.zeros),
|
|
repr(self.poles),
|
|
repr(self.gain),
|
|
repr(self.dt),
|
|
)
|
|
|
|
@property
|
|
def zeros(self):
|
|
"""Zeros of the `ZerosPolesGain` system."""
|
|
return self._zeros
|
|
|
|
@zeros.setter
|
|
def zeros(self, zeros):
|
|
self._zeros = atleast_1d(zeros)
|
|
|
|
# Update dimensions
|
|
if len(self.zeros.shape) > 1:
|
|
self.outputs, self.inputs = self.zeros.shape
|
|
else:
|
|
self.outputs = 1
|
|
self.inputs = 1
|
|
|
|
@property
|
|
def poles(self):
|
|
"""Poles of the `ZerosPolesGain` system."""
|
|
return self._poles
|
|
|
|
@poles.setter
|
|
def poles(self, poles):
|
|
self._poles = atleast_1d(poles)
|
|
|
|
@property
|
|
def gain(self):
|
|
"""Gain of the `ZerosPolesGain` system."""
|
|
return self._gain
|
|
|
|
@gain.setter
|
|
def gain(self, gain):
|
|
self._gain = gain
|
|
|
|
def _copy(self, system):
|
|
"""
|
|
Copy the parameters of another `ZerosPolesGain` system.
|
|
|
|
Parameters
|
|
----------
|
|
system : instance of `ZerosPolesGain`
|
|
The zeros, poles gain system that is to be copied
|
|
|
|
"""
|
|
self.poles = system.poles
|
|
self.zeros = system.zeros
|
|
self.gain = system.gain
|
|
|
|
def to_tf(self):
|
|
"""
|
|
Convert system representation to `TransferFunction`.
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `TransferFunction`
|
|
Transfer function of the current system
|
|
|
|
"""
|
|
return TransferFunction(*zpk2tf(self.zeros, self.poles, self.gain),
|
|
**self._dt_dict)
|
|
|
|
def to_zpk(self):
|
|
"""
|
|
Return a copy of the current 'ZerosPolesGain' system.
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `ZerosPolesGain`
|
|
The current system (copy)
|
|
|
|
"""
|
|
return copy.deepcopy(self)
|
|
|
|
def to_ss(self):
|
|
"""
|
|
Convert system representation to `StateSpace`.
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `StateSpace`
|
|
State space model of the current system
|
|
|
|
"""
|
|
return StateSpace(*zpk2ss(self.zeros, self.poles, self.gain),
|
|
**self._dt_dict)
|
|
|
|
|
|
class ZerosPolesGainContinuous(ZerosPolesGain, lti):
|
|
r"""
|
|
Continuous-time Linear Time Invariant system in zeros, poles, gain form.
|
|
|
|
Represents the system as the continuous time transfer function
|
|
:math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is
|
|
the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`.
|
|
Continuous-time `ZerosPolesGain` systems inherit additional functionality
|
|
from the `lti` class.
|
|
|
|
Parameters
|
|
----------
|
|
*system : arguments
|
|
The `ZerosPolesGain` class can be instantiated with 1 or 3
|
|
arguments. The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `lti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 3: array_like: (zeros, poles, gain)
|
|
|
|
See Also
|
|
--------
|
|
TransferFunction, StateSpace, lti
|
|
zpk2ss, zpk2tf, zpk2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
|
|
state-space matrices) is very inefficient and may lead to numerical
|
|
inaccuracies. It is better to convert to the specific system
|
|
representation first. For example, call ``sys = sys.to_ss()`` before
|
|
accessing/changing the A, B, C, D system matrices.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
|
|
Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4)
|
|
|
|
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
|
|
ZerosPolesGainContinuous(
|
|
array([1, 2]),
|
|
array([3, 4]),
|
|
5,
|
|
dt: None
|
|
)
|
|
|
|
"""
|
|
def to_discrete(self, dt, method='zoh', alpha=None):
|
|
"""
|
|
Returns the discretized `ZerosPolesGain` system.
|
|
|
|
Parameters: See `cont2discrete` for details.
|
|
|
|
Returns
|
|
-------
|
|
sys: instance of `dlti` and `ZerosPolesGain`
|
|
"""
|
|
return ZerosPolesGain(
|
|
*cont2discrete((self.zeros, self.poles, self.gain),
|
|
dt,
|
|
method=method,
|
|
alpha=alpha)[:-1],
|
|
dt=dt)
|
|
|
|
|
|
class ZerosPolesGainDiscrete(ZerosPolesGain, dlti):
|
|
r"""
|
|
Discrete-time Linear Time Invariant system in zeros, poles, gain form.
|
|
|
|
Represents the system as the discrete-time transfer function
|
|
:math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is
|
|
the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`.
|
|
Discrete-time `ZerosPolesGain` systems inherit additional functionality
|
|
from the `dlti` class.
|
|
|
|
Parameters
|
|
----------
|
|
*system : arguments
|
|
The `ZerosPolesGain` class can be instantiated with 1 or 3
|
|
arguments. The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `dlti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 3: array_like: (zeros, poles, gain)
|
|
dt: float, optional
|
|
Sampling time [s] of the discrete-time systems. Defaults to `True`
|
|
(unspecified sampling time). Must be specified as a keyword argument,
|
|
for example, ``dt=0.1``.
|
|
|
|
See Also
|
|
--------
|
|
TransferFunction, StateSpace, dlti
|
|
zpk2ss, zpk2tf, zpk2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
|
|
state-space matrices) is very inefficient and may lead to numerical
|
|
inaccuracies. It is better to convert to the specific system
|
|
representation first. For example, call ``sys = sys.to_ss()`` before
|
|
accessing/changing the A, B, C, D system matrices.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
|
|
Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4)
|
|
|
|
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
|
|
ZerosPolesGainContinuous(
|
|
array([1, 2]),
|
|
array([3, 4]),
|
|
5,
|
|
dt: None
|
|
)
|
|
|
|
Transfer function: H(z) = 5(z - 1)(z - 2) / (z - 3)(z - 4)
|
|
|
|
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1)
|
|
ZerosPolesGainDiscrete(
|
|
array([1, 2]),
|
|
array([3, 4]),
|
|
5,
|
|
dt: 0.1
|
|
)
|
|
|
|
"""
|
|
pass
|
|
|
|
|
|
def _atleast_2d_or_none(arg):
|
|
if arg is not None:
|
|
return atleast_2d(arg)
|
|
|
|
|
|
class StateSpace(LinearTimeInvariant):
|
|
r"""
|
|
Linear Time Invariant system in state-space form.
|
|
|
|
Represents the system as the continuous-time, first order differential
|
|
equation :math:`\dot{x} = A x + B u` or the discrete-time difference
|
|
equation :math:`x[k+1] = A x[k] + B u[k]`. `StateSpace` systems
|
|
inherit additional functionality from the `lti`, respectively the `dlti`
|
|
classes, depending on which system representation is used.
|
|
|
|
Parameters
|
|
----------
|
|
*system: arguments
|
|
The `StateSpace` class can be instantiated with 1 or 4 arguments.
|
|
The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 4: array_like: (A, B, C, D)
|
|
dt: float, optional
|
|
Sampling time [s] of the discrete-time systems. Defaults to `None`
|
|
(continuous-time). Must be specified as a keyword argument, for
|
|
example, ``dt=0.1``.
|
|
|
|
See Also
|
|
--------
|
|
TransferFunction, ZerosPolesGain, lti, dlti
|
|
ss2zpk, ss2tf, zpk2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`StateSpace` system representation (such as `zeros` or `poles`) is very
|
|
inefficient and may lead to numerical inaccuracies. It is better to
|
|
convert to the specific system representation first. For example, call
|
|
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
|
|
>>> a = np.array([[0, 1], [0, 0]])
|
|
>>> b = np.array([[0], [1]])
|
|
>>> c = np.array([[1, 0]])
|
|
>>> d = np.array([[0]])
|
|
|
|
>>> sys = signal.StateSpace(a, b, c, d)
|
|
>>> print(sys)
|
|
StateSpaceContinuous(
|
|
array([[0, 1],
|
|
[0, 0]]),
|
|
array([[0],
|
|
[1]]),
|
|
array([[1, 0]]),
|
|
array([[0]]),
|
|
dt: None
|
|
)
|
|
|
|
>>> sys.to_discrete(0.1)
|
|
StateSpaceDiscrete(
|
|
array([[1. , 0.1],
|
|
[0. , 1. ]]),
|
|
array([[0.005],
|
|
[0.1 ]]),
|
|
array([[1, 0]]),
|
|
array([[0]]),
|
|
dt: 0.1
|
|
)
|
|
|
|
>>> a = np.array([[1, 0.1], [0, 1]])
|
|
>>> b = np.array([[0.005], [0.1]])
|
|
|
|
>>> signal.StateSpace(a, b, c, d, dt=0.1)
|
|
StateSpaceDiscrete(
|
|
array([[1. , 0.1],
|
|
[0. , 1. ]]),
|
|
array([[0.005],
|
|
[0.1 ]]),
|
|
array([[1, 0]]),
|
|
array([[0]]),
|
|
dt: 0.1
|
|
)
|
|
|
|
"""
|
|
|
|
# Override NumPy binary operations and ufuncs
|
|
__array_priority__ = 100.0
|
|
__array_ufunc__ = None
|
|
|
|
def __new__(cls, *system, **kwargs):
|
|
"""Create new StateSpace object and settle inheritance."""
|
|
# Handle object conversion if input is an instance of `lti`
|
|
if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
|
|
return system[0].to_ss()
|
|
|
|
# Choose whether to inherit from `lti` or from `dlti`
|
|
if cls is StateSpace:
|
|
if kwargs.get('dt') is None:
|
|
return StateSpaceContinuous.__new__(StateSpaceContinuous,
|
|
*system, **kwargs)
|
|
else:
|
|
return StateSpaceDiscrete.__new__(StateSpaceDiscrete,
|
|
*system, **kwargs)
|
|
|
|
# No special conversion needed
|
|
return super(StateSpace, cls).__new__(cls)
|
|
|
|
def __init__(self, *system, **kwargs):
|
|
"""Initialize the state space lti/dlti system."""
|
|
# Conversion of lti instances is handled in __new__
|
|
if isinstance(system[0], LinearTimeInvariant):
|
|
return
|
|
|
|
# Remove system arguments, not needed by parents anymore
|
|
super(StateSpace, self).__init__(**kwargs)
|
|
|
|
self._A = None
|
|
self._B = None
|
|
self._C = None
|
|
self._D = None
|
|
|
|
self.A, self.B, self.C, self.D = abcd_normalize(*system)
|
|
|
|
def __repr__(self):
|
|
"""Return representation of the `StateSpace` system."""
|
|
return '{0}(\n{1},\n{2},\n{3},\n{4},\ndt: {5}\n)'.format(
|
|
self.__class__.__name__,
|
|
repr(self.A),
|
|
repr(self.B),
|
|
repr(self.C),
|
|
repr(self.D),
|
|
repr(self.dt),
|
|
)
|
|
|
|
def _check_binop_other(self, other):
|
|
return isinstance(other, (StateSpace, np.ndarray, float, complex,
|
|
np.number, int))
|
|
|
|
def __mul__(self, other):
|
|
"""
|
|
Post-multiply another system or a scalar
|
|
|
|
Handles multiplication of systems in the sense of a frequency domain
|
|
multiplication. That means, given two systems E1(s) and E2(s), their
|
|
multiplication, H(s) = E1(s) * E2(s), means that applying H(s) to U(s)
|
|
is equivalent to first applying E2(s), and then E1(s).
|
|
|
|
Notes
|
|
-----
|
|
For SISO systems the order of system application does not matter.
|
|
However, for MIMO systems, where the two systems are matrices, the
|
|
order above ensures standard Matrix multiplication rules apply.
|
|
"""
|
|
if not self._check_binop_other(other):
|
|
return NotImplemented
|
|
|
|
if isinstance(other, StateSpace):
|
|
# Disallow mix of discrete and continuous systems.
|
|
if type(other) is not type(self):
|
|
return NotImplemented
|
|
|
|
if self.dt != other.dt:
|
|
raise TypeError('Cannot multiply systems with different `dt`.')
|
|
|
|
n1 = self.A.shape[0]
|
|
n2 = other.A.shape[0]
|
|
|
|
# Interconnection of systems
|
|
# x1' = A1 x1 + B1 u1
|
|
# y1 = C1 x1 + D1 u1
|
|
# x2' = A2 x2 + B2 y1
|
|
# y2 = C2 x2 + D2 y1
|
|
#
|
|
# Plugging in with u1 = y2 yields
|
|
# [x1'] [A1 B1*C2 ] [x1] [B1*D2]
|
|
# [x2'] = [0 A2 ] [x2] + [B2 ] u2
|
|
# [x1]
|
|
# y2 = [C1 D1*C2] [x2] + D1*D2 u2
|
|
a = np.vstack((np.hstack((self.A, np.dot(self.B, other.C))),
|
|
np.hstack((zeros((n2, n1)), other.A))))
|
|
b = np.vstack((np.dot(self.B, other.D), other.B))
|
|
c = np.hstack((self.C, np.dot(self.D, other.C)))
|
|
d = np.dot(self.D, other.D)
|
|
else:
|
|
# Assume that other is a scalar / matrix
|
|
# For post multiplication the input gets scaled
|
|
a = self.A
|
|
b = np.dot(self.B, other)
|
|
c = self.C
|
|
d = np.dot(self.D, other)
|
|
|
|
common_dtype = np.find_common_type((a.dtype, b.dtype, c.dtype, d.dtype), ())
|
|
return StateSpace(np.asarray(a, dtype=common_dtype),
|
|
np.asarray(b, dtype=common_dtype),
|
|
np.asarray(c, dtype=common_dtype),
|
|
np.asarray(d, dtype=common_dtype),
|
|
**self._dt_dict)
|
|
|
|
def __rmul__(self, other):
|
|
"""Pre-multiply a scalar or matrix (but not StateSpace)"""
|
|
if not self._check_binop_other(other) or isinstance(other, StateSpace):
|
|
return NotImplemented
|
|
|
|
# For pre-multiplication only the output gets scaled
|
|
a = self.A
|
|
b = self.B
|
|
c = np.dot(other, self.C)
|
|
d = np.dot(other, self.D)
|
|
|
|
common_dtype = np.find_common_type((a.dtype, b.dtype, c.dtype, d.dtype), ())
|
|
return StateSpace(np.asarray(a, dtype=common_dtype),
|
|
np.asarray(b, dtype=common_dtype),
|
|
np.asarray(c, dtype=common_dtype),
|
|
np.asarray(d, dtype=common_dtype),
|
|
**self._dt_dict)
|
|
|
|
def __neg__(self):
|
|
"""Negate the system (equivalent to pre-multiplying by -1)."""
