forked from 170010011/fr
425 lines
13 KiB
Python
425 lines
13 KiB
Python
"""QR decomposition functions."""
|
|
import numpy
|
|
|
|
# Local imports
|
|
from .lapack import get_lapack_funcs
|
|
from .misc import _datacopied
|
|
|
|
__all__ = ['qr', 'qr_multiply', 'rq']
|
|
|
|
|
|
def safecall(f, name, *args, **kwargs):
|
|
"""Call a LAPACK routine, determining lwork automatically and handling
|
|
error return values"""
|
|
lwork = kwargs.get("lwork", None)
|
|
if lwork in (None, -1):
|
|
kwargs['lwork'] = -1
|
|
ret = f(*args, **kwargs)
|
|
kwargs['lwork'] = ret[-2][0].real.astype(numpy.int_)
|
|
ret = f(*args, **kwargs)
|
|
if ret[-1] < 0:
|
|
raise ValueError("illegal value in %dth argument of internal %s"
|
|
% (-ret[-1], name))
|
|
return ret[:-2]
|
|
|
|
|
|
def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False,
|
|
check_finite=True):
|
|
"""
|
|
Compute QR decomposition of a matrix.
|
|
|
|
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
|
|
and R upper triangular.
|
|
|
|
Parameters
|
|
----------
|
|
a : (M, N) array_like
|
|
Matrix to be decomposed
|
|
overwrite_a : bool, optional
|
|
Whether data in `a` is overwritten (may improve performance if
|
|
`overwrite_a` is set to True by reusing the existing input data
|
|
structure rather than creating a new one.)
|
|
lwork : int, optional
|
|
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
|
|
is computed.
|
|
mode : {'full', 'r', 'economic', 'raw'}, optional
|
|
Determines what information is to be returned: either both Q and R
|
|
('full', default), only R ('r') or both Q and R but computed in
|
|
economy-size ('economic', see Notes). The final option 'raw'
|
|
(added in SciPy 0.11) makes the function return two matrices
|
|
(Q, TAU) in the internal format used by LAPACK.
|
|
pivoting : bool, optional
|
|
Whether or not factorization should include pivoting for rank-revealing
|
|
qr decomposition. If pivoting, compute the decomposition
|
|
``A P = Q R`` as above, but where P is chosen such that the diagonal
|
|
of R is non-increasing.
|
|
check_finite : bool, optional
|
|
Whether to check that the input matrix contains only finite numbers.
|
|
Disabling may give a performance gain, but may result in problems
|
|
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
|
|
|
Returns
|
|
-------
|
|
Q : float or complex ndarray
|
|
Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned
|
|
if ``mode='r'``.
|
|
R : float or complex ndarray
|
|
Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``.
|
|
P : int ndarray
|
|
Of shape (N,) for ``pivoting=True``. Not returned if
|
|
``pivoting=False``.
|
|
|
|
Raises
|
|
------
|
|
LinAlgError
|
|
Raised if decomposition fails
|
|
|
|
Notes
|
|
-----
|
|
This is an interface to the LAPACK routines dgeqrf, zgeqrf,
|
|
dorgqr, zungqr, dgeqp3, and zgeqp3.
|
|
|
|
If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
|
|
of (M,M) and (M,N), with ``K=min(M,N)``.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import linalg
|
|
>>> a = np.random.randn(9, 6)
|
|
|
|
>>> q, r = linalg.qr(a)
|
|
>>> np.allclose(a, np.dot(q, r))
|
|
True
|
|
>>> q.shape, r.shape
|
|
((9, 9), (9, 6))
|
|
|
|
>>> r2 = linalg.qr(a, mode='r')
|
|
>>> np.allclose(r, r2)
|
|
True
|
|
|
|
>>> q3, r3 = linalg.qr(a, mode='economic')
|
|
>>> q3.shape, r3.shape
|
|
((9, 6), (6, 6))
|
|
|
|
>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
|
|
>>> d = np.abs(np.diag(r4))
|
|
>>> np.all(d[1:] <= d[:-1])
|
|
True
|
|
>>> np.allclose(a[:, p4], np.dot(q4, r4))
|
|
True
|
|
>>> q4.shape, r4.shape, p4.shape
|
|
((9, 9), (9, 6), (6,))
|
|
|
|
>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
|
|
>>> q5.shape, r5.shape, p5.shape
|
|
((9, 6), (6, 6), (6,))
|
|
|
|
"""
