fr/fr_env/lib/python3.8/site-packages/numpy/distutils/ccompiler_opt.py

2536 lines
93 KiB
Python

"""Provides the `CCompilerOpt` class, used for handling the CPU/hardware
optimization, starting from parsing the command arguments, to managing the
relation between the CPU baseline and dispatch-able features,
also generating the required C headers and ending with compiling
the sources with proper compiler's flags.
`CCompilerOpt` doesn't provide runtime detection for the CPU features,
instead only focuses on the compiler side, but it creates abstract C headers
that can be used later for the final runtime dispatching process."""
import sys, io, os, re, textwrap, pprint, inspect, atexit, subprocess
class _Config:
"""An abstract class holds all configurable attributes of `CCompilerOpt`,
these class attributes can be used to change the default behavior
of `CCompilerOpt` in order to fit other requirements.
Attributes
----------
conf_nocache : bool
Set True to disable memory and file cache.
Default is False.
conf_noopt : bool
Set True to forces the optimization to be disabled,
in this case `CCompilerOpt` tends to generate all
expected headers in order to 'not' break the build.
Default is False.
conf_cache_factors : list
Add extra factors to the primary caching factors. The caching factors
are utilized to determine if there are changes had happened that
requires to discard the cache and re-updating it. The primary factors
are the arguments of `CCompilerOpt` and `CCompiler`'s properties(type, flags, etc).
Default is list of two items, containing the time of last modification
of `ccompiler_opt` and value of attribute "conf_noopt"
conf_tmp_path : str,
The path of temporary directory. Default is auto-created
temporary directory via ``tempfile.mkdtemp()``.
conf_check_path : str
The path of testing files. Each added CPU feature must have a
**C** source file contains at least one intrinsic or instruction that
related to this feature, so it can be tested against the compiler.
Default is ``./distutils/checks``.
conf_target_groups : dict
Extra tokens that can be reached from dispatch-able sources through
the special mark ``@targets``. Default is an empty dictionary.
**Notes**:
- case-insensitive for tokens and group names
- sign '#' must stick in the begin of group name and only within ``@targets``
**Example**:
.. code-block:: console
$ "@targets #avx_group other_tokens" > group_inside.c
>>> CCompilerOpt.conf_target_groups["avx_group"] = \\
"$werror $maxopt avx2 avx512f avx512_skx"
>>> cco = CCompilerOpt(cc_instance)
>>> cco.try_dispatch(["group_inside.c"])
conf_c_prefix : str
The prefix of public C definitions. Default is ``"NPY_"``.
conf_c_prefix_ : str
The prefix of internal C definitions. Default is ``"NPY__"``.
conf_cc_flags : dict
Nested dictionaries defining several compiler flags
that linked to some major functions, the main key
represent the compiler name and sub-keys represent
flags names. Default is already covers all supported
**C** compilers.
Sub-keys explained as follows:
"native": str or None
used by argument option `native`, to detect the current
machine support via the compiler.
"werror": str or None
utilized to treat warning as errors during testing CPU features
against the compiler and also for target's policy `$werror`
via dispatch-able sources.
"maxopt": str or None
utilized for target's policy '$maxopt' and the value should
contains the maximum acceptable optimization by the compiler.
e.g. in gcc `'-O3'`
**Notes**:
* case-sensitive for compiler names and flags
* use space to separate multiple flags
* any flag will tested against the compiler and it will skipped
if it's not applicable.
conf_min_features : dict
A dictionary defines the used CPU features for
argument option `'min'`, the key represent the CPU architecture
name e.g. `'x86'`. Default values provide the best effort
on wide range of users platforms.
**Note**: case-sensitive for architecture names.
conf_features : dict
Nested dictionaries used for identifying the CPU features.
the primary key is represented as a feature name or group name
that gathers several features. Default values covers all
supported features but without the major options like "flags",
these undefined options handle it by method `conf_features_partial()`.
Default value is covers almost all CPU features for *X86*, *IBM/Power64*
and *ARM 7/8*.
Sub-keys explained as follows:
"implies" : str or list, optional,
List of CPU feature names to be implied by it,
the feature name must be defined within `conf_features`.
Default is None.
"flags": str or list, optional
List of compiler flags. Default is None.
"detect": str or list, optional
List of CPU feature names that required to be detected
in runtime. By default, its the feature name or features
in "group" if its specified.
"implies_detect": bool, optional
If True, all "detect" of implied features will be combined.
Default is True. see `feature_detect()`.
"group": str or list, optional
Same as "implies" but doesn't require the feature name to be
defined within `conf_features`.
"interest": int, required
a key for sorting CPU features
"headers": str or list, optional
intrinsics C header file
"disable": str, optional
force disable feature, the string value should contains the
reason of disabling.
"autovec": bool or None, optional
True or False to declare that CPU feature can be auto-vectorized
by the compiler.
By default(None), treated as True if the feature contains at
least one applicable flag. see `feature_can_autovec()`
"extra_checks": str or list, optional
Extra test case names for the CPU feature that need to be tested
against the compiler.
Each test case must have a C file named ``extra_xxxx.c``, where
``xxxx`` is the case name in lower case, under 'conf_check_path'.
It should contain at least one intrinsic or function related to the test case.
If the compiler able to successfully compile the C file then `CCompilerOpt`
will add a C ``#define`` for it into the main dispatch header, e.g.
```#define {conf_c_prefix}_XXXX`` where ``XXXX`` is the case name in upper case.
**NOTES**:
* space can be used as separator with options that supports "str or list"
* case-sensitive for all values and feature name must be in upper-case.
* if flags aren't applicable, its will skipped rather than disable the
CPU feature
* the CPU feature will disabled if the compiler fail to compile
the test file
"""
conf_nocache = False
conf_noopt = False
conf_cache_factors = None
conf_tmp_path = None
conf_check_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "checks"
)
conf_target_groups = {}
conf_c_prefix = 'NPY_'
conf_c_prefix_ = 'NPY__'
conf_cc_flags = dict(
gcc = dict(
# native should always fail on arm and ppc64,
# native usually works only with x86
native = '-march=native',
opt = '-O3',
werror = '-Werror'
),
clang = dict(
native = '-march=native',
opt = "-O3",
werror = '-Werror'
),
icc = dict(
native = '-xHost',
opt = '-O3',
werror = '-Werror'
),
iccw = dict(
native = '/QxHost',
opt = '/O3',
werror = '/Werror'
),
msvc = dict(
native = None,
opt = '/O2',
werror = '/WX'
)
)
conf_min_features = dict(
x86 = "SSE SSE2",
x64 = "SSE SSE2 SSE3",
ppc64 = '', # play it safe
ppc64le = "VSX VSX2",
armhf = '', # play it safe
aarch64 = "NEON NEON_FP16 NEON_VFPV4 ASIMD"
)
conf_features = dict(
# X86
SSE = dict(
interest=1, headers="xmmintrin.h",
# enabling SSE without SSE2 is useless also
# it's non-optional for x86_64
implies="SSE2"
),
SSE2 = dict(interest=2, implies="SSE", headers="emmintrin.h"),
SSE3 = dict(interest=3, implies="SSE2", headers="pmmintrin.h"),
SSSE3 = dict(interest=4, implies="SSE3", headers="tmmintrin.h"),
SSE41 = dict(interest=5, implies="SSSE3", headers="smmintrin.h"),
POPCNT = dict(interest=6, implies="SSE41", headers="popcntintrin.h"),
SSE42 = dict(interest=7, implies="POPCNT"),
AVX = dict(
interest=8, implies="SSE42", headers="immintrin.h",
implies_detect=False
),
XOP = dict(interest=9, implies="AVX", headers="x86intrin.h"),
FMA4 = dict(interest=10, implies="AVX", headers="x86intrin.h"),
F16C = dict(interest=11, implies="AVX"),
FMA3 = dict(interest=12, implies="F16C"),
AVX2 = dict(interest=13, implies="F16C"),
AVX512F = dict(
interest=20, implies="FMA3 AVX2", implies_detect=False,
extra_checks="AVX512F_REDUCE"
),
AVX512CD = dict(interest=21, implies="AVX512F"),
AVX512_KNL = dict(
interest=40, implies="AVX512CD", group="AVX512ER AVX512PF",
detect="AVX512_KNL", implies_detect=False
),
AVX512_KNM = dict(
interest=41, implies="AVX512_KNL",
group="AVX5124FMAPS AVX5124VNNIW AVX512VPOPCNTDQ",
detect="AVX512_KNM", implies_detect=False
),
AVX512_SKX = dict(
interest=42, implies="AVX512CD", group="AVX512VL AVX512BW AVX512DQ",
detect="AVX512_SKX", implies_detect=False,
extra_checks="AVX512BW_MASK AVX512DQ_MASK"
),
AVX512_CLX = dict(
interest=43, implies="AVX512_SKX", group="AVX512VNNI",
detect="AVX512_CLX"
),
AVX512_CNL = dict(
interest=44, implies="AVX512_SKX", group="AVX512IFMA AVX512VBMI",
detect="AVX512_CNL", implies_detect=False
),
AVX512_ICL = dict(
interest=45, implies="AVX512_CLX AVX512_CNL",
group="AVX512VBMI2 AVX512BITALG AVX512VPOPCNTDQ",
detect="AVX512_ICL", implies_detect=False
),
# IBM/Power
## Power7/ISA 2.06
VSX = dict(interest=1, headers="altivec.h"),
## Power8/ISA 2.07
VSX2 = dict(interest=2, implies="VSX", implies_detect=False),
## Power9/ISA 3.00
VSX3 = dict(interest=3, implies="VSX2", implies_detect=False),
# ARM
NEON = dict(interest=1, headers="arm_neon.h"),
NEON_FP16 = dict(interest=2, implies="NEON"),
## FMA
NEON_VFPV4 = dict(interest=3, implies="NEON_FP16"),
## Advanced SIMD
ASIMD = dict(interest=4, implies="NEON_FP16 NEON_VFPV4", implies_detect=False),
## ARMv8.2 half-precision & vector arithm
ASIMDHP = dict(interest=5, implies="ASIMD"),
## ARMv8.2 dot product
ASIMDDP = dict(interest=6, implies="ASIMD"),
## ARMv8.2 Single & half-precision Multiply
ASIMDFHM = dict(interest=7, implies="ASIMDHP"),
)
def conf_features_partial(self):
"""Return a dictionary of supported CPU features by the platform,
and accumulate the rest of undefined options in `conf_features`,
the returned dict has same rules and notes in
class attribute `conf_features`, also its override
any options that been set in 'conf_features'.