|
|
return StateSpace(self.A, self.B, -self.C, -self.D, **self._dt_dict)
|
|
|
|
def __add__(self, other):
|
|
"""
|
|
Adds two systems in the sense of frequency domain addition.
|
|
"""
|
|
if not self._check_binop_other(other):
|
|
return NotImplemented
|
|
|
|
if isinstance(other, StateSpace):
|
|
# Disallow mix of discrete and continuous systems.
|
|
if type(other) is not type(self):
|
|
raise TypeError('Cannot add {} and {}'.format(type(self),
|
|
type(other)))
|
|
|
|
if self.dt != other.dt:
|
|
raise TypeError('Cannot add systems with different `dt`.')
|
|
# Interconnection of systems
|
|
# x1' = A1 x1 + B1 u
|
|
# y1 = C1 x1 + D1 u
|
|
# x2' = A2 x2 + B2 u
|
|
# y2 = C2 x2 + D2 u
|
|
# y = y1 + y2
|
|
#
|
|
# Plugging in yields
|
|
# [x1'] [A1 0 ] [x1] [B1]
|
|
# [x2'] = [0 A2] [x2] + [B2] u
|
|
# [x1]
|
|
# y = [C1 C2] [x2] + [D1 + D2] u
|
|
a = linalg.block_diag(self.A, other.A)
|
|
b = np.vstack((self.B, other.B))
|
|
c = np.hstack((self.C, other.C))
|
|
d = self.D + other.D
|
|
else:
|
|
other = np.atleast_2d(other)
|
|
if self.D.shape == other.shape:
|
|
# A scalar/matrix is really just a static system (A=0, B=0, C=0)
|
|
a = self.A
|
|
b = self.B
|
|
c = self.C
|
|
d = self.D + other
|
|
else:
|
|
raise ValueError("Cannot add systems with incompatible "
|
|
"dimensions ({} and {})"
|
|
.format(self.D.shape, other.shape))
|
|
|
|
common_dtype = np.find_common_type((a.dtype, b.dtype, c.dtype, d.dtype), ())
|
|
return StateSpace(np.asarray(a, dtype=common_dtype),
|
|
np.asarray(b, dtype=common_dtype),
|
|
np.asarray(c, dtype=common_dtype),
|
|
np.asarray(d, dtype=common_dtype),
|
|
**self._dt_dict)
|
|
|
|
def __sub__(self, other):
|
|
if not self._check_binop_other(other):
|
|
return NotImplemented
|
|
|
|
return self.__add__(-other)
|
|
|
|
def __radd__(self, other):
|
|
if not self._check_binop_other(other):
|
|
return NotImplemented
|
|
|
|
return self.__add__(other)
|
|
|
|
def __rsub__(self, other):
|
|
if not self._check_binop_other(other):
|
|
return NotImplemented
|
|
|
|
return (-self).__add__(other)
|
|
|
|
def __truediv__(self, other):
|
|
"""
|
|
Divide by a scalar
|
|
"""
|
|
# Division by non-StateSpace scalars
|
|
if not self._check_binop_other(other) or isinstance(other, StateSpace):
|
|
return NotImplemented
|
|
|
|
if isinstance(other, np.ndarray) and other.ndim > 0:
|
|
# It's ambiguous what this means, so disallow it
|
|
raise ValueError("Cannot divide StateSpace by non-scalar numpy arrays")
|
|
|
|
return self.__mul__(1/other)
|
|
|
|
@property
|
|
def A(self):
|
|
"""State matrix of the `StateSpace` system."""
|
|
return self._A
|
|
|
|
@A.setter
|
|
def A(self, A):
|
|
self._A = _atleast_2d_or_none(A)
|
|
|
|
@property
|
|
def B(self):
|
|
"""Input matrix of the `StateSpace` system."""
|
|
return self._B
|
|
|
|
@B.setter
|
|
def B(self, B):
|
|
self._B = _atleast_2d_or_none(B)
|
|
self.inputs = self.B.shape[-1]
|
|
|
|
@property
|
|
def C(self):
|
|
"""Output matrix of the `StateSpace` system."""
|
|
return self._C
|
|
|
|
@C.setter
|
|
def C(self, C):
|
|
self._C = _atleast_2d_or_none(C)
|
|
self.outputs = self.C.shape[0]
|
|
|
|
@property
|
|
def D(self):
|
|
"""Feedthrough matrix of the `StateSpace` system."""
|
|
return self._D
|
|
|
|
@D.setter
|
|
def D(self, D):
|
|
self._D = _atleast_2d_or_none(D)
|
|
|
|
def _copy(self, system):
|
|
"""
|
|
Copy the parameters of another `StateSpace` system.
|
|
|
|
Parameters
|
|
----------
|
|
system : instance of `StateSpace`
|
|
The state-space system that is to be copied
|
|
|
|
"""
|
|
self.A = system.A
|
|
self.B = system.B
|
|
self.C = system.C
|
|
self.D = system.D
|
|
|
|
def to_tf(self, **kwargs):
|
|
"""
|
|
Convert system representation to `TransferFunction`.
|
|
|
|
Parameters
|
|
----------
|
|
kwargs : dict, optional
|
|
Additional keywords passed to `ss2zpk`
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `TransferFunction`
|
|
Transfer function of the current system
|
|
|
|
"""
|
|
return TransferFunction(*ss2tf(self._A, self._B, self._C, self._D,
|
|
**kwargs), **self._dt_dict)
|
|
|
|
def to_zpk(self, **kwargs):
|
|
"""
|
|
Convert system representation to `ZerosPolesGain`.
|
|
|
|
Parameters
|
|
----------
|
|
kwargs : dict, optional
|
|
Additional keywords passed to `ss2zpk`
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `ZerosPolesGain`
|
|
Zeros, poles, gain representation of the current system
|
|
|
|
"""
|
|
return ZerosPolesGain(*ss2zpk(self._A, self._B, self._C, self._D,
|
|
**kwargs), **self._dt_dict)
|
|
|
|
def to_ss(self):
|
|
"""
|
|
Return a copy of the current `StateSpace` system.
|
|
|
|
Returns
|
|
-------
|
|
sys : instance of `StateSpace`
|
|
The current system (copy)
|
|
|
|
"""
|
|
return copy.deepcopy(self)
|
|
|
|
|
|
class StateSpaceContinuous(StateSpace, lti):
|
|
r"""
|
|
Continuous-time Linear Time Invariant system in state-space form.
|
|
|
|
Represents the system as the continuous-time, first order differential
|
|
equation :math:`\dot{x} = A x + B u`.
|
|
Continuous-time `StateSpace` systems inherit additional functionality
|
|
from the `lti` class.
|
|
|
|
Parameters
|
|
----------
|
|
*system: arguments
|
|
The `StateSpace` class can be instantiated with 1 or 3 arguments.
|
|
The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `lti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 4: array_like: (A, B, C, D)
|
|
|
|
See Also
|
|
--------
|
|
TransferFunction, ZerosPolesGain, lti
|
|
ss2zpk, ss2tf, zpk2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`StateSpace` system representation (such as `zeros` or `poles`) is very
|
|
inefficient and may lead to numerical inaccuracies. It is better to
|
|
convert to the specific system representation first. For example, call
|
|
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
|
|
>>> a = np.array([[0, 1], [0, 0]])
|
|
>>> b = np.array([[0], [1]])
|
|
>>> c = np.array([[1, 0]])
|
|
>>> d = np.array([[0]])
|
|
|
|
>>> sys = signal.StateSpace(a, b, c, d)
|
|
>>> print(sys)
|
|
StateSpaceContinuous(
|
|
array([[0, 1],
|
|
[0, 0]]),
|
|
array([[0],
|
|
[1]]),
|
|
array([[1, 0]]),
|
|
array([[0]]),
|
|
dt: None
|
|
)
|
|
|
|
"""
|
|
def to_discrete(self, dt, method='zoh', alpha=None):
|
|
"""
|
|
Returns the discretized `StateSpace` system.
|
|
|
|
Parameters: See `cont2discrete` for details.
|
|
|
|
Returns
|
|
-------
|
|
sys: instance of `dlti` and `StateSpace`
|
|
"""
|
|
return StateSpace(*cont2discrete((self.A, self.B, self.C, self.D),
|
|
dt,
|
|
method=method,
|
|
alpha=alpha)[:-1],
|
|
dt=dt)
|
|
|
|
|
|
class StateSpaceDiscrete(StateSpace, dlti):
|
|
r"""
|
|
Discrete-time Linear Time Invariant system in state-space form.
|
|
|
|
Represents the system as the discrete-time difference equation
|
|
:math:`x[k+1] = A x[k] + B u[k]`.
|
|
`StateSpace` systems inherit additional functionality from the `dlti`
|
|
class.
|
|
|
|
Parameters
|
|
----------
|
|
*system: arguments
|
|
The `StateSpace` class can be instantiated with 1 or 3 arguments.
|
|
The following gives the number of input arguments and their
|
|
interpretation:
|
|
|
|
* 1: `dlti` system: (`StateSpace`, `TransferFunction` or
|
|
`ZerosPolesGain`)
|
|
* 4: array_like: (A, B, C, D)
|
|
dt: float, optional
|
|
Sampling time [s] of the discrete-time systems. Defaults to `True`
|
|
(unspecified sampling time). Must be specified as a keyword argument,
|
|
for example, ``dt=0.1``.
|
|
|
|
See Also
|
|
--------
|
|
TransferFunction, ZerosPolesGain, dlti
|
|
ss2zpk, ss2tf, zpk2sos
|
|
|
|
Notes
|
|
-----
|
|
Changing the value of properties that are not part of the
|
|
`StateSpace` system representation (such as `zeros` or `poles`) is very
|
|
inefficient and may lead to numerical inaccuracies. It is better to
|
|
convert to the specific system representation first. For example, call
|
|
``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
|
|
>>> a = np.array([[1, 0.1], [0, 1]])
|
|
>>> b = np.array([[0.005], [0.1]])
|
|
>>> c = np.array([[1, 0]])
|
|
>>> d = np.array([[0]])
|
|
|
|
>>> signal.StateSpace(a, b, c, d, dt=0.1)
|
|
StateSpaceDiscrete(
|
|
array([[ 1. , 0.1],
|
|
[ 0. , 1. ]]),
|
|
array([[ 0.005],
|
|
[ 0.1 ]]),
|
|
array([[1, 0]]),
|
|
array([[0]]),
|
|
dt: 0.1
|
|
)
|
|
|
|
"""
|
|
pass
|
|
|
|
|
|
def lsim2(system, U=None, T=None, X0=None, **kwargs):
|
|
"""
|
|
Simulate output of a continuous-time linear system, by using
|
|
the ODE solver `scipy.integrate.odeint`.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the `lti` class or a tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1: (instance of `lti`)
|
|
* 2: (num, den)
|
|
* 3: (zeros, poles, gain)
|
|
* 4: (A, B, C, D)
|
|
|
|
U : array_like (1D or 2D), optional
|
|
An input array describing the input at each time T. Linear
|
|
interpolation is used between given times. If there are
|
|
multiple inputs, then each column of the rank-2 array
|
|
represents an input. If U is not given, the input is assumed
|
|
to be zero.
|
|
T : array_like (1D or 2D), optional
|
|
The time steps at which the input is defined and at which the
|
|
output is desired. The default is 101 evenly spaced points on
|
|
the interval [0,10.0].
|
|
X0 : array_like (1D), optional
|
|
The initial condition of the state vector. If `X0` is not
|
|
given, the initial conditions are assumed to be 0.
|
|
kwargs : dict
|
|
Additional keyword arguments are passed on to the function
|
|
`odeint`. See the notes below for more details.
|
|
|
|
Returns
|
|
-------
|
|
T : 1D ndarray
|
|
The time values for the output.
|
|
yout : ndarray
|
|
The response of the system.
|
|
xout : ndarray
|
|
The time-evolution of the state-vector.
|
|
|
|
Notes
|
|
-----
|
|
This function uses `scipy.integrate.odeint` to solve the
|
|
system's differential equations. Additional keyword arguments
|
|
given to `lsim2` are passed on to `odeint`. See the documentation
|
|
for `scipy.integrate.odeint` for the full list of arguments.
|
|
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
See Also
|
|
--------
|
|
lsim
|
|
|
|
Examples
|
|
--------
|
|
We'll use `lsim2` to simulate an analog Bessel filter applied to
|
|
a signal.
