from collections import namedtuple import datetime from decimal import Decimal import io from itertools import product import platform from types import SimpleNamespace try: from contextlib import nullcontext except ImportError: from contextlib import ExitStack as nullcontext # Py3.6. import dateutil.tz import numpy as np from numpy import ma from cycler import cycler import pytest import matplotlib import matplotlib as mpl from matplotlib.testing.decorators import ( image_comparison, check_figures_equal, remove_ticks_and_titles) import matplotlib.colors as mcolors import matplotlib.dates as mdates import matplotlib.font_manager as mfont_manager import matplotlib.markers as mmarkers import matplotlib.patches as mpatches import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms from numpy.testing import ( assert_allclose, assert_array_equal, assert_array_almost_equal) from matplotlib import rc_context from matplotlib.cbook import MatplotlibDeprecationWarning # Note: Some test cases are run twice: once normally and once with labeled data # These two must be defined in the same test function or need to have # different baseline images to prevent race conditions when pytest runs # the tests with multiple threads. def test_get_labels(): fig, ax = plt.subplots() ax.set_xlabel('x label') ax.set_ylabel('y label') assert ax.get_xlabel() == 'x label' assert ax.get_ylabel() == 'y label' @check_figures_equal() def test_label_loc_vertical(fig_test, fig_ref): ax = fig_test.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2]) ax.set_ylabel('Y Label', loc='top') ax.set_xlabel('X Label', loc='right') cbar = fig_test.colorbar(sc) cbar.set_label("Z Label", loc='top') ax = fig_ref.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2]) ax.set_ylabel('Y Label', y=1, ha='right') ax.set_xlabel('X Label', x=1, ha='right') cbar = fig_ref.colorbar(sc) cbar.set_label("Z Label", y=1, ha='right') @check_figures_equal() def test_label_loc_horizontal(fig_test, fig_ref): ax = fig_test.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2]) ax.set_ylabel('Y Label', loc='bottom') ax.set_xlabel('X Label', loc='left') cbar = fig_test.colorbar(sc, orientation='horizontal') cbar.set_label("Z Label", loc='left') ax = fig_ref.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2]) ax.set_ylabel('Y Label', y=0, ha='left') ax.set_xlabel('X Label', x=0, ha='left') cbar = fig_ref.colorbar(sc, orientation='horizontal') cbar.set_label("Z Label", x=0, ha='left') @check_figures_equal() def test_label_loc_rc(fig_test, fig_ref): with matplotlib.rc_context({"xaxis.labellocation": "right", "yaxis.labellocation": "top"}): ax = fig_test.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2]) ax.set_ylabel('Y Label') ax.set_xlabel('X Label') cbar = fig_test.colorbar(sc, orientation='horizontal') cbar.set_label("Z Label") ax = fig_ref.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2]) ax.set_ylabel('Y Label', y=1, ha='right') ax.set_xlabel('X Label', x=1, ha='right') cbar = fig_ref.colorbar(sc, orientation='horizontal') cbar.set_label("Z Label", x=1, ha='right') @check_figures_equal(extensions=["png"]) def test_acorr(fig_test, fig_ref): np.random.seed(19680801) Nx = 512 x = np.random.normal(0, 1, Nx).cumsum() maxlags = Nx-1 fig_test, ax_test = plt.subplots() ax_test.acorr(x, maxlags=maxlags) fig_ref, ax_ref = plt.subplots() # Normalized autocorrelation norm_auto_corr = np.correlate(x, x, mode="full")/np.dot(x, x) lags = np.arange(-maxlags, maxlags+1) norm_auto_corr = norm_auto_corr[Nx-1-maxlags:Nx+maxlags] ax_ref.vlines(lags, [0], norm_auto_corr) ax_ref.axhline(y=0, xmin=0, xmax=1) @check_figures_equal(extensions=["png"]) def