"""
if self.cc_noopt:
# optimization is disabled
return {}
on_x86 = self.cc_on_x86 or self.cc_on_x64
is_unix = self.cc_is_gcc or self.cc_is_clang
if on_x86 and is_unix: return dict(
SSE = dict(flags="-msse"),
SSE2 = dict(flags="-msse2"),
SSE3 = dict(flags="-msse3"),
SSSE3 = dict(flags="-mssse3"),
SSE41 = dict(flags="-msse4.1"),
POPCNT = dict(flags="-mpopcnt"),
SSE42 = dict(flags="-msse4.2"),
AVX = dict(flags="-mavx"),
F16C = dict(flags="-mf16c"),
XOP = dict(flags="-mxop"),
FMA4 = dict(flags="-mfma4"),
FMA3 = dict(flags="-mfma"),
AVX2 = dict(flags="-mavx2"),
AVX512F = dict(flags="-mavx512f"),
AVX512CD = dict(flags="-mavx512cd"),
AVX512_KNL = dict(flags="-mavx512er -mavx512pf"),
AVX512_KNM = dict(
flags="-mavx5124fmaps -mavx5124vnniw -mavx512vpopcntdq"
),
AVX512_SKX = dict(flags="-mavx512vl -mavx512bw -mavx512dq"),
AVX512_CLX = dict(flags="-mavx512vnni"),
AVX512_CNL = dict(flags="-mavx512ifma -mavx512vbmi"),
AVX512_ICL = dict(
flags="-mavx512vbmi2 -mavx512bitalg -mavx512vpopcntdq"
)
)
if on_x86 and self.cc_is_icc: return dict(
SSE = dict(flags="-msse"),
SSE2 = dict(flags="-msse2"),
SSE3 = dict(flags="-msse3"),
SSSE3 = dict(flags="-mssse3"),
SSE41 = dict(flags="-msse4.1"),
POPCNT = {},
SSE42 = dict(flags="-msse4.2"),
AVX = dict(flags="-mavx"),
F16C = {},
XOP = dict(disable="Intel Compiler doesn't support it"),
FMA4 = dict(disable="Intel Compiler doesn't support it"),
# Intel Compiler doesn't support AVX2 or FMA3 independently
FMA3 = dict(
implies="F16C AVX2", flags="-march=core-avx2"
),
AVX2 = dict(implies="FMA3", flags="-march=core-avx2"),
# Intel Compiler doesn't support AVX512F or AVX512CD independently
AVX512F = dict(
implies="AVX2 AVX512CD", flags="-march=common-avx512"
),
AVX512CD = dict(
implies="AVX2 AVX512F", flags="-march=common-avx512"
),
AVX512_KNL = dict(flags="-xKNL"),
AVX512_KNM = dict(flags="-xKNM"),
AVX512_SKX = dict(flags="-xSKYLAKE-AVX512"),
AVX512_CLX = dict(flags="-xCASCADELAKE"),
AVX512_CNL = dict(flags="-xCANNONLAKE"),
AVX512_ICL = dict(flags="-xICELAKE-CLIENT"),
)
if on_x86 and self.cc_is_iccw: return dict(
SSE = dict(flags="/arch:SSE"),
SSE2 = dict(flags="/arch:SSE2"),
SSE3 = dict(flags="/arch:SSE3"),
SSSE3 = dict(flags="/arch:SSSE3"),
SSE41 = dict(flags="/arch:SSE4.1"),
POPCNT = {},
SSE42 = dict(flags="/arch:SSE4.2"),
AVX = dict(flags="/arch:AVX"),
F16C = {},
XOP = dict(disable="Intel Compiler doesn't support it"),
FMA4 = dict(disable="Intel Compiler doesn't support it"),
# Intel Compiler doesn't support FMA3 or AVX2 independently
FMA3 = dict(
implies="F16C AVX2", flags="/arch:CORE-AVX2"
),
AVX2 = dict(
implies="FMA3", flags="/arch:CORE-AVX2"
),
# Intel Compiler doesn't support AVX512F or AVX512CD independently
AVX512F = dict(
implies="AVX2 AVX512CD", flags="/Qx:COMMON-AVX512"
),
AVX512CD = dict(
implies="AVX2 AVX512F", flags="/Qx:COMMON-AVX512"
),
AVX512_KNL = dict(flags="/Qx:KNL"),
AVX512_KNM = dict(flags="/Qx:KNM"),
AVX512_SKX = dict(flags="/Qx:SKYLAKE-AVX512"),
AVX512_CLX = dict(flags="/Qx:CASCADELAKE"),
AVX512_CNL = dict(flags="/Qx:CANNONLAKE"),
AVX512_ICL = dict(flags="/Qx:ICELAKE-CLIENT")
)
if on_x86 and self.cc_is_msvc: return dict(
SSE = dict(flags="/arch:SSE"),
SSE2 = dict(flags="/arch:SSE2"),
SSE3 = {},
SSSE3 = {},
SSE41 = {},
POPCNT = dict(headers="nmmintrin.h"),
SSE42 = {},
AVX = dict(flags="/arch:AVX"),
F16C = {},
XOP = dict(headers="ammintrin.h"),
FMA4 = dict(headers="ammintrin.h"),
# MSVC doesn't support FMA3 or AVX2 independently
FMA3 = dict(
implies="F16C AVX2", flags="/arch:AVX2"
),
AVX2 = dict(
implies="F16C FMA3", flags="/arch:AVX2"
),
# MSVC doesn't support AVX512F or AVX512CD independently,
# always generate instructions belong to (VL/VW/DQ)
AVX512F = dict(
implies="AVX2 AVX512CD AVX512_SKX", flags="/arch:AVX512"
),
AVX512CD = dict(
implies="AVX512F AVX512_SKX", flags="/arch:AVX512"
),
AVX512_KNL = dict(
disable="MSVC compiler doesn't support it"
),
AVX512_KNM = dict(
disable="MSVC compiler doesn't support it"
),
AVX512_SKX = dict(flags="/arch:AVX512"),
AVX512_CLX = {},
AVX512_CNL = {},
AVX512_ICL = {}
)
on_power = self.cc_on_ppc64le or self.cc_on_ppc64
if on_power:
partial = dict(
VSX = dict(
implies=("VSX2" if self.cc_on_ppc64le else ""),
flags="-mvsx"
),
VSX2 = dict(
flags="-mcpu=power8", implies_detect=False
),
VSX3 = dict(
flags="-mcpu=power9 -mtune=power9", implies_detect=False
)
)
if self.cc_is_clang:
partial["VSX"]["flags"] = "-maltivec -mvsx"
partial["VSX2"]["flags"] = "-mpower8-vector"
partial["VSX3"]["flags"] = "-mpower9-vector"
return partial
if self.cc_on_aarch64 and is_unix: return dict(
NEON = dict(
implies="NEON_FP16 NEON_VFPV4 ASIMD", autovec=True
),
NEON_FP16 = dict(
implies="NEON NEON_VFPV4 ASIMD", autovec=True
),
NEON_VFPV4 = dict(
implies="NEON NEON_FP16 ASIMD", autovec=True
),
ASIMD = dict(
implies="NEON NEON_FP16 NEON_VFPV4", autovec=True
),
ASIMDHP = dict(
flags="-march=armv8.2-a+fp16"
),
ASIMDDP = dict(
flags="-march=armv8.2-a+dotprod"
),
ASIMDFHM = dict(
flags="-march=armv8.2-a+fp16fml"
),
)
if self.cc_on_armhf and is_unix: return dict(
NEON = dict(
flags="-mfpu=neon"
),
NEON_FP16 = dict(
flags="-mfpu=neon-fp16 -mfp16-format=ieee"
),
NEON_VFPV4 = dict(
flags="-mfpu=neon-vfpv4",
),
ASIMD = dict(
flags="-mfpu=neon-fp-armv8 -march=armv8-a+simd",
),
ASIMDHP = dict(
flags="-march=armv8.2-a+fp16"
),
ASIMDDP = dict(
flags="-march=armv8.2-a+dotprod",
),
ASIMDFHM = dict(
flags="-march=armv8.2-a+fp16fml"
)
)
# TODO: ARM MSVC
return {}
def __init__(self):
if self.conf_tmp_path is None:
import tempfile, shutil
tmp = tempfile.mkdtemp()
def rm_temp():
try:
shutil.rmtree(tmp)
except IOError:
pass
atexit.register(rm_temp)
self.conf_tmp_path = tmp
if self.conf_cache_factors is None:
self.conf_cache_factors = [
os.path.getmtime(__file__),
self.conf_nocache
]
class _Distutils:
"""A helper class that provides a collection of fundamental methods
implemented in a top of Python and NumPy Distutils.
The idea behind this class is to gather all methods that it may
need to override in case of reuse 'CCompilerOpt' in environment
different than of what NumPy has.
Parameters
----------
ccompiler : `CCompiler`
The generate instance that returned from `distutils.ccompiler.new_compiler()`.