|
|
# 'qr' was the old default, equivalent to 'full'. Neither 'full' nor
|
|
# 'qr' are used below.
|
|
# 'raw' is used internally by qr_multiply
|
|
if mode not in ['full', 'qr', 'r', 'economic', 'raw']:
|
|
raise ValueError("Mode argument should be one of ['full', 'r',"
|
|
"'economic', 'raw']")
|
|
|
|
if check_finite:
|
|
a1 = numpy.asarray_chkfinite(a)
|
|
else:
|
|
a1 = numpy.asarray(a)
|
|
if len(a1.shape) != 2:
|
|
raise ValueError("expected a 2-D array")
|
|
M, N = a1.shape
|
|
overwrite_a = overwrite_a or (_datacopied(a1, a))
|
|
|
|
if pivoting:
|
|
geqp3, = get_lapack_funcs(('geqp3',), (a1,))
|
|
qr, jpvt, tau = safecall(geqp3, "geqp3", a1, overwrite_a=overwrite_a)
|
|
jpvt -= 1 # geqp3 returns a 1-based index array, so subtract 1
|
|
else:
|
|
geqrf, = get_lapack_funcs(('geqrf',), (a1,))
|
|
qr, tau = safecall(geqrf, "geqrf", a1, lwork=lwork,
|
|
overwrite_a=overwrite_a)
|
|
|
|
if mode not in ['economic', 'raw'] or M < N:
|
|
R = numpy.triu(qr)
|
|
else:
|
|
R = numpy.triu(qr[:N, :])
|
|
|
|
if pivoting:
|
|
Rj = R, jpvt
|
|
else:
|
|
Rj = R,
|
|
|
|
if mode == 'r':
|
|
return Rj
|
|
elif mode == 'raw':
|
|
return ((qr, tau),) + Rj
|
|
|
|
gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,))
|
|
|
|
if M < N:
|
|
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr[:, :M], tau,
|
|
lwork=lwork, overwrite_a=1)
|
|
elif mode == 'economic':
|
|
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr, tau, lwork=lwork,
|
|
overwrite_a=1)
|
|
else:
|
|
t = qr.dtype.char
|
|
qqr = numpy.empty((M, M), dtype=t)
|
|
qqr[:, :N] = qr
|
|
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qqr, tau, lwork=lwork,
|
|
overwrite_a=1)
|
|
|
|
return (Q,) + Rj
|
|
|
|
|
|
def qr_multiply(a, c, mode='right', pivoting=False, conjugate=False,
|
|
overwrite_a=False, overwrite_c=False):
|
|
"""
|
|
Calculate the QR decomposition and multiply Q with a matrix.
|
|
|
|
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
|
|
and R upper triangular. Multiply Q with a vector or a matrix c.
|
|
|
|
Parameters
|
|
----------
|
|
a : (M, N), array_like
|
|
Input array
|
|
c : array_like
|
|
Input array to be multiplied by ``q``.
|
|
mode : {'left', 'right'}, optional
|
|
``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if
|
|
mode is 'right'.
|
|
The shape of c must be appropriate for the matrix multiplications,
|
|
if mode is 'left', ``min(a.shape) == c.shape[0]``,
|
|
if mode is 'right', ``a.shape[0] == c.shape[1]``.
|
|
pivoting : bool, optional
|
|
Whether or not factorization should include pivoting for rank-revealing
|
|
qr decomposition, see the documentation of qr.
|
|
conjugate : bool, optional
|
|
Whether Q should be complex-conjugated. This might be faster
|
|
than explicit conjugation.
|
|
overwrite_a : bool, optional
|
|
Whether data in a is overwritten (may improve performance)
|
|
overwrite_c : bool, optional
|
|
Whether data in c is overwritten (may improve performance).