|
|
|
|
>>> from scipy.signal import bessel, lsim2
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
Create a low-pass Bessel filter with a cutoff of 12 Hz.
|
|
|
|
>>> b, a = bessel(N=5, Wn=2*np.pi*12, btype='lowpass', analog=True)
|
|
|
|
Generate data to which the filter is applied.
|
|
|
|
>>> t = np.linspace(0, 1.25, 500, endpoint=False)
|
|
|
|
The input signal is the sum of three sinusoidal curves, with
|
|
frequencies 4 Hz, 40 Hz, and 80 Hz. The filter should mostly
|
|
eliminate the 40 Hz and 80 Hz components, leaving just the 4 Hz signal.
|
|
|
|
>>> u = (np.cos(2*np.pi*4*t) + 0.6*np.sin(2*np.pi*40*t) +
|
|
... 0.5*np.cos(2*np.pi*80*t))
|
|
|
|
Simulate the filter with `lsim2`.
|
|
|
|
>>> tout, yout, xout = lsim2((b, a), U=u, T=t)
|
|
|
|
Plot the result.
|
|
|
|
>>> plt.plot(t, u, 'r', alpha=0.5, linewidth=1, label='input')
|
|
>>> plt.plot(tout, yout, 'k', linewidth=1.5, label='output')
|
|
>>> plt.legend(loc='best', shadow=True, framealpha=1)
|
|
>>> plt.grid(alpha=0.3)
|
|
>>> plt.xlabel('t')
|
|
>>> plt.show()
|
|
|
|
In a second example, we simulate a double integrator ``y'' = u``, with
|
|
a constant input ``u = 1``. We'll use the state space representation
|
|
of the integrator.
|
|
|
|
>>> from scipy.signal import lti
|
|
>>> A = np.array([[0, 1], [0, 0]])
|
|
>>> B = np.array([[0], [1]])
|
|
>>> C = np.array([[1, 0]])
|
|
>>> D = 0
|
|
>>> system = lti(A, B, C, D)
|
|
|
|
`t` and `u` define the time and input signal for the system to
|
|
be simulated.
|
|
|
|
>>> t = np.linspace(0, 5, num=50)
|
|
>>> u = np.ones_like(t)
|
|
|
|
Compute the simulation, and then plot `y`. As expected, the plot shows
|
|
the curve ``y = 0.5*t**2``.
|
|
|
|
>>> tout, y, x = lsim2(system, u, t)
|
|
>>> plt.plot(t, y)
|
|
>>> plt.grid(alpha=0.3)
|
|
>>> plt.xlabel('t')
|
|
>>> plt.show()
|
|
|
|
"""
|
|
if isinstance(system, lti):
|
|
sys = system._as_ss()
|
|
elif isinstance(system, dlti):
|
|
raise AttributeError('lsim2 can only be used with continuous-time '
|
|
'systems.')
|
|
else:
|
|
sys = lti(*system)._as_ss()
|
|
|
|
if X0 is None:
|
|
X0 = zeros(sys.B.shape[0], sys.A.dtype)
|
|
|
|
if T is None:
|
|
# XXX T should really be a required argument, but U was
|
|
# changed from a required positional argument to a keyword,
|
|
# and T is after U in the argument list. So we either: change
|
|
# the API and move T in front of U; check here for T being
|
|
# None and raise an exception; or assign a default value to T
|
|
# here. This code implements the latter.
|
|
T = linspace(0, 10.0, 101)
|
|
|
|
T = atleast_1d(T)
|
|
if len(T.shape) != 1:
|
|
raise ValueError("T must be a rank-1 array.")
|
|
|
|
if U is not None:
|
|
U = atleast_1d(U)
|
|
if len(U.shape) == 1:
|
|
U = U.reshape(-1, 1)
|
|
sU = U.shape
|
|
if sU[0] != len(T):
|
|
raise ValueError("U must have the same number of rows "
|
|
"as elements in T.")
|
|
|
|
if sU[1] != sys.inputs:
|
|
raise ValueError("The number of inputs in U (%d) is not "
|
|
"compatible with the number of system "
|
|
"inputs (%d)" % (sU[1], sys.inputs))
|
|
# Create a callable that uses linear interpolation to
|
|
# calculate the input at any time.
|
|
ufunc = interpolate.interp1d(T, U, kind='linear',
|
|
axis=0, bounds_error=False)
|
|
|
|
def fprime(x, t, sys, ufunc):
|
|
"""The vector field of the linear system."""
|
|
return dot(sys.A, x) + squeeze(dot(sys.B, nan_to_num(ufunc([t]))))
|
|
xout = integrate.odeint(fprime, X0, T, args=(sys, ufunc), **kwargs)
|
|
yout = dot(sys.C, transpose(xout)) + dot(sys.D, transpose(U))
|
|
else:
|
|
def fprime(x, t, sys):
|
|
"""The vector field of the linear system."""
|
|
return dot(sys.A, x)
|
|
xout = integrate.odeint(fprime, X0, T, args=(sys,), **kwargs)
|
|
yout = dot(sys.C, transpose(xout))
|
|
|
|
return T, squeeze(transpose(yout)), xout
|
|
|
|
|
|
def _cast_to_array_dtype(in1, in2):
|
|
"""Cast array to dtype of other array, while avoiding ComplexWarning.
|
|
|
|
Those can be raised when casting complex to real.
|
|
"""
|
|
if numpy.issubdtype(in2.dtype, numpy.float64):
|
|
# dtype to cast to is not complex, so use .real
|
|
in1 = in1.real.astype(in2.dtype)
|
|
else:
|
|
in1 = in1.astype(in2.dtype)
|
|
|
|
return in1
|
|
|
|
|
|
def lsim(system, U, T, X0=None, interp=True):
|
|
"""
|
|
Simulate output of a continuous-time linear system.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the LTI class or a tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1: (instance of `lti`)
|
|
* 2: (num, den)
|
|
* 3: (zeros, poles, gain)
|
|
* 4: (A, B, C, D)
|
|
|
|
U : array_like
|
|
An input array describing the input at each time `T`
|
|
(interpolation is assumed between given times). If there are
|
|
multiple inputs, then each column of the rank-2 array
|
|
represents an input. If U = 0 or None, a zero input is used.
|
|
T : array_like
|
|
The time steps at which the input is defined and at which the
|
|
output is desired. Must be nonnegative, increasing, and equally spaced.
|
|
X0 : array_like, optional
|
|
The initial conditions on the state vector (zero by default).
|
|
interp : bool, optional
|
|
Whether to use linear (True, the default) or zero-order-hold (False)
|
|
interpolation for the input array.
|
|
|
|
Returns
|
|
-------
|
|
T : 1D ndarray
|
|
Time values for the output.
|
|
yout : 1D ndarray
|
|
System response.
|
|
xout : ndarray
|
|
Time evolution of the state vector.
|
|
|
|
Notes
|
|
-----
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
Examples
|
|
--------
|
|
We'll use `lsim` to simulate an analog Bessel filter applied to
|
|
a signal.
|
|
|
|
>>> from scipy.signal import bessel, lsim
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
Create a low-pass Bessel filter with a cutoff of 12 Hz.
|
|
|
|
>>> b, a = bessel(N=5, Wn=2*np.pi*12, btype='lowpass', analog=True)
|
|
|
|
Generate data to which the filter is applied.
|
|
|
|
>>> t = np.linspace(0, 1.25, 500, endpoint=False)
|
|
|
|
The input signal is the sum of three sinusoidal curves, with
|
|
frequencies 4 Hz, 40 Hz, and 80 Hz. The filter should mostly
|
|
eliminate the 40 Hz and 80 Hz components, leaving just the 4 Hz signal.
|
|
|
|
>>> u = (np.cos(2*np.pi*4*t) + 0.6*np.sin(2*np.pi*40*t) +
|
|
... 0.5*np.cos(2*np.pi*80*t))
|
|
|
|
Simulate the filter with `lsim`.
|
|
|
|
>>> tout, yout, xout = lsim((b, a), U=u, T=t)
|
|
|
|
Plot the result.
|
|
|
|
>>> plt.plot(t, u, 'r', alpha=0.5, linewidth=1, label='input')
|
|
>>> plt.plot(tout, yout, 'k', linewidth=1.5, label='output')
|
|
>>> plt.legend(loc='best', shadow=True, framealpha=1)
|
|
>>> plt.grid(alpha=0.3)
|
|
>>> plt.xlabel('t')
|
|
>>> plt.show()
|
|
|
|
In a second example, we simulate a double integrator ``y'' = u``, with
|
|
a constant input ``u = 1``. We'll use the state space representation
|
|
of the integrator.
|
|
|
|
>>> from scipy.signal import lti
|
|
>>> A = np.array([[0.0, 1.0], [0.0, 0.0]])
|
|
>>> B = np.array([[0.0], [1.0]])
|
|
>>> C = np.array([[1.0, 0.0]])
|
|
>>> D = 0.0
|
|
>>> system = lti(A, B, C, D)
|
|
|
|
`t` and `u` define the time and input signal for the system to
|
|
be simulated.
|
|
|
|
>>> t = np.linspace(0, 5, num=50)
|
|
>>> u = np.ones_like(t)
|
|
|
|
Compute the simulation, and then plot `y`. As expected, the plot shows
|
|
the curve ``y = 0.5*t**2``.
|
|
|
|
>>> tout, y, x = lsim(system, u, t)
|
|
>>> plt.plot(t, y)
|
|
>>> plt.grid(alpha=0.3)
|
|
>>> plt.xlabel('t')
|
|
>>> plt.show()
|
|
|
|
"""
|
|
if isinstance(system, lti):
|
|
sys = system._as_ss()
|
|
elif isinstance(system, dlti):
|
|
raise AttributeError('lsim can only be used with continuous-time '
|
|
'systems.')
|
|
else:
|
|
sys = lti(*system)._as_ss()
|
|
T = atleast_1d(T)
|
|
if len(T.shape) != 1:
|
|
raise ValueError("T must be a rank-1 array.")
|
|
|
|
A, B, C, D = map(np.asarray, (sys.A, sys.B, sys.C, sys.D))
|
|
n_states = A.shape[0]
|
|
n_inputs = B.shape[1]
|
|
|
|
n_steps = T.size
|
|
if X0 is None:
|
|
X0 = zeros(n_states, sys.A.dtype)
|
|
xout = np.empty((n_steps, n_states), sys.A.dtype)
|
|
|
|
if T[0] == 0:
|
|
xout[0] = X0
|
|
elif T[0] > 0:
|
|
# step forward to initial time, with zero input
|
|
xout[0] = dot(X0, linalg.expm(transpose(A) * T[0]))
|
|
else:
|
|
raise ValueError("Initial time must be nonnegative")
|
|
|
|
no_input = (U is None or
|
|
(isinstance(U, (int, float)) and U == 0.) or
|
|
not np.any(U))
|
|
|
|
if n_steps == 1:
|
|
yout = squeeze(dot(xout, transpose(C)))
|
|
if not no_input:
|
|
yout += squeeze(dot(U, transpose(D)))
|
|
return T, squeeze(yout), squeeze(xout)
|
|
|
|
dt = T[1] - T[0]
|
|
if not np.allclose((T[1:] - T[:-1]) / dt, 1.0):
|
|
warnings.warn("Non-uniform timesteps are deprecated. Results may be "
|
|
"slow and/or inaccurate.", DeprecationWarning)
|
|
return lsim2(system, U, T, X0)
|
|
|
|
if no_input:
|
|
# Zero input: just use matrix exponential
|
|
# take transpose because state is a row vector
|
|
expAT_dt = linalg.expm(transpose(A) * dt)
|
|
for i in range(1, n_steps):
|
|
xout[i] = dot(xout[i-1], expAT_dt)
|
|
yout = squeeze(dot(xout, transpose(C)))
|
|
return T, squeeze(yout), squeeze(xout)
|
|
|
|
# Nonzero input
|
|
U = atleast_1d(U)
|
|
if U.ndim == 1:
|
|
U = U[:, np.newaxis]
|
|
|
|
if U.shape[0] != n_steps:
|
|
raise ValueError("U must have the same number of rows "
|
|
"as elements in T.")
|
|
|
|
if U.shape[1] != n_inputs:
|
|
raise ValueError("System does not define that many inputs.")
|
|
|
|
if not interp:
|
|
# Zero-order hold
|
|
# Algorithm: to integrate from time 0 to time dt, we solve
|
|
# xdot = A x + B u, x(0) = x0
|
|
# udot = 0, u(0) = u0.
|
|
#
|
|
# Solution is
|
|
# [ x(dt) ] [ A*dt B*dt ] [ x0 ]
|
|
# [ u(dt) ] = exp [ 0 0 ] [ u0 ]
|
|
M = np.vstack([np.hstack([A * dt, B * dt]),
|
|
np.zeros((n_inputs, n_states + n_inputs))])
|
|
# transpose everything because the state and input are row vectors
|
|
expMT = linalg.expm(transpose(M))
|
|
Ad = expMT[:n_states, :n_states]
|
|
Bd = expMT[n_states:, :n_states]
|
|
for i in range(1, n_steps):
|
|
xout[i] = dot(xout[i-1], Ad) + dot(U[i-1], Bd)
|
|
else:
|
|
# Linear interpolation between steps
|
|
# Algorithm: to integrate from time 0 to time dt, with linear
|
|
# interpolation between inputs u(0) = u0 and u(dt) = u1, we solve
|
|
# xdot = A x + B u, x(0) = x0
|
|
# udot = (u1 - u0) / dt, u(0) = u0.
|
|
#
|
|
# Solution is
|
|
# [ x(dt) ] [ A*dt B*dt 0 ] [ x0 ]
|
|
# [ u(dt) ] = exp [ 0 0 I ] [ u0 ]
|
|
# [u1 - u0] [ 0 0 0 ] [u1 - u0]
|
|
M = np.vstack([np.hstack([A * dt, B * dt,
|
|
np.zeros((n_states, n_inputs))]),
|
|
np.hstack([np.zeros((n_inputs, n_states + n_inputs)),
|
|
np.identity(n_inputs)]),
|
|
np.zeros((n_inputs, n_states + 2 * n_inputs))])
|
|
expMT = linalg.expm(transpose(M))
|
|
Ad = expMT[:n_states, :n_states]
|
|
Bd1 = expMT[n_states+n_inputs:, :n_states]
|
|
Bd0 = expMT[n_states:n_states + n_inputs, :n_states] - Bd1
|
|
for i in range(1, n_steps):
|
|
xout[i] = (dot(xout[i-1], Ad) + dot(U[i-1], Bd0) + dot(U[i], Bd1))
|
|
|
|
yout = (squeeze(dot(xout, transpose(C))) + squeeze(dot(U, transpose(D))))
|
|
return T, squeeze(yout), squeeze(xout)
|
|
|
|
|
|
def _default_response_times(A, n):
|
|
"""Compute a reasonable set of time samples for the response time.