"""
def __init__(self, ccompiler):
self._ccompiler = ccompiler
def dist_compile(self, sources, flags, **kwargs):
"""Wrap CCompiler.compile()"""
assert(isinstance(sources, list))
assert(isinstance(flags, list))
flags = kwargs.pop("extra_postargs", []) + flags
return self._ccompiler.compile(
sources, extra_postargs=flags, **kwargs
)
def dist_test(self, source, flags):
"""Return True if 'CCompiler.compile()' able to compile
a source file with certain flags.
"""
assert(isinstance(source, str))
from distutils.errors import CompileError
cc = self._ccompiler;
bk_spawn = getattr(cc, 'spawn', None)
if bk_spawn:
cc_type = getattr(self._ccompiler, "compiler_type", "")
if cc_type in ("msvc",):
setattr(cc, 'spawn', self._dist_test_spawn_paths)
else:
setattr(cc, 'spawn', self._dist_test_spawn)
test = False
try:
self.dist_compile(
[source], flags, output_dir=self.conf_tmp_path
)
test = True
except CompileError as e:
self.dist_log(str(e), stderr=True)
if bk_spawn:
setattr(cc, 'spawn', bk_spawn)
return test
def dist_info(self):
"""
Return a tuple containing info about (platform, compiler, extra_args),
required by the abstract class '_CCompiler' for discovering the
platform environment. This is also used as a cache factor in order
to detect any changes happening from outside.
"""
if hasattr(self, "_dist_info"):
return self._dist_info
cc_type = getattr(self._ccompiler, "compiler_type", '')
if cc_type in ("intelem", "intelemw"):
platform = "x86_64"
elif cc_type in ("intel", "intelw", "intele"):
platform = "x86"
else:
from distutils.util import get_platform
platform = get_platform()
cc_info = getattr(self._ccompiler, "compiler", getattr(self._ccompiler, "compiler_so", ''))
if not cc_type or cc_type == "unix":
if hasattr(cc_info, "__iter__"):
compiler = cc_info[0]
else:
compiler = str(cc_info)
else:
compiler = cc_type
if hasattr(cc_info, "__iter__") and len(cc_info) > 1:
extra_args = ' '.join(cc_info[1:])
else:
extra_args = os.environ.get("CFLAGS", "")
extra_args += os.environ.get("CPPFLAGS", "")
self._dist_info = (platform, compiler, extra_args)
return self._dist_info
@staticmethod
def dist_error(*args):
"""Raise a compiler error"""
from distutils.errors import CompileError
raise CompileError(_Distutils._dist_str(*args))
@staticmethod
def dist_fatal(*args):
"""Raise a distutils error"""
from distutils.errors import DistutilsError
raise DistutilsError(_Distutils._dist_str(*args))
@staticmethod
def dist_log(*args, stderr=False):
"""Print a console message"""
from numpy.distutils import log
out = _Distutils._dist_str(*args)
if stderr:
log.warn(out)
else:
log.info(out)
@staticmethod
def dist_load_module(name, path):
"""Load a module from file, required by the abstract class '_Cache'."""
from numpy.compat import npy_load_module
try:
return npy_load_module(name, path)
except Exception as e:
_Distutils.dist_log(e, stderr=True)
return None
@staticmethod
def _dist_str(*args):
"""Return a string to print by log and errors."""
def to_str(arg):
if not isinstance(arg, str) and hasattr(arg, '__iter__'):
ret = []
for a in arg:
ret.append(to_str(a))
return '('+ ' '.join(ret) + ')'
return str(arg)
stack = inspect.stack()[2]
start = "CCompilerOpt.%s[%d] : " % (stack.function, stack.lineno)
out = ' '.join([
to_str(a)
for a in (*args,)
])
return start + out
def _dist_test_spawn_paths(self, cmd, display=None):
"""
Fix msvc SDK ENV path same as distutils do
without it we get c1: fatal error C1356: unable to find mspdbcore.dll
"""
if not hasattr(self._ccompiler, "_paths"):
self._dist_test_spawn(cmd)
return
old_path = os.getenv("path")
try:
os.environ["path"] = self._ccompiler._paths
self._dist_test_spawn(cmd)
finally:
os.environ["path"] = old_path
_dist_warn_regex = re.compile(
# intel and msvc compilers don't raise
# fatal errors when flags are wrong or unsupported
".*("
"warning D9002|" # msvc, it should be work with any language.
"invalid argument for option" # intel
").*"
)
@staticmethod
def _dist_test_spawn(cmd, display=None):
from distutils.errors import CompileError
try:
o = subprocess.check_output(cmd, stderr=subprocess.STDOUT,
universal_newlines=True)
if o and re.match(_Distutils._dist_warn_regex, o):
_Distutils.dist_error(
"Flags in command", cmd ,"aren't supported by the compiler"
", output -> \n%s" % o
)
except subprocess.CalledProcessError as exc:
o = exc.output
s = exc.returncode
except OSError:
o = b''
s = 127
else:
return None
_Distutils.dist_error(
"Command", cmd, "failed with exit status %d output -> \n%s" % (
s, o
))
_share_cache = {}
class _Cache:
"""An abstract class handles caching functionality, provides two
levels of caching, in-memory by share instances attributes among
each other and by store attributes into files.
**Note**:
any attributes that start with ``_`` or ``conf_`` will be ignored.
Parameters
----------
cache_path: str or None
The path of cache file, if None then cache in file will disabled.
*factors:
The caching factors that need to utilize next to `conf_cache_factors`.
Attributes
----------
cache_private: set
Hold the attributes that need be skipped from "in-memory cache".
cache_infile: bool
Utilized during initializing this class, to determine if the cache was able
to loaded from the specified cache path in 'cache_path'.
"""
# skip attributes from cache
_cache_ignore = re.compile("^(_|conf_)")
def __init__(self, cache_path=None, *factors):
self.cache_me = {}
self.cache_private = set()
self.cache_infile = False
if self.conf_nocache:
self.dist_log("cache is disabled by `Config`")
return
chash = self.cache_hash(*factors, *self.conf_cache_factors)
if cache_path:
if os.path.exists(cache_path):
self.dist_log("load cache from file ->", cache_path)
cache_mod = self.dist_load_module("cache", cache_path)
if not cache_mod:
self.dist_log(
"unable to load the cache file as a module",
stderr=True
)
elif not hasattr(cache_mod, "hash") or \
not hasattr(cache_mod, "data"):
self.dist_log("invalid cache file", stderr=True)
elif chash == cache_mod.hash:
self.dist_log("hit the file cache")
for attr, val in cache_mod.data.items():
setattr(self, attr, val)
self.cache_infile = True
else:
self.dist_log("miss the file cache")
atexit.register(self._cache_write, cache_path, chash)
if not self.cache_infile:
other_cache = _share_cache.get(chash)
if other_cache:
self.dist_log("hit the memory cache")
for attr, val in other_cache.__dict__.items():
if attr in other_cache.cache_private or \
re.match(self._cache_ignore, attr):
continue
setattr(self, attr, val)
_share_cache[chash] = self
def __del__(self):
# TODO: remove the cache form share on del
pass
def _cache_write(self, cache_path, cache_hash):
# TODO: don't write if the cache doesn't change
self.dist_log("write cache to path ->", cache_path)
for attr in list(self.__dict__.keys()):
if re.match(self._cache_ignore, attr):
self.__dict__.pop(attr)
d = os.path.dirname(cache_path)
if not os.path.exists(d):
os.makedirs(d)
repr_dict = pprint.pformat(self.__dict__, compact=True)
with open(cache_path, "w") as f:
f.write(textwrap.dedent("""\
# AUTOGENERATED DON'T EDIT
# Please make changes to the code generator \
(distutils/ccompiler_opt.py)
hash = {}
data = \\
""").format(cache_hash))
f.write(repr_dict)
def cache_hash(self, *factors):
# is there a built-in non-crypto hash?
# sdbm
chash = 0
for f in factors:
for char in str(f):
chash = ord(char) + (chash << 6) + (chash << 16) - chash
chash &= 0xFFFFFFFF
return chash
@staticmethod
def me(cb):
"""
A static method that can be treated as a decorator to
dynamically cache certain methods.
"""
def cache_wrap_me(self, *args, **kwargs):
# good for normal args
cache_key = str((
cb.__name__, *args, *kwargs.keys(), *kwargs.values()
))
if cache_key in self.cache_me:
return self.cache_me[cache_key]
ccb = cb(self, *args, **kwargs)
self.cache_me[cache_key] = ccb
return ccb
return cache_wrap_me
class _CCompiler(object):
"""A helper class for `CCompilerOpt` containing all utilities that
related to the fundamental compiler's functions.