|
|
If this is used, c must be big enough to keep the result,
|
|
i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'.
|
|
|
|
Returns
|
|
-------
|
|
CQ : ndarray
|
|
The product of ``Q`` and ``c``.
|
|
R : (K, N), ndarray
|
|
R array of the resulting QR factorization where ``K = min(M, N)``.
|
|
P : (N,) ndarray
|
|
Integer pivot array. Only returned when ``pivoting=True``.
|
|
|
|
Raises
|
|
------
|
|
LinAlgError
|
|
Raised if QR decomposition fails.
|
|
|
|
Notes
|
|
-----
|
|
This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``,
|
|
``?UNMQR``, and ``?GEQP3``.
|
|
|
|
.. versionadded:: 0.11.0
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy.linalg import qr_multiply, qr
|
|
>>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
|
|
>>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
|
|
>>> qc
|
|
array([[-1., 1., -1.],
|
|
[-1., -1., 1.],
|
|
[-1., -1., -1.],
|
|
[-1., 1., 1.]])
|
|
>>> r1
|
|
array([[-6., -3., -5. ],
|
|
[ 0., -1., -1.11022302e-16],
|
|
[ 0., 0., -1. ]])
|
|
>>> piv1
|
|
array([1, 0, 2], dtype=int32)
|
|
>>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
|
|
>>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
|
|
True
|
|
|
|
"""
|
|
if mode not in ['left', 'right']:
|
|
raise ValueError("Mode argument can only be 'left' or 'right' but "
|
|
"not '{}'".format(mode))
|
|
c = numpy.asarray_chkfinite(c)
|
|
if c.ndim < 2:
|
|
onedim = True
|
|
c = numpy.atleast_2d(c)
|
|
if mode == "left":
|
|
c = c.T
|
|
else:
|
|
onedim = False
|
|
|
|
a = numpy.atleast_2d(numpy.asarray(a)) # chkfinite done in qr
|
|
M, N = a.shape
|
|
|
|
if mode == 'left':
|
|
if c.shape[0] != min(M, N + overwrite_c*(M-N)):
|
|
raise ValueError('Array shapes are not compatible for Q @ c'
|
|
' operation: {} vs {}'.format(a.shape, c.shape))
|
|
else:
|
|
if M != c.shape[1]:
|
|
raise ValueError('Array shapes are not compatible for c @ Q'
|
|
' operation: {} vs {}'.format(c.shape, a.shape))
|
|
|
|
raw = qr(a, overwrite_a, None, "raw", pivoting)
|
|
Q, tau = raw[0]
|
|
|
|
gor_un_mqr, = get_lapack_funcs(('ormqr',), (Q,))
|
|
if gor_un_mqr.typecode in ('s', 'd'):
|
|
trans = "T"
|
|
else:
|
|
trans = "C"
|
|
|
|
Q = Q[:, :min(M, N)]
|
|
if M > N and mode == "left" and not overwrite_c:
|
|
if conjugate:
|
|
cc = numpy.zeros((c.shape[1], M), dtype=c.dtype, order="F")
|
|
cc[:, :N] = c.T
|
|
else:
|
|
cc = numpy.zeros((M, c.shape[1]), dtype=c.dtype, order="F")
|
|
cc[:N, :] = c
|
|
trans = "N"
|
|
if conjugate:
|
|
lr = "R"
|
|
else:
|
|
lr = "L"
|
|
overwrite_c = True
|
|
elif c.flags["C_CONTIGUOUS"] and trans == "T" or conjugate:
|
|
cc = c.T
|
|
if mode == "left":
|
|
lr = "R"
|
|
else:
|
|
lr = "L"
|
|
else:
|
|
trans = "N"
|
|
cc = c
|
|
if mode == "left":
|
|
lr = "L"
|
|
else:
|
|
lr = "R"
|
|
cQ, = safecall(gor_un_mqr, "gormqr/gunmqr", lr, trans, Q, tau, cc,
|
|
overwrite_c=overwrite_c)
|
|
if trans != "N":
|
|
cQ = cQ.T
|
|
if mode == "right":
|
|
cQ = cQ[:, :min(M, N)]
|
|
if onedim:
|
|
cQ = cQ.ravel()
|
|
|
|
return (cQ,) + raw[1:]
|
|
|
|
|
|
def rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True):
|
|
"""
|
|
Compute RQ decomposition of a matrix.