|
|
|
|
This function is used by `impulse`, `impulse2`, `step` and `step2`
|
|
to compute the response time when the `T` argument to the function
|
|
is None.
|
|
|
|
Parameters
|
|
----------
|
|
A : array_like
|
|
The system matrix, which is square.
|
|
n : int
|
|
The number of time samples to generate.
|
|
|
|
Returns
|
|
-------
|
|
t : ndarray
|
|
The 1-D array of length `n` of time samples at which the response
|
|
is to be computed.
|
|
"""
|
|
# Create a reasonable time interval.
|
|
# TODO: This could use some more work.
|
|
# For example, what is expected when the system is unstable?
|
|
vals = linalg.eigvals(A)
|
|
r = min(abs(real(vals)))
|
|
if r == 0.0:
|
|
r = 1.0
|
|
tc = 1.0 / r
|
|
t = linspace(0.0, 7 * tc, n)
|
|
return t
|
|
|
|
|
|
def impulse(system, X0=None, T=None, N=None):
|
|
"""Impulse response of continuous-time system.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the LTI class or a tuple of array_like
|
|
describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1 (instance of `lti`)
|
|
* 2 (num, den)
|
|
* 3 (zeros, poles, gain)
|
|
* 4 (A, B, C, D)
|
|
|
|
X0 : array_like, optional
|
|
Initial state-vector. Defaults to zero.
|
|
T : array_like, optional
|
|
Time points. Computed if not given.
|
|
N : int, optional
|
|
The number of time points to compute (if `T` is not given).
|
|
|
|
Returns
|
|
-------
|
|
T : ndarray
|
|
A 1-D array of time points.
|
|
yout : ndarray
|
|
A 1-D array containing the impulse response of the system (except for
|
|
singularities at zero).
|
|
|
|
Notes
|
|
-----
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
Examples
|
|
--------
|
|
Compute the impulse response of a second order system with a repeated
|
|
root: ``x''(t) + 2*x'(t) + x(t) = u(t)``
|
|
|
|
>>> from scipy import signal
|
|
>>> system = ([1.0], [1.0, 2.0, 1.0])
|
|
>>> t, y = signal.impulse(system)
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> plt.plot(t, y)
|
|
|
|
"""
|
|
if isinstance(system, lti):
|
|
sys = system._as_ss()
|
|
elif isinstance(system, dlti):
|
|
raise AttributeError('impulse can only be used with continuous-time '
|
|
'systems.')
|
|
else:
|
|
sys = lti(*system)._as_ss()
|
|
if X0 is None:
|
|
X = squeeze(sys.B)
|
|
else:
|
|
X = squeeze(sys.B + X0)
|
|
if N is None:
|
|
N = 100
|
|
if T is None:
|
|
T = _default_response_times(sys.A, N)
|
|
else:
|
|
T = asarray(T)
|
|
|
|
_, h, _ = lsim(sys, 0., T, X, interp=False)
|
|
return T, h
|
|
|
|
|
|
def impulse2(system, X0=None, T=None, N=None, **kwargs):
|
|
"""
|
|
Impulse response of a single-input, continuous-time linear system.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the LTI class or a tuple of array_like
|
|
describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1 (instance of `lti`)
|
|
* 2 (num, den)
|
|
* 3 (zeros, poles, gain)
|
|
* 4 (A, B, C, D)
|
|
|
|
X0 : 1-D array_like, optional
|
|
The initial condition of the state vector. Default: 0 (the
|
|
zero vector).
|
|
T : 1-D array_like, optional
|
|
The time steps at which the input is defined and at which the
|
|
output is desired. If `T` is not given, the function will
|
|
generate a set of time samples automatically.
|
|
N : int, optional
|
|
Number of time points to compute. Default: 100.
|
|
kwargs : various types
|
|
Additional keyword arguments are passed on to the function
|
|
`scipy.signal.lsim2`, which in turn passes them on to
|
|
`scipy.integrate.odeint`; see the latter's documentation for
|
|
information about these arguments.
|
|
|
|
Returns
|
|
-------
|
|
T : ndarray
|
|
The time values for the output.
|
|
yout : ndarray
|
|
The output response of the system.
|
|
|
|
See Also
|
|
--------
|
|
impulse, lsim2, scipy.integrate.odeint
|
|
|
|
Notes
|
|
-----
|
|
The solution is generated by calling `scipy.signal.lsim2`, which uses
|
|
the differential equation solver `scipy.integrate.odeint`.
|
|
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
.. versionadded:: 0.8.0
|
|
|
|
Examples
|
|
--------
|
|
Compute the impulse response of a second order system with a repeated
|
|
root: ``x''(t) + 2*x'(t) + x(t) = u(t)``
|
|
|
|
>>> from scipy import signal
|
|
>>> system = ([1.0], [1.0, 2.0, 1.0])
|
|
>>> t, y = signal.impulse2(system)
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> plt.plot(t, y)
|
|
|
|
"""
|
|
if isinstance(system, lti):
|
|
sys = system._as_ss()
|
|
elif isinstance(system, dlti):
|
|
raise AttributeError('impulse2 can only be used with continuous-time '
|
|
'systems.')
|
|
else:
|
|
sys = lti(*system)._as_ss()
|
|
B = sys.B
|
|
if B.shape[-1] != 1:
|
|
raise ValueError("impulse2() requires a single-input system.")
|
|
B = B.squeeze()
|
|
if X0 is None:
|
|
X0 = zeros_like(B)
|
|
if N is None:
|
|
N = 100
|
|
if T is None:
|
|
T = _default_response_times(sys.A, N)
|
|
|
|
# Move the impulse in the input to the initial conditions, and then
|
|
# solve using lsim2().
|
|
ic = B + X0
|
|
Tr, Yr, Xr = lsim2(sys, T=T, X0=ic, **kwargs)
|
|
return Tr, Yr
|
|
|
|
|
|
def step(system, X0=None, T=None, N=None):
|
|
"""Step response of continuous-time system.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the LTI class or a tuple of array_like
|
|
describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1 (instance of `lti`)
|
|
* 2 (num, den)
|
|
* 3 (zeros, poles, gain)
|
|
* 4 (A, B, C, D)
|
|
|
|
X0 : array_like, optional
|
|
Initial state-vector (default is zero).
|
|
T : array_like, optional
|
|
Time points (computed if not given).
|
|
N : int, optional
|
|
Number of time points to compute if `T` is not given.
|
|
|
|
Returns
|
|
-------
|
|
T : 1D ndarray
|
|
Output time points.
|
|
yout : 1D ndarray
|
|
Step response of system.
|
|
|
|
See also
|
|
--------
|
|
scipy.signal.step2
|
|
|
|
Notes
|
|
-----
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> lti = signal.lti([1.0], [1.0, 1.0])
|
|
>>> t, y = signal.step(lti)
|
|
>>> plt.plot(t, y)
|
|
>>> plt.xlabel('Time [s]')
|
|
>>> plt.ylabel('Amplitude')
|
|
>>> plt.title('Step response for 1. Order Lowpass')
|
|
>>> plt.grid()
|
|
|
|
"""
|
|
if isinstance(system, lti):
|
|
sys = system._as_ss()
|
|
elif isinstance(system, dlti):
|
|
raise AttributeError('step can only be used with continuous-time '
|
|
'systems.')
|
|
else:
|
|
sys = lti(*system)._as_ss()
|
|
if N is None:
|
|
N = 100
|
|
if T is None:
|
|
T = _default_response_times(sys.A, N)
|
|
else:
|
|
T = asarray(T)
|
|
U = ones(T.shape, sys.A.dtype)
|
|
vals = lsim(sys, U, T, X0=X0, interp=False)
|
|
return vals[0], vals[1]
|
|
|
|
|
|
def step2(system, X0=None, T=None, N=None, **kwargs):
|
|
"""Step response of continuous-time system.
|
|
|
|
This function is functionally the same as `scipy.signal.step`, but
|
|
it uses the function `scipy.signal.lsim2` to compute the step
|
|
response.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the LTI class or a tuple of array_like
|
|
describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1 (instance of `lti`)
|
|
* 2 (num, den)
|
|
* 3 (zeros, poles, gain)
|
|
* 4 (A, B, C, D)
|
|
|
|
X0 : array_like, optional
|
|
Initial state-vector (default is zero).
|
|
T : array_like, optional
|
|
Time points (computed if not given).
|
|
N : int, optional
|
|
Number of time points to compute if `T` is not given.
|
|
kwargs : various types
|
|
Additional keyword arguments are passed on the function
|
|
`scipy.signal.lsim2`, which in turn passes them on to
|
|
`scipy.integrate.odeint`. See the documentation for
|
|
`scipy.integrate.odeint` for information about these arguments.
|
|
|
|
Returns
|
|
-------
|
|
T : 1D ndarray
|
|
Output time points.
|
|
yout : 1D ndarray
|
|
Step response of system.
|
|
|
|
See also
|
|
--------
|
|
scipy.signal.step
|
|
|
|
Notes
|
|
-----
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
.. versionadded:: 0.8.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
>>> lti = signal.lti([1.0], [1.0, 1.0])
|
|
>>> t, y = signal.step2(lti)
|
|
>>> plt.plot(t, y)
|
|
>>> plt.xlabel('Time [s]')
|
|
>>> plt.ylabel('Amplitude')
|
|
>>> plt.title('Step response for 1. Order Lowpass')
|
|
>>> plt.grid()
|
|
|
|
"""
|
|
if isinstance(system, lti):
|
|
sys = system._as_ss()
|
|
elif isinstance(system, dlti):
|
|
raise AttributeError('step2 can only be used with continuous-time '
|
|
'systems.')
|
|
else:
|
|
sys = lti(*system)._as_ss()
|
|
if N is None:
|
|
N = 100
|
|
if T is None:
|
|
T = _default_response_times(sys.A, N)
|
|
else:
|
|
T = asarray(T)
|
|
U = ones(T.shape, sys.A.dtype)
|
|
vals = lsim2(sys, U, T, X0=X0, **kwargs)
|
|
return vals[0], vals[1]
|
|
|
|
|
|
def bode(system, w=None, n=100):
|
|
"""
|
|
Calculate Bode magnitude and phase data of a continuous-time system.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the LTI class or a tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1 (instance of `lti`)
|
|
* 2 (num, den)
|
|
* 3 (zeros, poles, gain)
|
|
* 4 (A, B, C, D)
|
|
|
|
w : array_like, optional
|
|
Array of frequencies (in rad/s). Magnitude and phase data is calculated
|
|
for every value in this array. If not given a reasonable set will be
|
|
calculated.
|
|
n : int, optional
|
|
Number of frequency points to compute if `w` is not given. The `n`
|
|
frequencies are logarithmically spaced in an interval chosen to
|
|
include the influence of the poles and zeros of the system.
|
|
|
|
Returns
|
|
-------
|
|
w : 1D ndarray
|
|
Frequency array [rad/s]
|
|
mag : 1D ndarray
|
|
Magnitude array [dB]
|
|
phase : 1D ndarray
|
|
Phase array [deg]
|
|
|
|
Notes
|
|
-----
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
.. versionadded:: 0.11.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> sys = signal.TransferFunction([1], [1, 1])
|
|
>>> w, mag, phase = signal.bode(sys)
|
|
|
|
>>> plt.figure()
|
|
>>> plt.semilogx(w, mag) # Bode magnitude plot
|
|
>>> plt.figure()
|
|
>>> plt.semilogx(w, phase) # Bode phase plot
|
|
>>> plt.show()
|
|
|
|
"""
|
|
w, y = freqresp(system, w=w, n=n)
|
|
|
|
mag = 20.0 * numpy.log10(abs(y))
|
|
phase = numpy.unwrap(numpy.arctan2(y.imag, y.real)) * 180.0 / numpy.pi
|
|
|
|
return w, mag, phase
|
|
|
|
|
|
def freqresp(system, w=None, n=10000):
|
|
"""Calculate the frequency response of a continuous-time system.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the `lti` class or a tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1 (instance of `lti`)
|
|
* 2 (num, den)
|
|
* 3 (zeros, poles, gain)
|
|
* 4 (A, B, C, D)
|
|
|
|
w : array_like, optional
|
|
Array of frequencies (in rad/s). Magnitude and phase data is
|
|
calculated for every value in this array. If not given, a reasonable
|
|
set will be calculated.