Attributes
----------
cc_on_x86 : bool
True when the target architecture is 32-bit x86
cc_on_x64 : bool
True when the target architecture is 64-bit x86
cc_on_ppc64 : bool
True when the target architecture is 64-bit big-endian PowerPC
cc_on_armhf : bool
True when the target architecture is 32-bit ARMv7+
cc_on_aarch64 : bool
True when the target architecture is 64-bit Armv8-a+
cc_on_noarch : bool
True when the target architecture is unknown or not supported
cc_is_gcc : bool
True if the compiler is GNU or
if the compiler is unknown
cc_is_clang : bool
True if the compiler is Clang
cc_is_icc : bool
True if the compiler is Intel compiler (unix like)
cc_is_iccw : bool
True if the compiler is Intel compiler (msvc like)
cc_is_nocc : bool
True if the compiler isn't supported directly,
Note: that cause a fail-back to gcc
cc_has_debug : bool
True if the compiler has debug flags
cc_has_native : bool
True if the compiler has native flags
cc_noopt : bool
True if the compiler has definition 'DISABLE_OPT*',
or 'cc_on_noarch' is True
cc_march : str
The target architecture name, or "unknown" if
the architecture isn't supported
cc_name : str
The compiler name, or "unknown" if the compiler isn't supported
cc_flags : dict
Dictionary containing the initialized flags of `_Config.conf_cc_flags`
"""
def __init__(self):
if hasattr(self, "cc_is_cached"):
return
# attr regex
detect_arch = (
("cc_on_x64", ".*(x|x86_|amd)64.*"),
("cc_on_x86", ".*(win32|x86|i386|i686).*"),
("cc_on_ppc64le", ".*(powerpc|ppc)64(el|le).*"),
("cc_on_ppc64", ".*(powerpc|ppc)64.*"),
("cc_on_aarch64", ".*(aarch64|arm64).*"),
("cc_on_armhf", ".*arm.*"),
# undefined platform
("cc_on_noarch", ""),
)
detect_compiler = (
("cc_is_gcc", r".*(gcc|gnu\-g).*"),
("cc_is_clang", ".*clang.*"),
("cc_is_iccw", ".*(intelw|intelemw|iccw).*"), # intel msvc like
("cc_is_icc", ".*(intel|icc).*"), # intel unix like
("cc_is_msvc", ".*msvc.*"),
# undefined compiler will be treat it as gcc
("cc_is_nocc", ""),
)
detect_args = (
("cc_has_debug", ".*(O0|Od|ggdb|coverage|debug:full).*"),
("cc_has_native", ".*(-march=native|-xHost|/QxHost).*"),
# in case if the class run with -DNPY_DISABLE_OPTIMIZATION
("cc_noopt", ".*DISABLE_OPT.*"),
)
dist_info = self.dist_info()
platform, compiler_info, extra_args = dist_info
# set False to all attrs
for section in (detect_arch, detect_compiler, detect_args):
for attr, rgex in section:
setattr(self, attr, False)
for detect, searchin in ((detect_arch, platform), (detect_compiler, compiler_info)):
for attr, rgex in detect:
if rgex and not re.match(rgex, searchin, re.IGNORECASE):
continue
setattr(self, attr, True)
break
for attr, rgex in detect_args:
if rgex and not re.match(rgex, extra_args, re.IGNORECASE):
continue
setattr(self, attr, True)
if self.cc_on_noarch:
self.dist_log(
"unable to detect CPU architecture which lead to disable the optimization. "
f"check dist_info:<<\n{dist_info}\n>>",
stderr=True
)
self.cc_noopt = True
if self.conf_noopt:
self.dist_log("Optimization is disabled by the Config", stderr=True)
self.cc_noopt = True
if self.cc_is_nocc:
"""
mingw can be treated as a gcc, and also xlc even if it based on clang,
but still has the same gcc optimization flags.
"""
self.dist_log(
"unable to detect compiler type which leads to treating it as GCC. "
"this is a normal behavior if you're using gcc-like compiler such as MinGW or IBM/XLC."
f"check dist_info:<<\n{dist_info}\n>>",
stderr=True
)
self.cc_is_gcc = True
self.cc_march = "unknown"
for arch in ("x86", "x64", "ppc64", "ppc64le", "armhf", "aarch64"):
if getattr(self, "cc_on_" + arch):
self.cc_march = arch
break
self.cc_name = "unknown"
for name in ("gcc", "clang", "iccw", "icc", "msvc"):
if getattr(self, "cc_is_" + name):
self.cc_name = name
break
self.cc_flags = {}
compiler_flags = self.conf_cc_flags.get(self.cc_name)
if compiler_flags is None:
self.dist_fatal(
"undefined flag for compiler '%s', "
"leave an empty dict instead" % self.cc_name
)
for name, flags in compiler_flags.items():
self.cc_flags[name] = nflags = []
if flags:
assert(isinstance(flags, str))
flags = flags.split()
for f in flags:
if self.cc_test_flags([f]):
nflags.append(f)
self.cc_is_cached = True
@_Cache.me
def cc_test_flags(self, flags):
"""
Returns True if the compiler supports 'flags'.
"""
assert(isinstance(flags, list))
self.dist_log("testing flags", flags)
test_path = os.path.join(self.conf_check_path, "test_flags.c")
test = self.dist_test(test_path, flags)
if not test:
self.dist_log("testing failed", stderr=True)
return test
def cc_normalize_flags(self, flags):
"""
Remove the conflicts that caused due gathering implied features flags.
Parameters
----------
'flags' list, compiler flags
flags should be sorted from the lowest to the highest interest.
Returns
-------
list, filtered from any conflicts.
Examples
--------
>>> self.cc_normalize_flags(['-march=armv8.2-a+fp16', '-march=armv8.2-a+dotprod'])
['armv8.2-a+fp16+dotprod']
>>> self.cc_normalize_flags(
['-msse', '-msse2', '-msse3', '-mssse3', '-msse4.1', '-msse4.2', '-mavx', '-march=core-avx2']
)
['-march=core-avx2']
"""
assert(isinstance(flags, list))
if self.cc_is_gcc or self.cc_is_clang or self.cc_is_icc:
return self._cc_normalize_unix(flags)
if self.cc_is_msvc or self.cc_is_iccw:
return self._cc_normalize_win(flags)
return flags
_cc_normalize_unix_mrgx = re.compile(
# 1- to check the highest of
r"^(-mcpu=|-march=|-x[A-Z0-9\-])"
)
_cc_normalize_unix_frgx = re.compile(
# 2- to remove any flags starts with
# -march, -mcpu, -x(INTEL) and '-m' without '='
r"^(?!(-mcpu=|-march=|-x[A-Z0-9\-]))(?!-m[a-z0-9\-\.]*.$)"
)
_cc_normalize_unix_krgx = re.compile(
# 3- keep only the highest of
r"^(-mfpu|-mtune)"
)
_cc_normalize_arch_ver = re.compile(
r"[0-9.]"
)
def _cc_normalize_unix(self, flags):
def ver_flags(f):
# arch ver subflag
# -march=armv8.2-a+fp16fml
tokens = f.split('+')
ver = float('0' + ''.join(
re.findall(self._cc_normalize_arch_ver, tokens[0])
))
return ver, tokens[0], tokens[1:]
if len(flags) <= 1:
return flags
# get the highest matched flag
for i, cur_flag in enumerate(reversed(flags)):
if not re.match(self._cc_normalize_unix_mrgx, cur_flag):
continue
lower_flags = flags[:-(i+1)]
upper_flags = flags[-i:]
filterd = list(filter(
self._cc_normalize_unix_frgx.search, lower_flags
))
# gather subflags
ver, arch, subflags = ver_flags(cur_flag)
if ver > 0 and len(subflags) > 0:
for xflag in lower_flags:
xver, _, xsubflags = ver_flags(xflag)
if ver == xver:
subflags = xsubflags + subflags
cur_flag = arch + '+' + '+'.join(subflags)
flags = filterd + [cur_flag]
if i > 0:
flags += upper_flags
break
# to remove overridable flags
final_flags = []
matched = set()
for f in reversed(flags):
match = re.match(self._cc_normalize_unix_krgx, f)
if not match:
pass
elif match[0] in matched:
continue
else:
matched.add(match[0])
final_flags.insert(0, f)
return final_flags
_cc_normalize_win_frgx = re.compile(
r"^(?!(/arch\:|/Qx\:))"
)
_cc_normalize_win_mrgx = re.compile(
r"^(/arch|/Qx:)"
)
def _cc_normalize_win(self, flags):
for i, f in enumerate(reversed(flags)):
if not re.match(self._cc_normalize_win_mrgx, f):
continue
i += 1
return list(filter(
self._cc_normalize_win_frgx.search, flags[:-i]
)) + flags[-i:]
return flags
class _Feature:
"""A helper class for `CCompilerOpt` that managing CPU features.
Attributes
----------
feature_supported : dict
Dictionary containing all CPU features that supported
by the platform, according to the specified values in attribute
`_Config.conf_features` and `_Config.conf_features_partial()`
feature_min : set
The minimum support of CPU features, according to
the specified values in attribute `_Config.conf_min_features`.
"""
def __init__(self):
if hasattr(self, "feature_is_cached"):
return
self.feature_supported = pfeatures = self.conf_features_partial()
for feature_name in list(pfeatures.keys()):
feature = pfeatures[feature_name]
cfeature = self.conf_features[feature_name]
feature.update({
k:v for k,v in cfeature.items() if k not in feature
})
disabled = feature.get("disable")
if disabled is not None:
pfeatures.pop(feature_name)
self.dist_log(
"feature '%s' is disabled," % feature_name,
disabled, stderr=True
)
continue
# list is used internally for these options
for option in (
"implies", "group", "detect", "headers", "flags", "extra_checks"
) :
oval = feature.get(option)
if isinstance(oval, str):
feature[option] = oval.split()
self.feature_min = set()
min_f = self.conf_min_features.get(self.cc_march, "")
for F in min_f.upper().split():
if F in self.feature_supported:
self.feature_min.add(F)
self.feature_is_cached = True
def feature_names(self, names=None, force_flags=None):
"""
Returns a set of CPU feature names that supported by platform and the **C** compiler.
Parameters
----------
'names': sequence or None, optional
Specify certain CPU features to test it against the **C** compiler.
if None(default), it will test all current supported features.
**Note**: feature names must be in upper-case.
'force_flags': list or None, optional
If None(default), default compiler flags for every CPU feature will be used
during the test.
"""
assert(
names is None or (
not isinstance(names, str) and
hasattr(names, "__iter__")
)
)
assert(force_flags is None or isinstance(force_flags, list))
if names is None:
names = self.feature_supported.keys()
supported_names = set()
for f in names:
if self.feature_is_supported(f, force_flags=force_flags):
supported_names.add(f)
return supported_names
def feature_is_exist(self, name):
"""
Returns True if a certain feature is exist and covered within
`_Config.conf_features`.
Parameters
----------
'name': str
feature name in uppercase.