test_spy(fig_test, fig_ref): np.random.seed(19680801) a = np.ones(32 * 32) a[:16 * 32] = 0 np.random.shuffle(a) a = a.reshape((32, 32)) axs_test = fig_test.subplots(2) axs_test[0].spy(a) axs_test[1].spy(a, marker=".", origin="lower") axs_ref = fig_ref.subplots(2) axs_ref[0].imshow(a, cmap="gray_r", interpolation="nearest") axs_ref[0].xaxis.tick_top() axs_ref[1].plot(*np.nonzero(a)[::-1], ".", markersize=10) axs_ref[1].set( aspect=1, xlim=axs_ref[0].get_xlim(), ylim=axs_ref[0].get_ylim()[::-1]) for ax in axs_ref: ax.xaxis.set_ticks_position("both") def test_spy_invalid_kwargs(): fig, ax = plt.subplots() for unsupported_kw in [{'interpolation': 'nearest'}, {'marker': 'o', 'linestyle': 'solid'}]: with pytest.raises(TypeError): ax.spy(np.eye(3, 3), **unsupported_kw) @check_figures_equal(extensions=["png"]) def test_matshow(fig_test, fig_ref): mpl.style.use("mpl20") a = np.random.rand(32, 32) fig_test.add_subplot().matshow(a) ax_ref = fig_ref.add_subplot() ax_ref.imshow(a) ax_ref.xaxis.tick_top() ax_ref.xaxis.set_ticks_position('both') @image_comparison(['formatter_ticker_001', 'formatter_ticker_002', 'formatter_ticker_003', 'formatter_ticker_004', 'formatter_ticker_005', ]) def test_formatter_ticker(): import matplotlib.testing.jpl_units as units units.register() # This should affect the tick size. (Tests issue #543) matplotlib.rcParams['lines.markeredgewidth'] = 30 # This essentially test to see if user specified labels get overwritten # by the auto labeler functionality of the axes. xdata = [x*units.sec for x in range(10)] ydata1 = [(1.5*y - 0.5)*units.km for y in range(10)] ydata2 = [(1.75*y - 1.0)*units.km for y in range(10)] ax = plt.figure().subplots() ax.set_xlabel("x-label 001") ax = plt.figure().subplots() ax.set_xlabel("x-label 001") ax.plot(xdata, ydata1, color='blue', xunits="sec") ax = plt.figure().subplots() ax.set_xlabel("x-label 001") ax.plot(xdata, ydata1, color='blue', xunits="sec") ax.set_xlabel("x-label 003") ax = plt.figure().subplots() ax.plot(xdata, ydata1, color='blue', xunits="sec") ax.plot(xdata, ydata2, color='green', xunits="hour") ax.set_xlabel("x-label 004") # See SF bug 2846058 # https://sourceforge.net/tracker/?func=detail&aid=2846058&group_id=80706&atid=560720 ax = plt.figure().subplots() ax.plot(xdata, ydata1, color='blue', xunits="sec") ax.plot(xdata, ydata2, color='green', xunits="hour") ax.set_xlabel("x-label 005") ax.autoscale_view() def test_funcformatter_auto_formatter(): def _formfunc(x, pos): return '' ax = plt.figure().subplots() assert ax.xaxis.isDefault_majfmt assert ax.xaxis.isDefault_minfmt assert ax.yaxis.isDefault_majfmt assert ax.yaxis.isDefault_minfmt ax.xaxis.set_major_formatter(_formfunc) assert not ax.xaxis.isDefault_majfmt assert ax.xaxis.isDefault_minfmt assert ax.yaxis.isDefault_majfmt assert ax.yaxis.isDefault_minfmt targ_funcformatter = mticker.FuncFormatter(_formfunc) assert isinstance(ax.xaxis.get_major_formatter(), mticker.FuncFormatter) assert ax.xaxis.get_major_formatter().func == targ_funcformatter.func def test_strmethodformatter_auto_formatter(): formstr = '{x}_{pos}' ax = plt.figure().subplots() assert ax.xaxis.isDefault_majfmt assert ax.xaxis.isDefault_minfmt assert ax.yaxis.isDefault_majfmt assert ax.yaxis.isDefault_minfmt ax.yaxis.set_minor_formatter(formstr) assert ax.xaxis.isDefault_majfmt assert ax.xaxis.isDefault_minfmt assert ax.yaxis.isDefault_majfmt assert not ax.yaxis.isDefault_minfmt targ_strformatter = mticker.StrMethodFormatter(formstr) assert isinstance(ax.yaxis.get_minor_formatter(), mticker.StrMethodFormatter) assert ax.yaxis.get_minor_formatter().fmt == targ_strformatter.fmt @image_comparison(["twin_axis_locators_formatters"]) def test_twin_axis_locators_formatters(): vals = np.linspace(0, 1, num=5, endpoint=True) locs = np.sin(np.pi * vals / 2.0) majl = plt.FixedLocator(locs) minl = plt.FixedLocator([0.1, 0.2, 0.3]) fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) ax1.plot([0.1, 100], [0, 1]) ax1.yaxis.set_major_locator(majl) ax1.yaxis.set_minor_locator(minl) ax1.yaxis.set_major_formatter(plt.FormatStrFormatter('%08.2lf')) ax1.yaxis.set_minor_formatter(plt.FixedFormatter(['tricks', 'mind', 'jedi'])) ax1.xaxis.set_major_locator(plt.LinearLocator()) ax1.xaxis.set_minor_locator(plt.FixedLocator([15, 35, 55, 75])) ax1.xaxis.set_major_formatter(plt.FormatStrFormatter('%05.2lf')) ax1.xaxis.set_minor_formatter(plt.FixedFormatter(['c', '3', 'p', 'o'])) ax1.twiny() ax1.twinx() def test_twinx_cla(): fig, ax = plt.subplots() ax2 = ax.twinx() ax3 = ax2.twiny() plt.draw() assert not ax2.xaxis.get_visible() assert not ax2.patch.get_visible() ax2.cla() ax3.cla() assert not ax2.xaxis.get_visible() assert not ax2.patch.get_visible() assert ax2.yaxis.get_visible() assert ax3.xaxis.get_visible() assert not ax3.patch.get_visible() assert not ax3.yaxis.get_visible() assert ax.xaxis.get_visible() assert ax.patch.get_visible() assert ax.yaxis.get_visible() @pytest.mark.parametrize('twin', ('x', 'y')) @check_figures_equal(extensions=['png'], tol=0.19) def test_twin_logscale(fig_test, fig_ref, twin): twin_func = f'twin{twin}' # test twinx or twiny set_scale = f'set_{twin}scale' x = np.arange(1, 100) # Change scale after twinning. ax_test = fig_test.add_subplot(2, 1, 1) ax_twin = getattr(ax_test, twin_func)() getattr(ax_test, set_scale)('log') ax_twin.plot(x, x) # Twin after changing scale. ax_test = fig_test.add_subplot(2, 1, 2) getattr(ax_test, set_scale)('log') ax_twin = getattr(ax_test, twin_func)() ax_twin.plot(x, x) for i in [1, 2]: ax_ref = fig_ref.add_subplot(2, 1, i) getattr(ax_ref, set_scale)('log') ax_ref.plot(x, x) # This is a hack because twinned Axes double-draw the frame. # Remove this when that is fixed. Path = matplotlib.path.Path fig_ref.add_artist( matplotlib.patches.PathPatch( Path([[0, 0], [0, 1], [0, 1], [1, 1], [1, 1], [1, 0], [1, 0], [0, 0]], [Path.MOVETO, Path.LINETO] * 4), transform=ax_ref.transAxes, facecolor='none', edgecolor=mpl.rcParams['axes.edgecolor'], linewidth=mpl.rcParams['axes.linewidth'], capstyle='projecting')) remove_ticks_and_titles(fig_test) remove_ticks_and_titles(fig_ref) @image_comparison(['twin_autoscale.png']) def test_twinx_axis_scales(): x = np.array([0, 0.5, 1]) y = 0.5 * x x2 = np.array([0, 1, 2]) y2 = 2 * x2 fig = plt.figure() ax = fig.add_axes((0, 0, 1, 1), autoscalex_on=False, autoscaley_on=False) ax.plot(x, y, color='blue', lw=10) ax2 = plt.twinx(ax) ax2.plot(x2, y2, 'r--', lw=5) ax.margins(0, 0) ax2.margins(0, 0) def test_twin_inherit_autoscale_setting(): fig, ax = plt.subplots() ax_x_on = ax.twinx() ax.set_autoscalex_on(False) ax_x_off = ax.twinx() assert ax_x_on.get_autoscalex_on() assert not ax_x_off.get_autoscalex_on() ax_y_on = ax.twiny() ax.set_autoscaley_on(False) ax_y_off = ax.twiny() assert ax_y_on.get_autoscaley_on() assert not ax_y_off.get_autoscaley_on() def test_inverted_cla(): # GitHub PR #5450. Setting autoscale should reset # axes to be non-inverted. # plotting an image, then 1d graph, axis is now down fig = plt.figure(0) ax = fig.gca() # 1. test that a new axis is not inverted per default assert not ax.xaxis_inverted() assert not ax.yaxis_inverted() img = np.random.random((100, 100)) ax.imshow(img) # 2. test that a image axis is inverted assert not ax.xaxis_inverted() assert ax.yaxis_inverted() # 3. test that clearing and plotting a line, axes are # not inverted ax.cla() x = np.linspace(0, 2*np.pi, 