|
|
|
|
Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal
|
|
and R upper triangular.
|
|
|
|
Parameters
|
|
----------
|
|
a : (M, N) array_like
|
|
Matrix to be decomposed
|
|
overwrite_a : bool, optional
|
|
Whether data in a is overwritten (may improve performance)
|
|
lwork : int, optional
|
|
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
|
|
is computed.
|
|
mode : {'full', 'r', 'economic'}, optional
|
|
Determines what information is to be returned: either both Q and R
|
|
('full', default), only R ('r') or both Q and R but computed in
|
|
economy-size ('economic', see Notes).
|
|
check_finite : bool, optional
|
|
Whether to check that the input matrix contains only finite numbers.
|
|
Disabling may give a performance gain, but may result in problems
|
|
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
|
|
|
Returns
|
|
-------
|
|
R : float or complex ndarray
|
|
Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``.
|
|
Q : float or complex ndarray
|
|
Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned
|
|
if ``mode='r'``.
|
|
|
|
Raises
|
|
------
|
|
LinAlgError
|
|
If decomposition fails.
|
|
|
|
Notes
|
|
-----
|
|
This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf,
|
|
sorgrq, dorgrq, cungrq and zungrq.
|
|
|
|
If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead
|
|
of (N,N) and (M,N), with ``K=min(M,N)``.
|
|
|
|
Examples
|
|
--------
|
|
>>> from scipy import linalg
|
|
>>> a = np.random.randn(6, 9)
|
|
>>> r, q = linalg.rq(a)
|
|
>>> np.allclose(a, r @ q)
|
|
True
|
|
>>> r.shape, q.shape
|
|
((6, 9), (9, 9))
|
|
>>> r2 = linalg.rq(a, mode='r')
|
|
>>> np.allclose(r, r2)
|
|
True
|
|
>>> r3, q3 = linalg.rq(a, mode='economic')
|
|
>>> r3.shape, q3.shape
|
|
((6, 6), (6, 9))
|
|
|
|
"""
|
|
if mode not in ['full', 'r', 'economic']:
|
|
raise ValueError(
|
|
"Mode argument should be one of ['full', 'r', 'economic']")
|
|
|
|
if check_finite:
|
|
a1 = numpy.asarray_chkfinite(a)
|
|
else:
|
|
a1 = numpy.asarray(a)
|
|
if len(a1.shape) != 2:
|
|
raise ValueError('expected matrix')
|
|
M, N = a1.shape
|
|
overwrite_a = overwrite_a or (_datacopied(a1, a))
|
|
|
|
gerqf, = get_lapack_funcs(('gerqf',), (a1,))
|
|
rq, tau = safecall(gerqf, 'gerqf', a1, lwork=lwork,
|
|
overwrite_a=overwrite_a)
|
|
if not mode == 'economic' or N < M:
|
|
R = numpy.triu(rq, N-M)
|
|
else:
|
|
R = numpy.triu(rq[-M:, -M:])
|
|
|
|
if mode == 'r':
|
|
return R
|
|
|
|
gor_un_grq, = get_lapack_funcs(('orgrq',), (rq,))
|
|
|
|
if N < M:
|
|
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq[-N:], tau, lwork=lwork,
|
|
overwrite_a=1)
|
|
elif mode == 'economic':
|
|
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq, tau, lwork=lwork,
|
|
overwrite_a=1)
|
|
else:
|
|
rq1 = numpy.empty((N, N), dtype=rq.dtype)
|
|
rq1[-M:] = rq
|
|
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq1, tau, lwork=lwork,
|
|
overwrite_a=1)
|
|
|
|
return R, Q
|