"""
assert(name.isupper())
return name in self.conf_features
def feature_sorted(self, names, reverse=False):
"""
Sort a list of CPU features ordered by the lowest interest.
Parameters
----------
'names': sequence
sequence of supported feature names in uppercase.
'reverse': bool, optional
If true, the sorted features is reversed. (highest interest)
Returns
-------
list, sorted CPU features
"""
def sort_cb(k):
if isinstance(k, str):
return self.feature_supported[k]["interest"]
# multiple features
rank = max([self.feature_supported[f]["interest"] for f in k])
# FIXME: that's not a safe way to increase the rank for
# multi targets
rank += len(k) -1
return rank
return sorted(names, reverse=reverse, key=sort_cb)
def feature_implies(self, names, keep_origins=False):
"""
Return a set of CPU features that implied by 'names'
Parameters
----------
names: str or sequence of str
CPU feature name(s) in uppercase.
keep_origins: bool
if False(default) then the returned set will not contain any
features from 'names'. This case happens only when two features
imply each other.
Examples
--------
>>> self.feature_implies("SSE3")
{'SSE', 'SSE2'}
>>> self.feature_implies("SSE2")
{'SSE'}
>>> self.feature_implies("SSE2", keep_origins=True)
# 'SSE2' found here since 'SSE' and 'SSE2' imply each other
{'SSE', 'SSE2'}
"""
def get_implies(name, _caller=set()):
implies = set()
d = self.feature_supported[name]
for i in d.get("implies", []):
implies.add(i)
if i in _caller:
# infinity recursive guard since
# features can imply each other
continue
_caller.add(name)
implies = implies.union(get_implies(i, _caller))
return implies
if isinstance(names, str):
implies = get_implies(names)
names = [names]
else:
assert(hasattr(names, "__iter__"))
implies = set()
for n in names:
implies = implies.union(get_implies(n))
if not keep_origins:
implies.difference_update(names)
return implies
def feature_implies_c(self, names):
"""same as feature_implies() but combining 'names'"""
if isinstance(names, str):
names = set((names,))
else:
names = set(names)
return names.union(self.feature_implies(names))
def feature_ahead(self, names):
"""
Return list of features in 'names' after remove any
implied features and keep the origins.
Parameters
----------
'names': sequence
sequence of CPU feature names in uppercase.
Returns
-------
list of CPU features sorted as-is 'names'
Examples
--------
>>> self.feature_ahead(["SSE2", "SSE3", "SSE41"])
["SSE41"]
# assume AVX2 and FMA3 implies each other and AVX2
# is the highest interest
>>> self.feature_ahead(["SSE2", "SSE3", "SSE41", "AVX2", "FMA3"])
["AVX2"]
# assume AVX2 and FMA3 don't implies each other
>>> self.feature_ahead(["SSE2", "SSE3", "SSE41", "AVX2", "FMA3"])
["AVX2", "FMA3"]
"""
assert(
not isinstance(names, str)
and hasattr(names, '__iter__')
)
implies = self.feature_implies(names, keep_origins=True)
ahead = [n for n in names if n not in implies]
if len(ahead) == 0:
# return the highest interested feature
# if all features imply each other
ahead = self.feature_sorted(names, reverse=True)[:1]
return ahead
def feature_untied(self, names):
"""
same as 'feature_ahead()' but if both features implied each other
and keep the highest interest.
Parameters
----------
'names': sequence
sequence of CPU feature names in uppercase.
Returns
-------
list of CPU features sorted as-is 'names'
Examples
--------
>>> self.feature_untied(["SSE2", "SSE3", "SSE41"])
["SSE2", "SSE3", "SSE41"]
# assume AVX2 and FMA3 implies each other
>>> self.feature_untied(["SSE2", "SSE3", "SSE41", "FMA3", "AVX2"])
["SSE2", "SSE3", "SSE41", "AVX2"]
"""
assert(
not isinstance(names, str)
and hasattr(names, '__iter__')
)
final = []
for n in names:
implies = self.feature_implies(n)
tied = [
nn for nn in final
if nn in implies and n in self.feature_implies(nn)
]
if tied:
tied = self.feature_sorted(tied + [n])
if n not in tied[1:]:
continue
final.remove(tied[:1][0])
final.append(n)
return final
def feature_get_til(self, names, keyisfalse):
"""
same as `feature_implies_c()` but stop collecting implied
features when feature's option that provided through
parameter 'keyisfalse' is False, also sorting the returned
features.
"""
def til(tnames):
# sort from highest to lowest interest then cut if "key" is False
tnames = self.feature_implies_c(tnames)
tnames = self.feature_sorted(tnames, reverse=True)
for i, n in enumerate(tnames):
if not self.feature_supported[n].get(keyisfalse, True):
tnames = tnames[:i+1]
break
return tnames
if isinstance(names, str) or len(names) <= 1:
names = til(names)
# normalize the sort
names.reverse()
return names
names = self.feature_ahead(names)
names = {t for n in names for t in til(n)}
return self.feature_sorted(names)
def feature_detect(self, names):
"""
Return a list of CPU features that required to be detected
sorted from the lowest to highest interest.
"""
names = self.feature_get_til(names, "implies_detect")
detect = []
for n in names:
d = self.feature_supported[n]
detect += d.get("detect", d.get("group", [n]))
return detect
@_Cache.me
def feature_flags(self, names):
"""
Return a list of CPU features flags sorted from the lowest
to highest interest.
"""
names = self.feature_sorted(self.feature_implies_c(names))
flags = []
for n in names:
d = self.feature_supported[n]
f = d.get("flags", [])
if not f or not self.cc_test_flags(f):
continue
flags += f
return self.cc_normalize_flags(flags)
@_Cache.me
def feature_test(self, name, force_flags=None):
"""
Test a certain CPU feature against the compiler through its own
check file.
Parameters
----------
'name': str
Supported CPU feature name.
'force_flags': list or None, optional
If None(default), the returned flags from `feature_flags()`
will be used.
"""
if force_flags is None:
force_flags = self.feature_flags(name)
self.dist_log(
"testing feature '%s' with flags (%s)" % (
name, ' '.join(force_flags)
))
# Each CPU feature must have C source code contains at
# least one intrinsic or instruction related to this feature.
test_path = os.path.join(
self.conf_check_path, "cpu_%s.c" % name.lower()
)
if not os.path.exists(test_path):
self.dist_fatal("feature test file is not exist", test_path)
test = self.dist_test(test_path, force_flags + self.cc_flags["werror"])
if not test:
self.dist_log("testing failed", stderr=True)
return test
@_Cache.me
def feature_is_supported(self, name, force_flags=None):
"""
Check if a certain CPU feature is supported by the platform and compiler.
Parameters
----------
'name': str
CPU feature name in uppercase.
'force_flags': list or None, optional
If None(default), default compiler flags for every CPU feature will be used
during test.
"""
assert(name.isupper())
assert(force_flags is None or isinstance(force_flags, list))
supported = name in self.feature_supported
if supported:
for impl in self.feature_implies(name):
if not self.feature_test(impl, force_flags):
return False
if not self.feature_test(name, force_flags):
return False
return supported
@_Cache.me
def feature_can_autovec(self, name):
"""
check if the feature can be auto-vectorized by the compiler
"""
assert(isinstance(name, str))
d = self.feature_supported[name]
can = d.get("autovec", None)
if can is None:
valid_flags = [
self.cc_test_flags([f]) for f in d.get("flags", [])
]
can = valid_flags and any(valid_flags)
return can
@_Cache.me
def feature_extra_checks(self, name):
"""
Return a list of supported extra checks after testing them against
the compiler.
Parameters
----------
names: str
CPU feature name in uppercase.
"""
assert isinstance(name, str)
d = self.feature_supported[name]
extra_checks = d.get("extra_checks", [])
if not extra_checks:
return []
self.dist_log("Testing extra checks for feature '%s'" % name, extra_checks)
flags = self.feature_flags(name)
available = []
not_available = []
for chk in extra_checks:
test_path = os.path.join(
self.conf_check_path, "extra_%s.c" % chk.lower()
)
if not os.path.exists(test_path):
self.dist_fatal("extra check file does not exist", test_path)
is_supported = self.dist_test(test_path, flags + self.cc_flags["werror"])
if is_supported:
available.append(chk)
else:
not_available.append(chk)
if not_available:
self.dist_log("testing failed for checks", not_available, stderr=True)
return available
def feature_c_preprocessor(self, feature_name, tabs=0):
"""
Generate C preprocessor definitions and include headers of a CPU feature.
Parameters
----------
'feature_name': str
CPU feature name in uppercase.
'tabs': int
if > 0, align the generated strings to the right depend on number of tabs.
Returns
-------
str, generated C preprocessor
Examples
--------
>>> self.feature_c_preprocessor("SSE3")
/** SSE3 **/
#define NPY_HAVE_SSE3 1
#include <pmmintrin.h>
"""
assert(feature_name.isupper())
feature = self.feature_supported.get(feature_name)
assert(feature is not None)
prepr = [
"/** %s **/" % feature_name,
"#define %sHAVE_%s 1" % (self.conf_c_prefix, feature_name)
]
prepr += [
"#include <%s>" % h for h in feature.get("headers", [])
]
extra_defs = feature.get("group", [])
extra_defs += self.feature_extra_checks(feature_name)
for edef in extra_defs:
# Guard extra definitions in case of duplicate with
# another feature
prepr += [
"#ifndef %sHAVE_%s" % (self.conf_c_prefix, edef),
"\t#define %sHAVE_%s 1" % (self.conf_c_prefix, edef),
"#endif",
]
if tabs > 0:
prepr = [('\t'*tabs) + l for l in prepr]
return '\n'.join(prepr)
class _Parse:
"""A helper class that parsing main arguments of `CCompilerOpt`,
also parsing configuration statements in dispatch-able sources.