100) ax.plot(x, np.cos(x)) assert not ax.xaxis_inverted() assert not ax.yaxis_inverted() # 4. autoscaling should not bring back axes to normal ax.cla() ax.imshow(img) plt.autoscale() assert not ax.xaxis_inverted() assert ax.yaxis_inverted() # 5. two shared axes. Inverting the master axis should invert the shared # axes; clearing the master axis should bring axes in shared # axes back to normal. ax0 = plt.subplot(211) ax1 = plt.subplot(212, sharey=ax0) ax0.yaxis.set_inverted(True) assert ax1.yaxis_inverted() ax1.plot(x, np.cos(x)) ax0.cla() assert not ax1.yaxis_inverted() ax1.cla() # 6. clearing the nonmaster should not touch limits ax0.imshow(img) ax1.plot(x, np.cos(x)) ax1.cla() assert ax.yaxis_inverted() # clean up plt.close(fig) @check_figures_equal(extensions=["png"]) def test_minorticks_on_rcParams_both(fig_test, fig_ref): with matplotlib.rc_context({"xtick.minor.visible": True, "ytick.minor.visible": True}): ax_test = fig_test.subplots() ax_test.plot([0, 1], [0, 1]) ax_ref = fig_ref.subplots() ax_ref.plot([0, 1], [0, 1]) ax_ref.minorticks_on() @image_comparison(["autoscale_tiny_range"], remove_text=True) def test_autoscale_tiny_range(): # github pull #904 fig, axs = plt.subplots(2, 2) for i, ax in enumerate(axs.flat): y1 = 10**(-11 - i) ax.plot([0, 1], [1, 1 + y1]) @pytest.mark.style('default') def test_autoscale_tight(): fig, ax = plt.subplots(1, 1) ax.plot([1, 2, 3, 4]) ax.autoscale(enable=True, axis='x', tight=False) ax.autoscale(enable=True, axis='y', tight=True) assert_allclose(ax.get_xlim(), (-0.15, 3.15)) assert_allclose(ax.get_ylim(), (1.0, 4.0)) @pytest.mark.style('default') def test_autoscale_log_shared(): # related to github #7587 # array starts at zero to trigger _minpos handling x = np.arange(100, dtype=float) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) ax1.loglog(x, x) ax2.semilogx(x, x) ax1.autoscale(tight=True) ax2.autoscale(tight=True) plt.draw() lims = (x[1], x[-1]) assert_allclose(ax1.get_xlim(), lims) assert_allclose(ax1.get_ylim(), lims) assert_allclose(ax2.get_xlim(), lims) assert_allclose(ax2.get_ylim(), (x[0], x[-1])) @pytest.mark.style('default') def test_use_sticky_edges(): fig, ax = plt.subplots() ax.imshow([[0, 1], [2, 3]], origin='lower') assert_allclose(ax.get_xlim(), (-0.5, 1.5)) assert_allclose(ax.get_ylim(), (-0.5, 1.5)) ax.use_sticky_edges = False ax.autoscale() xlim = (-0.5 - 2 * ax._xmargin, 1.5 + 2 * ax._xmargin) ylim = (-0.5 - 2 * ax._ymargin, 1.5 + 2 * ax._ymargin) assert_allclose(ax.get_xlim(), xlim) assert_allclose(ax.get_ylim(), ylim) # Make sure it is reversible: ax.use_sticky_edges = True ax.autoscale() assert_allclose(ax.get_xlim(), (-0.5, 1.5)) assert_allclose(ax.get_ylim(), (-0.5, 1.5)) @check_figures_equal(extensions=["png"]) def test_sticky_shared_axes(fig_test, fig_ref): # Check that sticky edges work whether they are set in an axes that is a # "master" in a share, or an axes that is a "follower". Z = np.arange(15).reshape(3, 5) ax0 = fig_test.add_subplot(211) ax1 = fig_test.add_subplot(212, sharex=ax0) ax1.pcolormesh(Z) ax0 = fig_ref.add_subplot(212) ax1 = fig_ref.add_subplot(211, sharex=ax0) ax0.pcolormesh(Z) @image_comparison(['offset_points'], remove_text=True) def test_basic_annotate(): # Setup some data t = np.arange(0.0, 5.0, 0.01) s = np.cos(2.0*np.pi * t) # Offset Points fig = plt.figure() ax = fig.add_subplot(111, autoscale_on=False, xlim=(-1, 5), ylim=(-3, 5)) line, = ax.plot(t, s, lw=3, color='purple') ax.annotate('local max', xy=(3, 1), xycoords='data', xytext=(3, 3), textcoords='offset points') def test_annotate_parameter_warn(): fig, ax = plt.subplots() with pytest.warns(MatplotlibDeprecationWarning, match=r"The \'s\' parameter of annotate\(\) " "has