|
|
n : int, optional
|
|
Number of frequency points to compute if `w` is not given. The `n`
|
|
frequencies are logarithmically spaced in an interval chosen to
|
|
include the influence of the poles and zeros of the system.
|
|
|
|
Returns
|
|
-------
|
|
w : 1D ndarray
|
|
Frequency array [rad/s]
|
|
H : 1D ndarray
|
|
Array of complex magnitude values
|
|
|
|
Notes
|
|
-----
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
Examples
|
|
--------
|
|
Generating the Nyquist plot of a transfer function
|
|
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
Transfer function: H(s) = 5 / (s-1)^3
|
|
|
|
>>> s1 = signal.ZerosPolesGain([], [1, 1, 1], [5])
|
|
|
|
>>> w, H = signal.freqresp(s1)
|
|
|
|
>>> plt.figure()
|
|
>>> plt.plot(H.real, H.imag, "b")
|
|
>>> plt.plot(H.real, -H.imag, "r")
|
|
>>> plt.show()
|
|
"""
|
|
if isinstance(system, lti):
|
|
if isinstance(system, (TransferFunction, ZerosPolesGain)):
|
|
sys = system
|
|
else:
|
|
sys = system._as_zpk()
|
|
elif isinstance(system, dlti):
|
|
raise AttributeError('freqresp can only be used with continuous-time '
|
|
'systems.')
|
|
else:
|
|
sys = lti(*system)._as_zpk()
|
|
|
|
if sys.inputs != 1 or sys.outputs != 1:
|
|
raise ValueError("freqresp() requires a SISO (single input, single "
|
|
"output) system.")
|
|
|
|
if w is not None:
|
|
worN = w
|
|
else:
|
|
worN = n
|
|
|
|
if isinstance(sys, TransferFunction):
|
|
# In the call to freqs(), sys.num.ravel() is used because there are
|
|
# cases where sys.num is a 2-D array with a single row.
|
|
w, h = freqs(sys.num.ravel(), sys.den, worN=worN)
|
|
|
|
elif isinstance(sys, ZerosPolesGain):
|
|
w, h = freqs_zpk(sys.zeros, sys.poles, sys.gain, worN=worN)
|
|
|
|
return w, h
|
|
|
|
|
|
# This class will be used by place_poles to return its results
|
|
# see https://code.activestate.com/recipes/52308/
|
|
class Bunch:
|
|
def __init__(self, **kwds):
|
|
self.__dict__.update(kwds)
|
|
|
|
|
|
def _valid_inputs(A, B, poles, method, rtol, maxiter):
|
|
"""
|
|
Check the poles come in complex conjugage pairs
|
|
Check shapes of A, B and poles are compatible.
|
|
Check the method chosen is compatible with provided poles
|
|
Return update method to use and ordered poles
|
|
|
|
"""
|
|
poles = np.asarray(poles)
|
|
if poles.ndim > 1:
|
|
raise ValueError("Poles must be a 1D array like.")
|
|
# Will raise ValueError if poles do not come in complex conjugates pairs
|
|
poles = _order_complex_poles(poles)
|
|
if A.ndim > 2:
|
|
raise ValueError("A must be a 2D array/matrix.")
|
|
if B.ndim > 2:
|
|
raise ValueError("B must be a 2D array/matrix")
|
|
if A.shape[0] != A.shape[1]:
|
|
raise ValueError("A must be square")
|
|
if len(poles) > A.shape[0]:
|
|
raise ValueError("maximum number of poles is %d but you asked for %d" %
|
|
(A.shape[0], len(poles)))
|
|
if len(poles) < A.shape[0]:
|
|
raise ValueError("number of poles is %d but you should provide %d" %
|
|
(len(poles), A.shape[0]))
|
|
r = np.linalg.matrix_rank(B)
|
|
for p in poles:
|
|
if sum(p == poles) > r:
|
|
raise ValueError("at least one of the requested pole is repeated "
|
|
"more than rank(B) times")
|
|
# Choose update method
|
|
update_loop = _YT_loop
|
|
if method not in ('KNV0','YT'):
|
|
raise ValueError("The method keyword must be one of 'YT' or 'KNV0'")
|
|
|
|
if method == "KNV0":
|
|
update_loop = _KNV0_loop
|
|
if not all(np.isreal(poles)):
|
|
raise ValueError("Complex poles are not supported by KNV0")
|
|
|
|
if maxiter < 1:
|
|
raise ValueError("maxiter must be at least equal to 1")
|
|
|
|
# We do not check rtol <= 0 as the user can use a negative rtol to
|
|
# force maxiter iterations
|
|
if rtol > 1:
|
|
raise ValueError("rtol can not be greater than 1")
|
|
|
|
return update_loop, poles
|
|
|
|
|
|
def _order_complex_poles(poles):
|
|
"""
|
|
Check we have complex conjugates pairs and reorder P according to YT, ie
|
|
real_poles, complex_i, conjugate complex_i, ....
|
|
The lexicographic sort on the complex poles is added to help the user to
|
|
compare sets of poles.
|
|
"""
|
|
ordered_poles = np.sort(poles[np.isreal(poles)])
|
|
im_poles = []
|
|
for p in np.sort(poles[np.imag(poles) < 0]):
|
|
if np.conj(p) in poles:
|
|
im_poles.extend((p, np.conj(p)))
|
|
|
|
ordered_poles = np.hstack((ordered_poles, im_poles))
|
|
|
|
if poles.shape[0] != len(ordered_poles):
|
|
raise ValueError("Complex poles must come with their conjugates")
|
|
return ordered_poles
|
|
|
|
|
|
def _KNV0(B, ker_pole, transfer_matrix, j, poles):
|
|
"""
|
|
Algorithm "KNV0" Kautsky et Al. Robust pole
|
|
assignment in linear state feedback, Int journal of Control
|
|
1985, vol 41 p 1129->1155
|
|
https://la.epfl.ch/files/content/sites/la/files/
|
|
users/105941/public/KautskyNicholsDooren
|
|
|
|
"""
|
|
# Remove xj form the base
|
|
transfer_matrix_not_j = np.delete(transfer_matrix, j, axis=1)
|
|
# If we QR this matrix in full mode Q=Q0|Q1
|
|
# then Q1 will be a single column orthogonnal to
|
|
# Q0, that's what we are looking for !
|
|
|
|
# After merge of gh-4249 great speed improvements could be achieved
|
|
# using QR updates instead of full QR in the line below
|
|
|
|
# To debug with numpy qr uncomment the line below
|
|
# Q, R = np.linalg.qr(transfer_matrix_not_j, mode="complete")
|
|
Q, R = s_qr(transfer_matrix_not_j, mode="full")
|
|
|
|
mat_ker_pj = np.dot(ker_pole[j], ker_pole[j].T)
|
|
yj = np.dot(mat_ker_pj, Q[:, -1])
|
|
|
|
# If Q[:, -1] is "almost" orthogonal to ker_pole[j] its
|
|
# projection into ker_pole[j] will yield a vector
|
|
# close to 0. As we are looking for a vector in ker_pole[j]
|
|
# simply stick with transfer_matrix[:, j] (unless someone provides me with
|
|
# a better choice ?)
|
|
|
|
if not np.allclose(yj, 0):
|
|
xj = yj/np.linalg.norm(yj)
|
|
transfer_matrix[:, j] = xj
|
|
|
|
# KNV does not support complex poles, using YT technique the two lines
|
|
# below seem to work 9 out of 10 times but it is not reliable enough:
|
|
# transfer_matrix[:, j]=real(xj)
|
|
# transfer_matrix[:, j+1]=imag(xj)
|
|
|
|
# Add this at the beginning of this function if you wish to test
|
|
# complex support:
|
|
# if ~np.isreal(P[j]) and (j>=B.shape[0]-1 or P[j]!=np.conj(P[j+1])):
|
|
# return
|
|
# Problems arise when imag(xj)=>0 I have no idea on how to fix this
|
|
|
|
|
|
def _YT_real(ker_pole, Q, transfer_matrix, i, j):
|
|
"""
|
|
Applies algorithm from YT section 6.1 page 19 related to real pairs
|
|
"""
|
|
# step 1 page 19
|
|
u = Q[:, -2, np.newaxis]
|
|
v = Q[:, -1, np.newaxis]
|
|
|
|
# step 2 page 19
|
|
m = np.dot(np.dot(ker_pole[i].T, np.dot(u, v.T) -
|
|
np.dot(v, u.T)), ker_pole[j])
|
|
|
|
# step 3 page 19
|
|
um, sm, vm = np.linalg.svd(m)
|
|
# mu1, mu2 two first columns of U => 2 first lines of U.T
|
|
mu1, mu2 = um.T[:2, :, np.newaxis]
|
|
# VM is V.T with numpy we want the first two lines of V.T
|
|
nu1, nu2 = vm[:2, :, np.newaxis]
|
|
|
|
# what follows is a rough python translation of the formulas
|
|
# in section 6.2 page 20 (step 4)
|
|
transfer_matrix_j_mo_transfer_matrix_j = np.vstack((
|
|
transfer_matrix[:, i, np.newaxis],
|
|
transfer_matrix[:, j, np.newaxis]))
|
|
|
|
if not np.allclose(sm[0], sm[1]):
|
|
ker_pole_imo_mu1 = np.dot(ker_pole[i], mu1)
|
|
ker_pole_i_nu1 = np.dot(ker_pole[j], nu1)
|
|
ker_pole_mu_nu = np.vstack((ker_pole_imo_mu1, ker_pole_i_nu1))
|
|
else:
|
|
ker_pole_ij = np.vstack((
|
|
np.hstack((ker_pole[i],
|
|
np.zeros(ker_pole[i].shape))),
|
|
np.hstack((np.zeros(ker_pole[j].shape),
|
|
ker_pole[j]))
|
|
))
|
|
mu_nu_matrix = np.vstack(
|
|
(np.hstack((mu1, mu2)), np.hstack((nu1, nu2)))
|
|
)
|
|
ker_pole_mu_nu = np.dot(ker_pole_ij, mu_nu_matrix)
|
|
transfer_matrix_ij = np.dot(np.dot(ker_pole_mu_nu, ker_pole_mu_nu.T),
|
|
transfer_matrix_j_mo_transfer_matrix_j)
|
|
if not np.allclose(transfer_matrix_ij, 0):
|
|
transfer_matrix_ij = (np.sqrt(2)*transfer_matrix_ij /
|
|
np.linalg.norm(transfer_matrix_ij))
|
|
transfer_matrix[:, i] = transfer_matrix_ij[
|
|
:transfer_matrix[:, i].shape[0], 0
|
|
]
|
|
transfer_matrix[:, j] = transfer_matrix_ij[
|
|
transfer_matrix[:, i].shape[0]:, 0
|
|
]
|
|
else:
|
|
# As in knv0 if transfer_matrix_j_mo_transfer_matrix_j is orthogonal to
|
|
# Vect{ker_pole_mu_nu} assign transfer_matrixi/transfer_matrix_j to
|
|
# ker_pole_mu_nu and iterate. As we are looking for a vector in
|
|
# Vect{Matker_pole_MU_NU} (see section 6.1 page 19) this might help
|
|
# (that's a guess, not a claim !)
|
|
transfer_matrix[:, i] = ker_pole_mu_nu[
|
|
:transfer_matrix[:, i].shape[0], 0
|
|
]
|
|
transfer_matrix[:, j] = ker_pole_mu_nu[
|
|
transfer_matrix[:, i].shape[0]:, 0
|
|
]
|
|
|
|
|
|
def _YT_complex(ker_pole, Q, transfer_matrix, i, j):
|
|
"""
|
|
Applies algorithm from YT section 6.2 page 20 related to complex pairs
|
|
"""
|
|
# step 1 page 20
|
|
ur = np.sqrt(2)*Q[:, -2, np.newaxis]
|
|
ui = np.sqrt(2)*Q[:, -1, np.newaxis]
|
|
u = ur + 1j*ui
|
|
|
|
# step 2 page 20
|
|
ker_pole_ij = ker_pole[i]
|
|
m = np.dot(np.dot(np.conj(ker_pole_ij.T), np.dot(u, np.conj(u).T) -
|
|
np.dot(np.conj(u), u.T)), ker_pole_ij)
|
|
|
|
# step 3 page 20
|
|
e_val, e_vec = np.linalg.eig(m)
|
|
# sort eigenvalues according to their module
|
|
e_val_idx = np.argsort(np.abs(e_val))
|
|
mu1 = e_vec[:, e_val_idx[-1], np.newaxis]
|
|
mu2 = e_vec[:, e_val_idx[-2], np.newaxis]
|
|
|
|
# what follows is a rough python translation of the formulas
|
|
# in section 6.2 page 20 (step 4)
|
|
|
|
# remember transfer_matrix_i has been split as
|
|
# transfer_matrix[i]=real(transfer_matrix_i) and
|
|
# transfer_matrix[j]=imag(transfer_matrix_i)
|
|
transfer_matrix_j_mo_transfer_matrix_j = (
|
|
transfer_matrix[:, i, np.newaxis] +
|
|
1j*transfer_matrix[:, j, np.newaxis]
|
|
)
|
|
if not np.allclose(np.abs(e_val[e_val_idx[-1]]),
|
|
np.abs(e_val[e_val_idx[-2]])):
|
|
ker_pole_mu = np.dot(ker_pole_ij, mu1)
|
|
else:
|
|
mu1_mu2_matrix = np.hstack((mu1, mu2))
|
|
ker_pole_mu = np.dot(ker_pole_ij, mu1_mu2_matrix)
|
|
transfer_matrix_i_j = np.dot(np.dot(ker_pole_mu, np.conj(ker_pole_mu.T)),
|
|
transfer_matrix_j_mo_transfer_matrix_j)
|
|
|
|
if not np.allclose(transfer_matrix_i_j, 0):
|
|
transfer_matrix_i_j = (transfer_matrix_i_j /
|
|
np.linalg.norm(transfer_matrix_i_j))
|
|
transfer_matrix[:, i] = np.real(transfer_matrix_i_j[:, 0])
|
|
transfer_matrix[:, j] = np.imag(transfer_matrix_i_j[:, 0])
|
|
else:
|
|
# same idea as in YT_real
|
|
transfer_matrix[:, i] = np.real(ker_pole_mu[:, 0])
|
|
transfer_matrix[:, j] = np.imag(ker_pole_mu[:, 0])
|
|
|
|
|
|
def _YT_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol):
|
|
"""
|
|
Algorithm "YT" Tits, Yang. Globally Convergent
|
|
Algorithms for Robust Pole Assignment by State Feedback
|
|
https://hdl.handle.net/1903/5598
|
|
The poles P have to be sorted accordingly to section 6.2 page 20
|
|
|
|
"""
|
|
# The IEEE edition of the YT paper gives useful information on the
|
|
# optimal update order for the real poles in order to minimize the number
|
|
# of times we have to loop over all poles, see page 1442
|
|
nb_real = poles[np.isreal(poles)].shape[0]
|
|
# hnb => Half Nb Real
|
|
hnb = nb_real // 2
|
|
|
|
# Stick to the indices in the paper and then remove one to get numpy array
|
|
# index it is a bit easier to link the code to the paper this way even if it
|
|
# is not very clean. The paper is unclear about what should be done when
|
|
# there is only one real pole => use KNV0 on this real pole seem to work
|
|
if nb_real > 0:
|
|
#update the biggest real pole with the smallest one
|
|
update_order = [[nb_real], [1]]
|
|
else:
|
|
update_order = [[],[]]
|
|
|
|
r_comp = np.arange(nb_real+1, len(poles)+1, 2)
|
|
# step 1.a
|
|
r_p = np.arange(1, hnb+nb_real % 2)
|
|
update_order[0].extend(2*r_p)
|
|
update_order[1].extend(2*r_p+1)
|
|
# step 1.b
|
|
update_order[0].extend(r_comp)
|
|
update_order[1].extend(r_comp+1)
|
|
# step 1.c
|
|
r_p = np.arange(1, hnb+1)
|
|
update_order[0].extend(2*r_p-1)
|
|
update_order[1].extend(2*r_p)
|
|
# step 1.d
|
|
if hnb == 0 and np.isreal(poles[0]):
|
|
update_order[0].append(1)
|
|
update_order[1].append(1)
|
|
update_order[0].extend(r_comp)
|
|
update_order[1].extend(r_comp+1)
|
|
# step 2.a
|
|
r_j = np.arange(2, hnb+nb_real % 2)
|
|
for j in r_j:
|
|
for i in range(1, hnb+1):
|
|
update_order[0].append(i)
|
|
update_order[1].append(i+j)
|
|
# step 2.b
|
|
if hnb == 0 and np.isreal(poles[0]):
|
|
update_order[0].append(1)
|
|
update_order[1].append(1)
|
|
update_order[0].extend(r_comp)
|
|
update_order[1].extend(r_comp+1)
|
|
# step 2.c
|
|
r_j = np.arange(2, hnb+nb_real % 2)
|
|
for j in r_j:
|
|
for i in range(hnb+1, nb_real+1):
|
|
idx_1 = i+j
|
|
if idx_1 > nb_real:
|
|
idx_1 = i+j-nb_real
|
|
update_order[0].append(i)
|
|
update_order[1].append(idx_1)
|
|
# step 2.d
|
|
if hnb == 0 and np.isreal(poles[0]):
|
|
update_order[0].append(1)
|
|
update_order[1].append(1)
|
|
update_order[0].extend(r_comp)
|
|
update_order[1].extend(r_comp+1)
|
|
# step 3.a
|
|
for i in range(1, hnb+1):
|
|
update_order[0].append(i)
|
|
update_order[1].append(i+hnb)
|
|
# step 3.b
|
|
if hnb == 0 and np.isreal(poles[0]):
|
|
update_order[0].append(1)
|
|
update_order[1].append(1)
|
|
update_order[0].extend(r_comp)
|
|
update_order[1].extend(r_comp+1)
|
|
|
|
update_order = np.array(update_order).T-1
|
|
stop = False
|
|
nb_try = 0
|
|
while nb_try < maxiter and not stop:
|
|
det_transfer_matrixb = np.abs(np.linalg.det(transfer_matrix))
|
|
for i, j in update_order:
|
|
if i == j:
|
|
assert i == 0, "i!=0 for KNV call in YT"
|
|
assert np.isreal(poles[i]), "calling KNV on a complex pole"
|
|
_KNV0(B, ker_pole, transfer_matrix, i, poles)
|
|
else:
|
|
transfer_matrix_not_i_j = np.delete(transfer_matrix, (i, j),
|
|
axis=1)
|
|
# after merge of gh-4249 great speed improvements could be
|
|
# achieved using QR updates instead of full QR in the line below
|
|
|
|
#to debug with numpy qr uncomment the line below
|
|
#Q, _ = np.linalg.qr(transfer_matrix_not_i_j, mode="complete")
|
|
Q, _ = s_qr(transfer_matrix_not_i_j, mode="full")
|
|
|
|
if np.isreal(poles[i]):
|
|
assert np.isreal(poles[j]), "mixing real and complex " + \
|
|
"in YT_real" + str(poles)
|
|
_YT_real(ker_pole, Q, transfer_matrix, i, j)
|
|
else:
|
|
assert ~np.isreal(poles[i]), "mixing real and complex " + \
|
|
"in YT_real" + str(poles)
|
|
_YT_complex(ker_pole, Q, transfer_matrix, i, j)
|
|
|
|
det_transfer_matrix = np.max((np.sqrt(np.spacing(1)),
|
|
np.abs(np.linalg.det(transfer_matrix))))
|
|
cur_rtol = np.abs(
|
|
(det_transfer_matrix -
|
|
det_transfer_matrixb) /
|
|
det_transfer_matrix)
|
|
if cur_rtol < rtol and det_transfer_matrix > np.sqrt(np.spacing(1)):
|
|
# Convergence test from YT page 21
|
|
stop = True
|
|
nb_try += 1
|
|
return stop, cur_rtol, nb_try
|
|
|
|
|
|
def _KNV0_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol):
|
|
"""
|
|
Loop over all poles one by one and apply KNV method 0 algorithm
|
|
"""
|
|
# This method is useful only because we need to be able to call
|
|
# _KNV0 from YT without looping over all poles, otherwise it would
|
|
# have been fine to mix _KNV0_loop and _KNV0 in a single function
|
|
stop = False
|
|
nb_try = 0
|
|
while nb_try < maxiter and not stop:
|
|
det_transfer_matrixb = np.abs(np.linalg.det(transfer_matrix))
|
|
for j in range(B.shape[0]):
|
|
_KNV0(B, ker_pole, transfer_matrix, j, poles)
|
|
|
|
det_transfer_matrix = np.max((np.sqrt(np.spacing(1)),
|
|
np.abs(np.linalg.det(transfer_matrix))))
|
|
cur_rtol = np.abs((det_transfer_matrix - det_transfer_matrixb) /
|
|
det_transfer_matrix)
|
|
if cur_rtol < rtol and det_transfer_matrix > np.sqrt(np.spacing(1)):
|
|
# Convergence test from YT page 21
|
|
stop = True
|
|
|
|
nb_try += 1
|
|
return stop, cur_rtol, nb_try
|
|
|
|
|
|
def place_poles(A, B, poles, method="YT", rtol=1e-3, maxiter=30):
|
|
"""
|
|
Compute K such that eigenvalues (A - dot(B, K))=poles.
|
|
|
|
K is the gain matrix such as the plant described by the linear system
|
|
``AX+BU`` will have its closed-loop poles, i.e the eigenvalues ``A - B*K``,
|
|
as close as possible to those asked for in poles.
|
|
|
|
SISO, MISO and MIMO systems are supported.
|
|
|
|
Parameters
|
|
----------
|
|
A, B : ndarray
|
|
State-space representation of linear system ``AX + BU``.
|
|
poles : array_like
|
|
Desired real poles and/or complex conjugates poles.
|
|
Complex poles are only supported with ``method="YT"`` (default).
|
|
method: {'YT', 'KNV0'}, optional
|
|
Which method to choose to find the gain matrix K. One of:
|
|
|
|
- 'YT': Yang Tits
|
|
- 'KNV0': Kautsky, Nichols, Van Dooren update method 0
|
|
|
|
See References and Notes for details on the algorithms.
|
|
rtol: float, optional
|
|
After each iteration the determinant of the eigenvectors of
|
|
``A - B*K`` is compared to its previous value, when the relative
|
|
error between these two values becomes lower than `rtol` the algorithm
|
|
stops. Default is 1e-3.
|
|
maxiter: int, optional
|
|
Maximum number of iterations to compute the gain matrix.
|
|
Default is 30.
|
|
|
|
Returns
|
|
-------
|
|
full_state_feedback : Bunch object
|
|
full_state_feedback is composed of:
|
|
gain_matrix : 1-D ndarray
|
|
The closed loop matrix K such as the eigenvalues of ``A-BK``
|
|
are as close as possible to the requested poles.
|
|
computed_poles : 1-D ndarray
|
|
The poles corresponding to ``A-BK`` sorted as first the real
|
|
poles in increasing order, then the complex congugates in
|
|
lexicographic order.
|
|
requested_poles : 1-D ndarray
|
|
The poles the algorithm was asked to place sorted as above,
|
|
they may differ from what was achieved.
|
|
X : 2-D ndarray
|
|
The transfer matrix such as ``X * diag(poles) = (A - B*K)*X``
|
|
(see Notes)
|
|
rtol : float
|
|
The relative tolerance achieved on ``det(X)`` (see Notes).
|
|
`rtol` will be NaN if it is possible to solve the system
|
|
``diag(poles) = (A - B*K)``, or 0 when the optimization
|
|
algorithms can't do anything i.e when ``B.shape[1] == 1``.
|
|
nb_iter : int
|
|
The number of iterations performed before converging.
|
|
`nb_iter` will be NaN if it is possible to solve the system
|
|
``diag(poles) = (A - B*K)``, or 0 when the optimization
|
|
algorithms can't do anything i.e when ``B.shape[1] == 1``.
|
|
|
|
Notes
|
|
-----
|
|
The Tits and Yang (YT), [2]_ paper is an update of the original Kautsky et
|
|
al. (KNV) paper [1]_. KNV relies on rank-1 updates to find the transfer
|
|
matrix X such that ``X * diag(poles) = (A - B*K)*X``, whereas YT uses
|
|
rank-2 updates. This yields on average more robust solutions (see [2]_
|
|
pp 21-22), furthermore the YT algorithm supports complex poles whereas KNV
|
|
does not in its original version. Only update method 0 proposed by KNV has
|
|
been implemented here, hence the name ``'KNV0'``.
|
|
|
|
KNV extended to complex poles is used in Matlab's ``place`` function, YT is
|
|
distributed under a non-free licence by Slicot under the name ``robpole``.
|
|
It is unclear and undocumented how KNV0 has been extended to complex poles
|
|
(Tits and Yang claim on page 14 of their paper that their method can not be
|
|
used to extend KNV to complex poles), therefore only YT supports them in
|
|
this implementation.
|
|
|
|
As the solution to the problem of pole placement is not unique for MIMO
|
|
systems, both methods start with a tentative transfer matrix which is
|
|
altered in various way to increase its determinant. Both methods have been
|
|
proven to converge to a stable solution, however depending on the way the
|
|
initial transfer matrix is chosen they will converge to different
|
|
solutions and therefore there is absolutely no guarantee that using
|
|
``'KNV0'`` will yield results similar to Matlab's or any other
|
|
implementation of these algorithms.
|
|
|
|
Using the default method ``'YT'`` should be fine in most cases; ``'KNV0'``
|
|
is only provided because it is needed by ``'YT'`` in some specific cases.
|
|
Furthermore ``'YT'`` gives on average more robust results than ``'KNV0'``
|
|
when ``abs(det(X))`` is used as a robustness indicator.
|
|
|
|
[2]_ is available as a technical report on the following URL:
|
|
https://hdl.handle.net/1903/5598
|
|
|
|
References
|
|
----------
|
|
.. [1] J. Kautsky, N.K. Nichols and P. van Dooren, "Robust pole assignment
|
|
in linear state feedback", International Journal of Control, Vol. 41
|
|
pp. 1129-1155, 1985.
|
|
.. [2] A.L. Tits and Y. Yang, "Globally convergent algorithms for robust
|
|
pole assignment by state feedback", IEEE Transactions on Automatic
|
|
Control, Vol. 41, pp. 1432-1452, 1996.
|
|
|
|
Examples
|
|
--------
|
|
A simple example demonstrating real pole placement using both KNV and YT
|
|
algorithms. This is example number 1 from section 4 of the reference KNV
|
|
publication ([1]_):
|
|
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> A = np.array([[ 1.380, -0.2077, 6.715, -5.676 ],
|
|
... [-0.5814, -4.290, 0, 0.6750 ],
|
|
... [ 1.067, 4.273, -6.654, 5.893 ],
|
|
... [ 0.0480, 4.273, 1.343, -2.104 ]])
|
|
>>> B = np.array([[ 0, 5.679 ],
|
|
... [ 1.136, 1.136 ],
|
|
... [ 0, 0, ],
|
|
... [-3.146, 0 ]])
|
|
>>> P = np.array([-0.2, -0.5, -5.0566, -8.6659])
|
|
|
|
Now compute K with KNV method 0, with the default YT method and with the YT
|
|
method while forcing 100 iterations of the algorithm and print some results
|
|
after each call.