Parameters
----------
cpu_baseline: str or None
minimal set of required CPU features or special options.
cpu_dispatch: str or None
dispatched set of additional CPU features or special options.
Special options can be:
- **MIN**: Enables the minimum CPU features that utilized via `_Config.conf_min_features`
- **MAX**: Enables all supported CPU features by the Compiler and platform.
- **NATIVE**: Enables all CPU features that supported by the current machine.
- **NONE**: Enables nothing
- **Operand +/-**: remove or add features, useful with options **MAX**, **MIN** and **NATIVE**.
NOTE: operand + is only added for nominal reason.
NOTES:
- Case-insensitive among all CPU features and special options.
- Comma or space can be used as a separator.
- If the CPU feature is not supported by the user platform or compiler,
it will be skipped rather than raising a fatal error.
- Any specified CPU features to 'cpu_dispatch' will be skipped if its part of CPU baseline features
- 'cpu_baseline' force enables implied features.
Attributes
----------
parse_baseline_names : list
Final CPU baseline's feature names(sorted from low to high)
parse_baseline_flags : list
Compiler flags of baseline features
parse_dispatch_names : list
Final CPU dispatch-able feature names(sorted from low to high)
parse_target_groups : dict
Dictionary containing initialized target groups that configured
through class attribute `conf_target_groups`.
The key is represent the group name and value is a tuple
contains three items :
- bool, True if group has the 'baseline' option.
- list, list of CPU features.
- list, list of extra compiler flags.
"""
def __init__(self, cpu_baseline, cpu_dispatch):
self._parse_policies = dict(
# POLICY NAME, (HAVE, NOT HAVE, [DEB])
KEEP_BASELINE = (
None, self._parse_policy_not_keepbase,
[]
),
KEEP_SORT = (
self._parse_policy_keepsort,
self._parse_policy_not_keepsort,
[]
),
MAXOPT = (
self._parse_policy_maxopt, None,
[]
),
WERROR = (
self._parse_policy_werror, None,
[]
),
AUTOVEC = (
self._parse_policy_autovec, None,
["MAXOPT"]
)
)
if hasattr(self, "parse_is_cached"):
return
self.parse_baseline_names = []
self.parse_baseline_flags = []
self.parse_dispatch_names = []
self.parse_target_groups = {}
if self.cc_noopt:
# skip parsing baseline and dispatch args and keep parsing target groups
cpu_baseline = cpu_dispatch = None
self.dist_log("check requested baseline")
if cpu_baseline is not None:
cpu_baseline = self._parse_arg_features("cpu_baseline", cpu_baseline)
baseline_names = self.feature_names(cpu_baseline)
self.parse_baseline_flags = self.feature_flags(baseline_names)
self.parse_baseline_names = self.feature_sorted(
self.feature_implies_c(baseline_names)
)
self.dist_log("check requested dispatch-able features")
if cpu_dispatch is not None:
cpu_dispatch_ = self._parse_arg_features("cpu_dispatch", cpu_dispatch)
cpu_dispatch = {
f for f in cpu_dispatch_
if f not in self.parse_baseline_names
}
conflict_baseline = cpu_dispatch_.difference(cpu_dispatch)
self.parse_dispatch_names = self.feature_sorted(
self.feature_names(cpu_dispatch)
)
if len(conflict_baseline) > 0:
self.dist_log(
"skip features", conflict_baseline, "since its part of baseline"
)
self.dist_log("initialize targets groups")
for group_name, tokens in self.conf_target_groups.items():
self.dist_log("parse target group", group_name)
GROUP_NAME = group_name.upper()
if not tokens or not tokens.strip():
# allow empty groups, useful in case if there's a need
# to disable certain group since '_parse_target_tokens()'
# requires at least one valid target
self.parse_target_groups[GROUP_NAME] = (
False, [], []
)
continue
has_baseline, features, extra_flags = \
self._parse_target_tokens(tokens)
self.parse_target_groups[GROUP_NAME] = (
has_baseline, features, extra_flags
)
self.parse_is_cached = True
def parse_targets(self, source):
"""
Fetch and parse configuration statements that required for
defining the targeted CPU features, statements should be declared
in the top of source in between **C** comment and start
with a special mark **@targets**.
Configuration statements are sort of keywords representing
CPU features names, group of statements and policies, combined
together to determine the required optimization.
Parameters
----------
source: str
the path of **C** source file.
Returns
-------
- bool, True if group has the 'baseline' option
- list, list of CPU features
- list, list of extra compiler flags
"""
self.dist_log("looking for '@targets' inside -> ", source)
# get lines between /*@targets and */
with open(source) as fd:
tokens = ""
max_to_reach = 1000 # good enough, isn't?
start_with = "@targets"
start_pos = -1
end_with = "*/"
end_pos = -1
for current_line, line in enumerate(fd):
if current_line == max_to_reach:
self.dist_fatal("reached the max of lines")
break
if start_pos == -1:
start_pos = line.find(start_with)
if start_pos == -1:
continue
start_pos += len(start_with)
tokens += line
end_pos = line.find(end_with)
if end_pos != -1:
end_pos += len(tokens) - len(line)
break
if start_pos == -1:
self.dist_fatal("expected to find '%s' within a C comment" % start_with)
if end_pos == -1:
self.dist_fatal("expected to end with '%s'" % end_with)
tokens = tokens[start_pos:end_pos]
return self._parse_target_tokens(tokens)
_parse_regex_arg = re.compile(r'\s|[,]|([+-])')
def _parse_arg_features(self, arg_name, req_features):
if not isinstance(req_features, str):
self.dist_fatal("expected a string in '%s'" % arg_name)
final_features = set()
# space and comma can be used as a separator
tokens = list(filter(None, re.split(self._parse_regex_arg, req_features)))
append = True # append is the default
for tok in tokens:
if tok[0] in ("#", "$"):
self.dist_fatal(
arg_name, "target groups and policies "
"aren't allowed from arguments, "
"only from dispatch-able sources"
)
if tok == '+':
append = True
continue
if tok == '-':
append = False
continue
TOK = tok.upper() # we use upper-case internally
features_to = set()
if TOK == "NONE":
pass
elif TOK == "NATIVE":
native = self.cc_flags["native"]
if not native:
self.dist_fatal(arg_name,
"native option isn't supported by the compiler"
)
features_to = self.feature_names(force_flags=native)
elif TOK == "MAX":
features_to = self.feature_supported.keys()
elif TOK == "MIN":
features_to = self.feature_min
else:
if TOK in self.feature_supported:
features_to.add(TOK)
else:
if not self.feature_is_exist(TOK):
self.dist_fatal(arg_name,
", '%s' isn't a known feature or option" % tok
)
if append:
final_features = final_features.union(features_to)
else:
final_features = final_features.difference(features_to)
append = True # back to default
return final_features
_parse_regex_target = re.compile(r'\s|[*,/]|([()])')
def _parse_target_tokens(self, tokens):
assert(isinstance(tokens, str))
final_targets = [] # to keep it sorted as specified
extra_flags = []
has_baseline = False
skipped = set()
policies = set()
multi_target = None
tokens = list(filter(None, re.split(self._parse_regex_target, tokens)))
if not tokens:
self.dist_fatal("expected one token at least")
for tok in tokens:
TOK = tok.upper()
ch = tok[0]
if ch in ('+', '-'):
self.dist_fatal(
"+/- are 'not' allowed from target's groups or @targets, "
"only from cpu_baseline and cpu_dispatch parms"
)
elif ch == '$':
if multi_target is not None:
self.dist_fatal(
"policies aren't allowed inside multi-target '()'"
", only CPU features"
)
policies.add(self._parse_token_policy(TOK))
elif ch == '#':
if multi_target is not None:
self.dist_fatal(
"target groups aren't allowed inside multi-target '()'"
", only CPU features"
)
has_baseline, final_targets, extra_flags = \
self._parse_token_group(TOK, has_baseline, final_targets, extra_flags)
elif ch == '(':
if multi_target is not None:
self.dist_fatal("unclosed multi-target, missing ')'")
multi_target = set()
elif ch == ')':
if multi_target is None:
self.dist_fatal("multi-target opener '(' wasn't found")
targets = self._parse_multi_target(multi_target)
if targets is None:
skipped.add(tuple(multi_target))
else:
if len(targets) == 1:
targets = targets[0]
if targets and targets not in final_targets:
final_targets.append(targets)
multi_target = None # back to default
else:
if TOK == "BASELINE":
if multi_target is not None:
self.dist_fatal("baseline isn't allowed inside multi-target '()'")
has_baseline = True
continue
if multi_target is not None:
multi_target.add(TOK)
continue
if not self.feature_is_exist(TOK):
self.dist_fatal("invalid target name '%s'" % TOK)
is_enabled = (
TOK in self.parse_baseline_names or
TOK in self.parse_dispatch_names
)
if is_enabled:
if TOK not in final_targets:
final_targets.append(TOK)
continue
skipped.add(TOK)
if multi_target is not None:
self.dist_fatal("unclosed multi-target, missing ')'")
if skipped:
self.dist_log(
"skip targets", skipped,
"not part of baseline or dispatch-able features"
)
final_targets = self.feature_untied(final_targets)
# add polices dependencies
for p in list(policies):
_, _, deps = self._parse_policies[p]
for d in deps:
if d in policies:
continue
self.dist_log(
"policy '%s' force enables '%s'" % (
p, d
))
policies.add(d)
# release policies filtrations
for p, (have, nhave, _) in self._parse_policies.items():
func = None
if p in policies:
func = have
self.dist_log("policy '%s' is ON" % p)
else:
func = nhave
if not func:
continue
has_baseline, final_targets, extra_flags = func(
has_baseline, final_targets, extra_flags
)
return has_baseline, final_targets, extra_flags
def _parse_token_policy(self, token):
"""validate policy token"""
if len(token) <= 1 or token[-1:] == token[0]:
self.dist_fatal("'$' must stuck in the begin of policy name")
token = token[1:]
if token not in self._parse_policies:
self.dist_fatal(
"'%s' is an invalid policy name, available policies are" % token,
self._parse_policies.keys()
)
return token
def _parse_token_group(self, token, has_baseline, final_targets, extra_flags):
"""validate group token"""
if len(token) <= 1 or token[-1:] == token[0]:
self.dist_fatal("'#' must stuck in the begin of group name")
token = token[1:]
ghas_baseline, gtargets, gextra_flags = self.parse_target_groups.get(
token, (False, None, [])
)
if gtargets is None:
self.dist_fatal(
"'%s' is an invalid target group name, " % token + \
"available target groups are",
self.parse_target_groups.keys()
)
if ghas_baseline:
has_baseline = True
# always keep sorting as specified
final_targets += [f for f in gtargets if f not in final_targets]
extra_flags += [f for f in gextra_flags if f not in extra_flags]
return has_baseline, final_targets, extra_flags
def _parse_multi_target(self, targets):
"""validate multi targets that defined between parentheses()"""
# remove any implied features and keep the origins
if not targets:
self.dist_fatal("empty multi-target '()'")
if not all([
self.feature_is_exist(tar) for tar in targets
]) :
self.dist_fatal("invalid target name in multi-target", targets)
if not all([
(
tar in self.parse_baseline_names or
tar in self.parse_dispatch_names
)
for tar in targets
]) :
return None
targets = self.feature_ahead(targets)
if not targets:
return None
# force sort multi targets, so it can be comparable
targets = self.feature_sorted(targets)
targets = tuple(targets) # hashable
return targets
def _parse_policy_not_keepbase(self, has_baseline, final_targets, extra_flags):
"""skip all baseline features"""
skipped = []
for tar in final_targets[:]:
is_base = False
if isinstance(tar, str):
is_base = tar in self.parse_baseline_names
else:
# multi targets
is_base = all([
f in self.parse_baseline_names
for f in tar
])
if is_base:
skipped.append(tar)
final_targets.remove(tar)
if skipped:
self.dist_log("skip baseline features", skipped)
return has_baseline, final_targets, extra_flags
def _parse_policy_keepsort(self, has_baseline, final_targets, extra_flags):
"""leave a notice that $keep_sort is on"""
self.dist_log(
"policy 'keep_sort' is on, dispatch-able targets", final_targets, "\n"
"are 'not' sorted depend on the highest interest but"
"as specified in the dispatch-able source or the extra group"
)
return has_baseline, final_targets, extra_flags
def _parse_policy_not_keepsort(self, has_baseline, final_targets, extra_flags):
"""sorted depend on the highest interest"""
final_targets = self.feature_sorted(final_targets, reverse=True)
return has_baseline, final_targets, extra_flags
def _parse_policy_maxopt(self, has_baseline, final_targets, extra_flags):
"""append the compiler optimization flags"""
if self.cc_has_debug:
self.dist_log("debug mode is detected, policy 'maxopt' is skipped.")
elif self.cc_noopt:
self.dist_log("optimization is disabled, policy 'maxopt' is skipped.")
else:
flags = self.cc_flags["opt"]
if not flags:
self.dist_log(
"current compiler doesn't support optimization flags, "
"policy 'maxopt' is skipped", stderr=True
)
else:
extra_flags += flags
return has_baseline, final_targets, extra_flags
def _parse_policy_werror(self, has_baseline, final_targets, extra_flags):
"""force warnings to treated as errors"""
flags = self.cc_flags["werror"]
if not flags:
self.dist_log(
"current compiler doesn't support werror flags, "
"warnings will 'not' treated as errors", stderr=True
)
else:
self.dist_log("compiler warnings are treated as errors")
extra_flags += flags
return has_baseline, final_targets, extra_flags
def _parse_policy_autovec(self, has_baseline, final_targets, extra_flags):
"""skip features that has no auto-vectorized support by compiler"""
skipped = []
for tar in final_targets[:]:
if isinstance(tar, str):
can = self.feature_can_autovec(tar)
else: # multiple target
can = all([
self.feature_can_autovec(t)
for t in tar
])
if not can:
final_targets.remove(tar)
skipped.append(tar)
if skipped:
self.dist_log("skip non auto-vectorized features", skipped)
return has_baseline, final_targets, extra_flags
class CCompilerOpt(_Config, _Distutils, _Cache, _CCompiler, _Feature, _Parse):
"""
A helper class for `CCompiler` aims to provide extra build options
to effectively control of compiler optimizations that are directly
related to CPU features.
"""
def __init__(self, ccompiler, cpu_baseline="min", cpu_dispatch="max", cache_path=None):
_Config.__init__(self)
_Distutils.__init__(self, ccompiler)
_Cache.__init__(self, cache_path, self.dist_info(), cpu_baseline, cpu_dispatch)
_CCompiler.__init__(self)
_Feature.__init__(self)
if not self.cc_noopt and self.cc_has_native:
self.dist_log(
"native flag is specified through environment variables. "
"force cpu-baseline='native'"
)
cpu_baseline = "native"
_Parse.__init__(self, cpu_baseline, cpu_dispatch)
# keep the requested features untouched, need it later for report
# and trace purposes
self._requested_baseline = cpu_baseline
self._requested_dispatch = cpu_dispatch
# key is the dispatch-able source and value is a tuple
# contains two items (has_baseline[boolean], dispatched-features[list])
self.sources_status = getattr(self, "sources_status", {})
# every instance should has a separate one
self.cache_private.add("sources_status")
# set it at the end to make sure the cache writing was done after init
# this class
self.hit_cache = hasattr(self, "hit_cache")
def is_cached(self):
"""
Returns True if the class loaded from the cache file
"""
return self.cache_infile and self.hit_cache
def cpu_baseline_flags(self):
"""
Returns a list of final CPU baseline compiler flags
"""
return self.parse_baseline_flags
def cpu_baseline_names(self):
"""
return a list of final CPU baseline feature names
"""
return self.parse_baseline_names
def cpu_dispatch_names(self):
"""
return a list of final CPU dispatch feature names
"""
return self.parse_dispatch_names
def try_dispatch(self, sources, src_dir=None, **kwargs):
"""
Compile one or more dispatch-able sources and generates object files,
also generates abstract C config headers and macros that
used later for the final runtime dispatching process.
The mechanism behind it is to takes each source file that specified
in 'sources' and branching it into several files depend on
special configuration statements that must be declared in the
top of each source which contains targeted CPU features,
then it compiles every branched source with the proper compiler flags.
Parameters
----------
sources : list
Must be a list of dispatch-able sources file paths,
and configuration statements must be declared inside
each file.
src_dir : str
Path of parent directory for the generated headers and wrapped sources.
If None(default) the files will generated in-place.
**kwargs : any
Arguments to pass on to the `CCompiler.compile()`
Returns
-------
list : generated object files
Raises
------
CompileError
Raises by `CCompiler.compile()` on compiling failure.
DistutilsError
Some errors during checking the sanity of configuration statements.
See Also
--------
parse_targets :
Parsing the configuration statements of dispatch-able sources.
"""
to_compile = {}
baseline_flags = self.cpu_baseline_flags()
include_dirs = kwargs.setdefault("include_dirs", [])
for src in sources:
output_dir = os.path.dirname(src)
if src_dir:
if not output_dir.startswith(src_dir):
output_dir = os.path.join(src_dir, output_dir)
if output_dir not in include_dirs:
# To allow including the generated config header(*.dispatch.h)
# by the dispatch-able sources
include_dirs.append(output_dir)
has_baseline, targets, extra_flags = self.parse_targets(src)
nochange = self._generate_config(output_dir, src, targets, has_baseline)
for tar in targets:
tar_src = self._wrap_target(output_dir, src, tar, nochange=nochange)
flags = tuple(extra_flags + self.feature_flags(tar))
to_compile.setdefault(flags, []).append(tar_src)
if has_baseline:
flags = tuple(extra_flags + baseline_flags)
to_compile.setdefault(flags, []).append(src)
self.sources_status[src] = (has_baseline, targets)
# For these reasons, the sources are compiled in a separate loop:
# - Gathering all sources with the same flags to benefit from
# the parallel compiling as much as possible.
# - To generate all config headers of the dispatchable sources,
# before the compilation in case if there are dependency relationships
# among them.
objects = []
for flags, srcs in to_compile.items():
objects += self.dist_compile(srcs, list(flags), **kwargs)
return objects
def generate_dispatch_header(self, header_path):
"""
Generate the dispatch header which contains the #definitions and headers
for platform-specific instruction-sets for the enabled CPU baseline and
dispatch-able features.
Its highly recommended to take a look at the generated header
also the generated source files via `try_dispatch()`
in order to get the full picture.
"""
self.dist_log("generate CPU dispatch header: (%s)" % header_path)
baseline_names = self.cpu_baseline_names()
dispatch_names = self.cpu_dispatch_names()
baseline_len = len(baseline_names)
dispatch_len = len(dispatch_names)
header_dir = os.path.dirname(header_path)
if not os.path.exists(header_dir):
self.dist_log(
f"dispatch header dir {header_dir} does not exist, creating it",
stderr=True
)
os.makedirs(header_dir)
with open(header_path, 'w') as f:
baseline_calls = ' \\\n'.join([
(
"\t%sWITH_CPU_EXPAND_(MACRO_TO_CALL(%s, __VA_ARGS__))"
) % (self.conf_c_prefix, f)
for f in baseline_names
])
dispatch_calls = ' \\\n'.join([
(
"\t%sWITH_CPU_EXPAND_(MACRO_TO_CALL(%s, __VA_ARGS__))"
) % (self.conf_c_prefix, f)
for f in dispatch_names
])
f.write(textwrap.dedent("""\
/*
* AUTOGENERATED DON'T EDIT
* Please make changes to the code generator (distutils/ccompiler_opt.py)
*/
#define {pfx}WITH_CPU_BASELINE "{baseline_str}"
#define {pfx}WITH_CPU_DISPATCH "{dispatch_str}"
#define {pfx}WITH_CPU_BASELINE_N {baseline_len}
#define {pfx}WITH_CPU_DISPATCH_N {dispatch_len}
#define {pfx}WITH_CPU_EXPAND_(X) X
#define {pfx}WITH_CPU_BASELINE_CALL(MACRO_TO_CALL, ...) \\
{baseline_calls}
#define {pfx}WITH_CPU_DISPATCH_CALL(MACRO_TO_CALL, ...) \\
{dispatch_calls}
""").format(
pfx=self.conf_c_prefix, baseline_str=" ".join(baseline_names),
dispatch_str=" ".join(dispatch_names), baseline_len=baseline_len,
dispatch_len=dispatch_len, baseline_calls=baseline_calls,
dispatch_calls=dispatch_calls
))
baseline_pre = ''
for name in baseline_names:
baseline_pre += self.feature_c_preprocessor(name, tabs=1) + '\n'
dispatch_pre = ''
for name in dispatch_names:
dispatch_pre += textwrap.dedent("""\
#ifdef {pfx}CPU_TARGET_{name}
{pre}
#endif /*{pfx}CPU_TARGET_{name}*/
""").format(
pfx=self.conf_c_prefix_, name=name, pre=self.feature_c_preprocessor(
name, tabs=1
))
f.write(textwrap.dedent("""\
/******* baseline features *******/
{baseline_pre}
/******* dispatch features *******/
{dispatch_pre}
""").format(
pfx=self.conf_c_prefix_, baseline_pre=baseline_pre,
dispatch_pre=dispatch_pre
))
def report(self, full=False):
report = []
platform_rows = []
baseline_rows = []
dispatch_rows = []
report.append(("Platform", platform_rows))
report.append(("", ""))
report.append(("CPU baseline", baseline_rows))
report.append(("", ""))
report.append(("CPU dispatch", dispatch_rows))
########## platform ##########
platform_rows.append(("Architecture", (
"unsupported" if self.cc_on_noarch else self.cc_march)
))
platform_rows.append(("Compiler", (
"unix-like" if self.cc_is_nocc else self.cc_name)
))
########## baseline ##########
if self.cc_noopt:
baseline_rows.append(("Requested", "optimization disabled"))
else:
baseline_rows.append(("Requested", repr(self._requested_baseline)))
baseline_names = self.cpu_baseline_names()
baseline_rows.append((
"Enabled", (' '.join(baseline_names) if baseline_names else "none")
))
baseline_flags = self.cpu_baseline_flags()
baseline_rows.append((
"Flags", (' '.join(baseline_flags) if baseline_flags else "none")
))
extra_checks = []
for name in baseline_names:
extra_checks += self.feature_extra_checks(name)
baseline_rows.append((
"Extra checks", (' '.join(extra_checks) if extra_checks else "none")
))
########## dispatch ##########
if self.cc_noopt:
baseline_rows.append(("Requested", "optimization disabled"))
else:
dispatch_rows.append(("Requested", repr(self._requested_dispatch)))
dispatch_names = self.cpu_dispatch_names()
dispatch_rows.append((
"Enabled", (' '.join(dispatch_names) if dispatch_names else "none")
))
########## Generated ##########
# TODO:
# - collect object names from 'try_dispatch()'
# then get size of each object and printed
# - give more details about the features that not
# generated due compiler support
# - find a better output's design.
#
target_sources = {}
for source, (_, targets) in self.sources_status.items():
for tar in targets:
target_sources.setdefault(tar, []).append(source)
if not full or not target_sources:
generated = ""
for tar in self.feature_sorted(target_sources):
sources = target_sources[tar]
name = tar if isinstance(tar, str) else '(%s)' % ' '.join(tar)
generated += name + "[%d] " % len(sources)
dispatch_rows.append(("Generated", generated[:-1] if generated else "none"))
else:
dispatch_rows.append(("Generated", ''))
for tar in self.feature_sorted(target_sources):
sources = target_sources[tar]
pretty_name = tar if isinstance(tar, str) else '(%s)' % ' '.join(tar)
flags = ' '.join(self.feature_flags(tar))
implies = ' '.join(self.feature_sorted(self.feature_implies(tar)))
detect = ' '.join(self.feature_detect(tar))
extra_checks = []
for name in ((tar,) if isinstance(tar, str) else tar):
extra_checks += self.feature_extra_checks(name)
extra_checks = (' '.join(extra_checks) if extra_checks else "none")
dispatch_rows.append(('', ''))
dispatch_rows.append((pretty_name, implies))
dispatch_rows.append(("Flags", flags))
dispatch_rows.append(("Extra checks", extra_checks))
dispatch_rows.append(("Detect", detect))
for src in sources:
dispatch_rows.append(("", src))
###############################
# TODO: add support for 'markdown' format
text = []
secs_len = [len(secs) for secs, _ in report]
cols_len = [len(col) for _, rows in report for col, _ in rows]
tab = ' ' * 2
pad = max(max(secs_len), max(cols_len))
for sec, rows in report:
if not sec:
text.append("") # empty line
continue
sec += ' ' * (pad - len(sec))
text.append(sec + tab + ': ')
for col, val in rows:
col += ' ' * (pad - len(col))
text.append(tab + col + ': ' + val)
return '\n'.join(text)
def _wrap_target(self, output_dir, dispatch_src, target, nochange=False):
assert(isinstance(target, (str, tuple)))
if isinstance(target, str):
ext_name = target_name = target
else:
# multi-target
ext_name = '.'.join(target)
target_name = '__'.join(target)
wrap_path = os.path.join(output_dir, os.path.basename(dispatch_src))
wrap_path = "{0}.{2}{1}".format(*os.path.splitext(wrap_path), ext_name.lower())
if nochange and os.path.exists(wrap_path):
return wrap_path
self.dist_log("wrap dispatch-able target -> ", wrap_path)
# sorting for readability
features = self.feature_sorted(self.feature_implies_c(target))
target_join = "#define %sCPU_TARGET_" % self.conf_c_prefix_
target_defs = [target_join + f for f in features]
target_defs = '\n'.join(target_defs)
with open(wrap_path, "w") as fd:
fd.write(textwrap.dedent("""\
/**
* AUTOGENERATED DON'T EDIT
* Please make changes to the code generator \
(distutils/ccompiler_opt.py)
*/
#define {pfx}CPU_TARGET_MODE
#define {pfx}CPU_TARGET_CURRENT {target_name}
{target_defs}
#include "{path}"
""").format(
pfx=self.conf_c_prefix_, target_name=target_name,
path=os.path.abspath(dispatch_src), target_defs=target_defs
))
return wrap_path
def _generate_config(self, output_dir, dispatch_src, targets, has_baseline=False):
config_path = os.path.basename(dispatch_src).replace(".c", ".h")
config_path = os.path.join(output_dir, config_path)
# check if targets didn't change to avoid recompiling
cache_hash = self.cache_hash(targets, has_baseline)
try:
with open(config_path) as f:
last_hash = f.readline().split("cache_hash:")
if len(last_hash) == 2 and int(last_hash[1]) == cache_hash:
return True
except IOError:
pass
self.dist_log("generate dispatched config -> ", config_path)
dispatch_calls = []
for tar in targets:
if isinstance(tar, str):
target_name = tar
else: # multi target
target_name = '__'.join([t for t in tar])
req_detect = self.feature_detect(tar)
req_detect = '&&'.join([
"CHK(%s)" % f for f in req_detect
])
dispatch_calls.append(
"\t%sCPU_DISPATCH_EXPAND_(CB((%s), %s, __VA_ARGS__))" % (
self.conf_c_prefix_, req_detect, target_name
))
dispatch_calls = ' \\\n'.join(dispatch_calls)
if has_baseline:
baseline_calls = (
"\t%sCPU_DISPATCH_EXPAND_(CB(__VA_ARGS__))"
) % self.conf_c_prefix_
else:
baseline_calls = ''
with open(config_path, "w") as fd:
fd.write(textwrap.dedent("""\
// cache_hash:{cache_hash}
/**
* AUTOGENERATED DON'T EDIT
* Please make changes to the code generator (distutils/ccompiler_opt.py)
*/
#ifndef {pfx}CPU_DISPATCH_EXPAND_
#define {pfx}CPU_DISPATCH_EXPAND_(X) X
#endif
#undef {pfx}CPU_DISPATCH_BASELINE_CALL
#undef {pfx}CPU_DISPATCH_CALL
#define {pfx}CPU_DISPATCH_BASELINE_CALL(CB, ...) \\
{baseline_calls}
#define {pfx}CPU_DISPATCH_CALL(CHK, CB, ...) \\
{dispatch_calls}
""").format(
pfx=self.conf_c_prefix_, baseline_calls=baseline_calls,
dispatch_calls=dispatch_calls, cache_hash=cache_hash
))
return False
def new_ccompiler_opt(compiler, dispatch_hpath, **kwargs):
"""
Create a new instance of 'CCompilerOpt' and generate the dispatch header
which contains the #definitions and headers of platform-specific instruction-sets for
the enabled CPU baseline and dispatch-able features.
Parameters
----------
compiler : CCompiler instance
dispatch_hpath : str
path of the dispatch header
**kwargs: passed as-is to `CCompilerOpt(...)`
Returns
-------
new instance of CCompilerOpt
"""
opt = CCompilerOpt(compiler, **kwargs)
if not os.path.exists(dispatch_hpath) or not opt.is_cached():
opt.generate_dispatch_header(dispatch_hpath)
return opt