|
|
|
|
>>> fsf1 = signal.place_poles(A, B, P, method='KNV0')
|
|
>>> fsf1.gain_matrix
|
|
array([[ 0.20071427, -0.96665799, 0.24066128, -0.10279785],
|
|
[ 0.50587268, 0.57779091, 0.51795763, -0.41991442]])
|
|
|
|
>>> fsf2 = signal.place_poles(A, B, P) # uses YT method
|
|
>>> fsf2.computed_poles
|
|
array([-8.6659, -5.0566, -0.5 , -0.2 ])
|
|
|
|
>>> fsf3 = signal.place_poles(A, B, P, rtol=-1, maxiter=100)
|
|
>>> fsf3.X
|
|
array([[ 0.52072442+0.j, -0.08409372+0.j, -0.56847937+0.j, 0.74823657+0.j],
|
|
[-0.04977751+0.j, -0.80872954+0.j, 0.13566234+0.j, -0.29322906+0.j],
|
|
[-0.82266932+0.j, -0.19168026+0.j, -0.56348322+0.j, -0.43815060+0.j],
|
|
[ 0.22267347+0.j, 0.54967577+0.j, -0.58387806+0.j, -0.40271926+0.j]])
|
|
|
|
The absolute value of the determinant of X is a good indicator to check the
|
|
robustness of the results, both ``'KNV0'`` and ``'YT'`` aim at maximizing
|
|
it. Below a comparison of the robustness of the results above:
|
|
|
|
>>> abs(np.linalg.det(fsf1.X)) < abs(np.linalg.det(fsf2.X))
|
|
True
|
|
>>> abs(np.linalg.det(fsf2.X)) < abs(np.linalg.det(fsf3.X))
|
|
True
|
|
|
|
Now a simple example for complex poles:
|
|
|
|
>>> A = np.array([[ 0, 7/3., 0, 0 ],
|
|
... [ 0, 0, 0, 7/9. ],
|
|
... [ 0, 0, 0, 0 ],
|
|
... [ 0, 0, 0, 0 ]])
|
|
>>> B = np.array([[ 0, 0 ],
|
|
... [ 0, 0 ],
|
|
... [ 1, 0 ],
|
|
... [ 0, 1 ]])
|
|
>>> P = np.array([-3, -1, -2-1j, -2+1j]) / 3.
|
|
>>> fsf = signal.place_poles(A, B, P, method='YT')
|
|
|
|
We can plot the desired and computed poles in the complex plane:
|
|
|
|
>>> t = np.linspace(0, 2*np.pi, 401)
|
|
>>> plt.plot(np.cos(t), np.sin(t), 'k--') # unit circle
|
|
>>> plt.plot(fsf.requested_poles.real, fsf.requested_poles.imag,
|
|
... 'wo', label='Desired')
|
|
>>> plt.plot(fsf.computed_poles.real, fsf.computed_poles.imag, 'bx',
|
|
... label='Placed')
|
|
>>> plt.grid()
|
|
>>> plt.axis('image')
|
|
>>> plt.axis([-1.1, 1.1, -1.1, 1.1])
|
|
>>> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, numpoints=1)
|
|
|
|
"""
|
|
# Move away all the inputs checking, it only adds noise to the code
|
|
update_loop, poles = _valid_inputs(A, B, poles, method, rtol, maxiter)
|
|
|
|
# The current value of the relative tolerance we achieved
|
|
cur_rtol = 0
|
|
# The number of iterations needed before converging
|
|
nb_iter = 0
|
|
|
|
# Step A: QR decomposition of B page 1132 KN
|
|
# to debug with numpy qr uncomment the line below
|
|
# u, z = np.linalg.qr(B, mode="complete")
|
|
u, z = s_qr(B, mode="full")
|
|
rankB = np.linalg.matrix_rank(B)
|
|
u0 = u[:, :rankB]
|
|
u1 = u[:, rankB:]
|
|
z = z[:rankB, :]
|
|
|
|
# If we can use the identity matrix as X the solution is obvious
|
|
if B.shape[0] == rankB:
|
|
# if B is square and full rank there is only one solution
|
|
# such as (A+BK)=inv(X)*diag(P)*X with X=eye(A.shape[0])
|
|
# i.e K=inv(B)*(diag(P)-A)
|
|
# if B has as many lines as its rank (but not square) there are many
|
|
# solutions and we can choose one using least squares
|
|
# => use lstsq in both cases.
|
|
# In both cases the transfer matrix X will be eye(A.shape[0]) and I
|
|
# can hardly think of a better one so there is nothing to optimize
|
|
#
|
|
# for complex poles we use the following trick
|
|
#
|
|
# |a -b| has for eigenvalues a+b and a-b
|
|
# |b a|
|
|
#
|
|
# |a+bi 0| has the obvious eigenvalues a+bi and a-bi
|
|
# |0 a-bi|
|
|
#
|
|
# e.g solving the first one in R gives the solution
|
|
# for the second one in C
|
|
diag_poles = np.zeros(A.shape)
|
|
idx = 0
|
|
while idx < poles.shape[0]:
|
|
p = poles[idx]
|
|
diag_poles[idx, idx] = np.real(p)
|
|
if ~np.isreal(p):
|
|
diag_poles[idx, idx+1] = -np.imag(p)
|
|
diag_poles[idx+1, idx+1] = np.real(p)
|
|
diag_poles[idx+1, idx] = np.imag(p)
|
|
idx += 1 # skip next one
|
|
idx += 1
|
|
gain_matrix = np.linalg.lstsq(B, diag_poles-A, rcond=-1)[0]
|
|
transfer_matrix = np.eye(A.shape[0])
|
|
cur_rtol = np.nan
|
|
nb_iter = np.nan
|
|
else:
|
|
# step A (p1144 KNV) and beginning of step F: decompose
|
|
# dot(U1.T, A-P[i]*I).T and build our set of transfer_matrix vectors
|
|
# in the same loop
|
|
ker_pole = []
|
|
|
|
# flag to skip the conjugate of a complex pole
|
|
skip_conjugate = False
|
|
# select orthonormal base ker_pole for each Pole and vectors for
|
|
# transfer_matrix
|
|
for j in range(B.shape[0]):
|
|
if skip_conjugate:
|
|
skip_conjugate = False
|
|
continue
|
|
pole_space_j = np.dot(u1.T, A-poles[j]*np.eye(B.shape[0])).T
|
|
|
|
# after QR Q=Q0|Q1
|
|
# only Q0 is used to reconstruct the qr'ed (dot Q, R) matrix.
|
|
# Q1 is orthogonnal to Q0 and will be multiplied by the zeros in
|
|
# R when using mode "complete". In default mode Q1 and the zeros
|
|
# in R are not computed
|
|
|
|
# To debug with numpy qr uncomment the line below
|
|
# Q, _ = np.linalg.qr(pole_space_j, mode="complete")
|
|
Q, _ = s_qr(pole_space_j, mode="full")
|
|
|
|
ker_pole_j = Q[:, pole_space_j.shape[1]:]
|
|
|
|
# We want to select one vector in ker_pole_j to build the transfer
|
|
# matrix, however qr returns sometimes vectors with zeros on the
|
|
# same line for each pole and this yields very long convergence
|
|
# times.
|
|
# Or some other times a set of vectors, one with zero imaginary
|
|
# part and one (or several) with imaginary parts. After trying
|
|
# many ways to select the best possible one (eg ditch vectors
|
|
# with zero imaginary part for complex poles) I ended up summing
|
|
# all vectors in ker_pole_j, this solves 100% of the problems and
|
|
# is a valid choice for transfer_matrix.
|
|
# This way for complex poles we are sure to have a non zero
|
|
# imaginary part that way, and the problem of lines full of zeros
|
|
# in transfer_matrix is solved too as when a vector from
|
|
# ker_pole_j has a zero the other one(s) when
|
|
# ker_pole_j.shape[1]>1) for sure won't have a zero there.
|
|
|
|
transfer_matrix_j = np.sum(ker_pole_j, axis=1)[:, np.newaxis]
|
|
transfer_matrix_j = (transfer_matrix_j /
|
|
np.linalg.norm(transfer_matrix_j))
|
|
if ~np.isreal(poles[j]): # complex pole
|
|
transfer_matrix_j = np.hstack([np.real(transfer_matrix_j),
|
|
np.imag(transfer_matrix_j)])
|
|
ker_pole.extend([ker_pole_j, ker_pole_j])
|
|
|
|
# Skip next pole as it is the conjugate
|
|
skip_conjugate = True
|
|
else: # real pole, nothing to do
|
|
ker_pole.append(ker_pole_j)
|
|
|
|
if j == 0:
|
|
transfer_matrix = transfer_matrix_j
|
|
else:
|
|
transfer_matrix = np.hstack((transfer_matrix, transfer_matrix_j))
|
|
|
|
if rankB > 1: # otherwise there is nothing we can optimize
|
|
stop, cur_rtol, nb_iter = update_loop(ker_pole, transfer_matrix,
|
|
poles, B, maxiter, rtol)
|
|
if not stop and rtol > 0:
|
|
# if rtol<=0 the user has probably done that on purpose,
|
|
# don't annoy him
|
|
err_msg = (
|
|
"Convergence was not reached after maxiter iterations.\n"
|
|
"You asked for a relative tolerance of %f we got %f" %
|
|
(rtol, cur_rtol)
|
|
)
|
|
warnings.warn(err_msg)
|
|
|
|
# reconstruct transfer_matrix to match complex conjugate pairs,
|
|
# ie transfer_matrix_j/transfer_matrix_j+1 are
|
|
# Re(Complex_pole), Im(Complex_pole) now and will be Re-Im/Re+Im after
|
|
transfer_matrix = transfer_matrix.astype(complex)
|
|
idx = 0
|
|
while idx < poles.shape[0]-1:
|
|
if ~np.isreal(poles[idx]):
|
|
rel = transfer_matrix[:, idx].copy()
|
|
img = transfer_matrix[:, idx+1]
|
|
# rel will be an array referencing a column of transfer_matrix
|
|
# if we don't copy() it will changer after the next line and
|
|
# and the line after will not yield the correct value
|
|
transfer_matrix[:, idx] = rel-1j*img
|
|
transfer_matrix[:, idx+1] = rel+1j*img
|
|
idx += 1 # skip next one
|
|
idx += 1
|
|
|
|
try:
|
|
m = np.linalg.solve(transfer_matrix.T, np.dot(np.diag(poles),
|
|
transfer_matrix.T)).T
|
|
gain_matrix = np.linalg.solve(z, np.dot(u0.T, m-A))
|
|
except np.linalg.LinAlgError as e:
|
|
raise ValueError("The poles you've chosen can't be placed. "
|
|
"Check the controllability matrix and try "
|
|
"another set of poles") from e
|
|
|
|
# Beware: Kautsky solves A+BK but the usual form is A-BK
|
|
gain_matrix = -gain_matrix
|
|
# K still contains complex with ~=0j imaginary parts, get rid of them
|
|
gain_matrix = np.real(gain_matrix)
|
|
|
|
full_state_feedback = Bunch()
|
|
full_state_feedback.gain_matrix = gain_matrix
|
|
full_state_feedback.computed_poles = _order_complex_poles(
|
|
np.linalg.eig(A - np.dot(B, gain_matrix))[0]
|
|
)
|
|
full_state_feedback.requested_poles = poles
|
|
full_state_feedback.X = transfer_matrix
|
|
full_state_feedback.rtol = cur_rtol
|
|
full_state_feedback.nb_iter = nb_iter
|
|
|
|
return full_state_feedback
|
|
|
|
|
|
def dlsim(system, u, t=None, x0=None):
|
|
"""
|
|
Simulate output of a discrete-time linear system.
|
|
|
|
Parameters
|
|
----------
|
|
system : tuple of array_like or instance of `dlti`
|
|
A tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1: (instance of `dlti`)
|
|
* 3: (num, den, dt)
|
|
* 4: (zeros, poles, gain, dt)
|
|
* 5: (A, B, C, D, dt)
|
|
|
|
u : array_like
|
|
An input array describing the input at each time `t` (interpolation is
|
|
assumed between given times). If there are multiple inputs, then each
|
|
column of the rank-2 array represents an input.
|
|
t : array_like, optional
|
|
The time steps at which the input is defined. If `t` is given, it
|
|
must be the same length as `u`, and the final value in `t` determines
|
|
the number of steps returned in the output.
|
|
x0 : array_like, optional
|
|
The initial conditions on the state vector (zero by default).
|
|
|
|
Returns
|
|
-------
|
|
tout : ndarray
|
|
Time values for the output, as a 1-D array.
|
|
yout : ndarray
|
|
System response, as a 1-D array.
|
|
xout : ndarray, optional
|
|
Time-evolution of the state-vector. Only generated if the input is a
|
|
`StateSpace` system.
|
|
|
|
See Also
|
|
--------
|
|
lsim, dstep, dimpulse, cont2discrete
|
|
|
|
Examples
|
|
--------
|
|
A simple integrator transfer function with a discrete time step of 1.0
|
|
could be implemented as:
|
|
|
|
>>> from scipy import signal
|
|
>>> tf = ([1.0,], [1.0, -1.0], 1.0)
|
|
>>> t_in = [0.0, 1.0, 2.0, 3.0]
|
|
>>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
|
|
>>> t_out, y = signal.dlsim(tf, u, t=t_in)
|
|
>>> y.T
|
|
array([[ 0., 0., 0., 1.]])
|
|
|
|
"""
|
|
# Convert system to dlti-StateSpace
|
|
if isinstance(system, lti):
|
|
raise AttributeError('dlsim can only be used with discrete-time dlti '
|
|
'systems.')
|
|
elif not isinstance(system, dlti):
|
|
system = dlti(*system[:-1], dt=system[-1])
|
|
|
|
# Condition needed to ensure output remains compatible
|
|
is_ss_input = isinstance(system, StateSpace)
|
|
system = system._as_ss()
|
|
|
|
u = np.atleast_1d(u)
|
|
|
|
if u.ndim == 1:
|
|
u = np.atleast_2d(u).T
|
|
|
|
if t is None:
|
|
out_samples = len(u)
|
|
stoptime = (out_samples - 1) * system.dt
|
|
else:
|
|
stoptime = t[-1]
|
|
out_samples = int(np.floor(stoptime / system.dt)) + 1
|
|
|
|
# Pre-build output arrays
|
|
xout = np.zeros((out_samples, system.A.shape[0]))
|
|
yout = np.zeros((out_samples, system.C.shape[0]))
|
|
tout = np.linspace(0.0, stoptime, num=out_samples)
|
|
|
|
# Check initial condition
|
|
if x0 is None:
|
|
xout[0, :] = np.zeros((system.A.shape[1],))
|
|
else:
|
|
xout[0, :] = np.asarray(x0)
|
|
|
|
# Pre-interpolate inputs into the desired time steps
|
|
if t is None:
|
|
u_dt = u
|
|
else:
|
|
if len(u.shape) == 1:
|
|
u = u[:, np.newaxis]
|
|
|
|
u_dt_interp = interp1d(t, u.transpose(), copy=False, bounds_error=True)
|
|
u_dt = u_dt_interp(tout).transpose()
|
|
|
|
# Simulate the system
|
|
for i in range(0, out_samples - 1):
|
|
xout[i+1, :] = (np.dot(system.A, xout[i, :]) +
|
|
np.dot(system.B, u_dt[i, :]))
|
|
yout[i, :] = (np.dot(system.C, xout[i, :]) +
|
|
np.dot(system.D, u_dt[i, :]))
|
|
|
|
# Last point
|
|
yout[out_samples-1, :] = (np.dot(system.C, xout[out_samples-1, :]) +
|
|
np.dot(system.D, u_dt[out_samples-1, :]))
|
|
|
|
if is_ss_input:
|
|
return tout, yout, xout
|
|
else:
|
|
return tout, yout
|
|
|
|
|
|
def dimpulse(system, x0=None, t=None, n=None):
|
|
"""
|
|
Impulse response of discrete-time system.
|
|
|
|
Parameters
|
|
----------
|
|
system : tuple of array_like or instance of `dlti`
|
|
A tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1: (instance of `dlti`)
|
|
* 3: (num, den, dt)
|
|
* 4: (zeros, poles, gain, dt)
|
|
* 5: (A, B, C, D, dt)
|
|
|
|
x0 : array_like, optional
|
|
Initial state-vector. Defaults to zero.
|
|
t : array_like, optional
|
|
Time points. Computed if not given.
|
|
n : int, optional
|
|
The number of time points to compute (if `t` is not given).
|
|
|
|
Returns
|
|
-------
|
|
tout : ndarray
|
|
Time values for the output, as a 1-D array.
|
|
yout : tuple of ndarray
|
|
Impulse response of system. Each element of the tuple represents
|
|
the output of the system based on an impulse in each input.
|
|
|
|
See Also
|
|
--------
|
|
impulse, dstep, dlsim, cont2discrete
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> butter = signal.dlti(*signal.butter(3, 0.5))
|
|
>>> t, y = signal.dimpulse(butter, n=25)
|
|
>>> plt.step(t, np.squeeze(y))
|
|
>>> plt.grid()
|
|
>>> plt.xlabel('n [samples]')
|
|
>>> plt.ylabel('Amplitude')
|
|
|
|
"""
|
|
# Convert system to dlti-StateSpace
|
|
if isinstance(system, dlti):
|
|
system = system._as_ss()
|
|
elif isinstance(system, lti):
|
|
raise AttributeError('dimpulse can only be used with discrete-time '
|
|
'dlti systems.')
|
|
else:
|
|
system = dlti(*system[:-1], dt=system[-1])._as_ss()
|
|
|
|
# Default to 100 samples if unspecified
|
|
if n is None:
|
|
n = 100
|
|
|
|
# If time is not specified, use the number of samples
|
|
# and system dt
|
|
if t is None:
|
|
t = np.linspace(0, n * system.dt, n, endpoint=False)
|
|
else:
|
|
t = np.asarray(t)
|
|
|
|
# For each input, implement a step change
|
|
yout = None
|
|
for i in range(0, system.inputs):
|
|
u = np.zeros((t.shape[0], system.inputs))
|
|
u[0, i] = 1.0
|
|
|
|
one_output = dlsim(system, u, t=t, x0=x0)
|
|
|
|
if yout is None:
|
|
yout = (one_output[1],)
|
|
else:
|
|
yout = yout + (one_output[1],)
|
|
|
|
tout = one_output[0]
|
|
|
|
return tout, yout
|
|
|
|
|
|
def dstep(system, x0=None, t=None, n=None):
|
|
"""
|
|
Step response of discrete-time system.
|
|
|
|
Parameters
|
|
----------
|
|
system : tuple of array_like
|
|
A tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1: (instance of `dlti`)
|
|
* 3: (num, den, dt)
|
|
* 4: (zeros, poles, gain, dt)
|
|
* 5: (A, B, C, D, dt)
|
|
|
|
x0 : array_like, optional
|
|
Initial state-vector. Defaults to zero.
|
|
t : array_like, optional
|
|
Time points. Computed if not given.
|
|
n : int, optional
|
|
The number of time points to compute (if `t` is not given).
|
|
|
|
Returns
|
|
-------
|
|
tout : ndarray
|
|
Output time points, as a 1-D array.
|
|
yout : tuple of ndarray
|
|
Step response of system. Each element of the tuple represents
|
|
the output of the system based on a step response to each input.
|
|
|
|
See Also
|
|
--------
|
|
step, dimpulse, dlsim, cont2discrete
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
>>> butter = signal.dlti(*signal.butter(3, 0.5))
|
|
>>> t, y = signal.dstep(butter, n=25)
|
|
>>> plt.step(t, np.squeeze(y))
|
|
>>> plt.grid()
|
|
>>> plt.xlabel('n [samples]')
|
|
>>> plt.ylabel('Amplitude')
|
|
"""
|
|
# Convert system to dlti-StateSpace
|
|
if isinstance(system, dlti):
|
|
system = system._as_ss()
|
|
elif isinstance(system, lti):
|
|
raise AttributeError('dstep can only be used with discrete-time dlti '
|
|
'systems.')
|
|
else:
|
|
system = dlti(*system[:-1], dt=system[-1])._as_ss()
|
|
|
|
# Default to 100 samples if unspecified
|
|
if n is None:
|
|
n = 100
|
|
|
|
# If time is not specified, use the number of samples
|
|
# and system dt
|
|
if t is None:
|
|
t = np.linspace(0, n * system.dt, n, endpoint=False)
|
|
else:
|
|
t = np.asarray(t)
|
|
|
|
# For each input, implement a step change
|
|
yout = None
|
|
for i in range(0, system.inputs):
|
|
u = np.zeros((t.shape[0], system.inputs))
|
|
u[:, i] = np.ones((t.shape[0],))
|
|
|
|
one_output = dlsim(system, u, t=t, x0=x0)
|
|
|
|
if yout is None:
|
|
yout = (one_output[1],)
|
|
else:
|
|
yout = yout + (one_output[1],)
|
|
|
|
tout = one_output[0]
|
|
|
|
return tout, yout
|
|
|
|
|
|
def dfreqresp(system, w=None, n=10000, whole=False):
|
|
"""
|
|
Calculate the frequency response of a discrete-time system.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the `dlti` class or a tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1 (instance of `dlti`)
|
|
* 2 (numerator, denominator, dt)
|
|
* 3 (zeros, poles, gain, dt)
|
|
* 4 (A, B, C, D, dt)
|
|
|
|
w : array_like, optional
|
|
Array of frequencies (in radians/sample). Magnitude and phase data is
|
|
calculated for every value in this array. If not given a reasonable
|
|
set will be calculated.
|
|
n : int, optional
|
|
Number of frequency points to compute if `w` is not given. The `n`
|
|
frequencies are logarithmically spaced in an interval chosen to
|
|
include the influence of the poles and zeros of the system.
|
|
whole : bool, optional
|
|
Normally, if 'w' is not given, frequencies are computed from 0 to the
|
|
Nyquist frequency, pi radians/sample (upper-half of unit-circle). If
|
|
`whole` is True, compute frequencies from 0 to 2*pi radians/sample.
|
|
|
|
Returns
|
|
-------
|
|
w : 1D ndarray
|
|
Frequency array [radians/sample]
|
|
H : 1D ndarray
|
|
Array of complex magnitude values
|
|
|
|
Notes
|
|
-----
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
.. versionadded:: 0.18.0
|
|
|
|
Examples
|
|
--------
|
|
Generating the Nyquist plot of a transfer function
|
|
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
Transfer function: H(z) = 1 / (z^2 + 2z + 3)
|
|
|
|
>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05)
|
|
|
|
>>> w, H = signal.dfreqresp(sys)
|
|
|
|
>>> plt.figure()
|
|
>>> plt.plot(H.real, H.imag, "b")
|
|
>>> plt.plot(H.real, -H.imag, "r")
|
|
>>> plt.show()
|
|
|
|
"""
|
|
if not isinstance(system, dlti):
|
|
if isinstance(system, lti):
|
|
raise AttributeError('dfreqresp can only be used with '
|
|
'discrete-time systems.')
|
|
|
|
system = dlti(*system[:-1], dt=system[-1])
|
|
|
|
if isinstance(system, StateSpace):
|
|
# No SS->ZPK code exists right now, just SS->TF->ZPK
|
|
system = system._as_tf()
|
|
|
|
if not isinstance(system, (TransferFunction, ZerosPolesGain)):
|
|
raise ValueError('Unknown system type')
|
|
|
|
if system.inputs != 1 or system.outputs != 1:
|
|
raise ValueError("dfreqresp requires a SISO (single input, single "
|
|
"output) system.")
|
|
|
|
if w is not None:
|
|
worN = w
|
|
else:
|
|
worN = n
|
|
|
|
if isinstance(system, TransferFunction):
|
|
# Convert numerator and denominator from polynomials in the variable
|
|
# 'z' to polynomials in the variable 'z^-1', as freqz expects.
|
|
num, den = TransferFunction._z_to_zinv(system.num.ravel(), system.den)
|
|
w, h = freqz(num, den, worN=worN, whole=whole)
|
|
|
|
elif isinstance(system, ZerosPolesGain):
|
|
w, h = freqz_zpk(system.zeros, system.poles, system.gain, worN=worN,
|
|
whole=whole)
|
|
|
|
return w, h
|
|
|
|
|
|
def dbode(system, w=None, n=100):
|
|
"""
|
|
Calculate Bode magnitude and phase data of a discrete-time system.
|
|
|
|
Parameters
|
|
----------
|
|
system : an instance of the LTI class or a tuple describing the system.
|
|
The following gives the number of elements in the tuple and
|
|
the interpretation:
|
|
|
|
* 1 (instance of `dlti`)
|
|
* 2 (num, den, dt)
|
|
* 3 (zeros, poles, gain, dt)
|
|
* 4 (A, B, C, D, dt)
|
|
|
|
w : array_like, optional
|
|
Array of frequencies (in radians/sample). Magnitude and phase data is
|
|
calculated for every value in this array. If not given a reasonable
|
|
set will be calculated.
|
|
n : int, optional
|
|
Number of frequency points to compute if `w` is not given. The `n`
|
|
frequencies are logarithmically spaced in an interval chosen to
|
|
include the influence of the poles and zeros of the system.
|
|
|
|
Returns
|
|
-------
|
|
w : 1D ndarray
|
|
Frequency array [rad/time_unit]
|
|
mag : 1D ndarray
|
|
Magnitude array [dB]
|
|
phase : 1D ndarray
|
|
Phase array [deg]
|
|
|
|
Notes
|
|
-----
|
|
If (num, den) is passed in for ``system``, coefficients for both the
|
|
numerator and denominator should be specified in descending exponent
|
|
order (e.g. ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``).
|
|
|
|
.. versionadded:: 0.18.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import signal
|
|
>>> import matplotlib.pyplot as plt
|
|
|
|
Transfer function: H(z) = 1 / (z^2 + 2z + 3)
|
|
|
|
>>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05)
|
|
|
|
Equivalent: sys.bode()
|
|
|
|
>>> w, mag, phase = signal.dbode(sys)
|
|
|
|
>>> plt.figure()
|
|
>>> plt.semilogx(w, mag) # Bode magnitude plot
|
|
>>> plt.figure()
|
|
>>> plt.semilogx(w, phase) # Bode phase plot
|
|
>>> plt.show()
|
|
|
|
"""
|
|
w, y = dfreqresp(system, w=w, n=n)
|
|
|
|
if isinstance(system, dlti):
|
|
dt = system.dt
|
|
else:
|
|
dt = system[-1]
|
|
|
|
mag = 20.0 * numpy.log10(abs(y))
|
|
phase = numpy.rad2deg(numpy.unwrap(numpy.angle(y)))
|
|
|
|
return w / dt, mag, phase
|