been renamed \'text\'"): ax.annotate(s='now named text', xy=(0, 1)) @image_comparison(['arrow_simple.png'], remove_text=True) def test_arrow_simple(): # Simple image test for ax.arrow # kwargs that take discrete values length_includes_head = (True, False) shape = ('full', 'left', 'right') head_starts_at_zero = (True, False) # Create outer product of values kwargs = product(length_includes_head, shape, head_starts_at_zero) fig, axs = plt.subplots(3, 4) for i, (ax, kwarg) in enumerate(zip(axs.flat, kwargs)): ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) # Unpack kwargs (length_includes_head, shape, head_starts_at_zero) = kwarg theta = 2 * np.pi * i / 12 # Draw arrow ax.arrow(0, 0, np.sin(theta), np.cos(theta), width=theta/100, length_includes_head=length_includes_head, shape=shape, head_starts_at_zero=head_starts_at_zero, head_width=theta / 10, head_length=theta / 10) def test_arrow_empty(): _, ax = plt.subplots() # Create an empty FancyArrow ax.arrow(0, 0, 0, 0, head_length=0) def test_arrow_in_view(): _, ax = plt.subplots() ax.arrow(1, 1, 1, 1) assert ax.get_xlim() == (0.8, 2.2) assert ax.get_ylim() == (0.8, 2.2) def test_annotate_default_arrow(): # Check that we can make an annotation arrow with only default properties. fig, ax = plt.subplots() ann = ax.annotate("foo", (0, 1), xytext=(2, 3)) assert ann.arrow_patch is None ann = ax.annotate("foo", (0, 1), xytext=(2, 3), arrowprops={}) assert ann.arrow_patch is not None @image_comparison(['fill_units.png'], savefig_kwarg={'dpi': 60}) def test_fill_units(): import matplotlib.testing.jpl_units as units units.register() # generate some data t = units.Epoch("ET", dt=datetime.datetime(2009, 4, 27)) value = 10.0 * units.deg day = units.Duration("ET", 24.0 * 60.0 * 60.0) dt = np.arange('2009-04-27', '2009-04-29', dtype='datetime64[D]') dtn = mdates.date2num(dt) fig = plt.figure() # Top-Left ax1 = fig.add_subplot(221) ax1.plot([t], [value], yunits='deg', color='red') ind = [0, 0, 1, 1] ax1.fill(dtn[ind], [0.0, 0.0, 90.0, 0.0], 'b') # Top-Right ax2 = fig.add_subplot(222) ax2.plot([t], [value], yunits='deg', color='red') ax2.fill([t, t, t + day, t + day], [0.0, 0.0, 90.0, 0.0], 'b') # Bottom-Left ax3 = fig.add_subplot(223) ax3.plot([t], [value], yunits='deg', color='red') ax3.fill(dtn[ind], [0 * units.deg, 0 * units.deg, 90 * units.deg, 0 * units.deg], 'b') # Bottom-Right ax4 = fig.add_subplot(224) ax4.plot([t], [value], yunits='deg', color='red') ax4.fill([t, t, t + day, t + day], [0 * units.deg, 0 * units.deg, 90 * units.deg, 0 * units.deg], facecolor="blue") fig.autofmt_xdate() @image_comparison(['single_point', 'single_point']) def test_single_point(): # Issue #1796: don't let lines.marker affect the grid matplotlib.rcParams['lines.marker'] = 'o' matplotlib.rcParams['axes.grid'] = True plt.figure() plt.subplot(211) plt.plot([0], [0], 'o') plt.subplot(212) plt.plot([1], [1], 'o') # Reuse testcase from above for a labeled data test data = {'a': [0], 'b': [1]} plt.figure() plt.subplot(211) plt.plot('a', 'a', 'o', data=data) plt.subplot(212) plt.plot('b', 'b', 'o', data=data) @image_comparison(['single_date.png'], style='mpl20') def test_single_date(): # use former defaults to match existing baseline image plt.rcParams['axes.formatter.limits'] = -7, 7 dt = mdates.date2num(np.datetime64('0000-12-31')) time1 = [721964.0] data1 = [-65.54] fig, ax = plt.subplots(2, 1) ax[0].plot_date(time1 + dt, data1, 'o', color='r') ax[1].plot(time1, data1, 'o', color='r') @check_figures_equal(extensions=["png"]) def test_shaped_data(fig_test, fig_ref): row = np.arange(10).reshape((1, -1)) col = np.arange(0, 100, 10).reshape((-1, 1)) axs = fig_test.subplots(2) axs[0].plot(row) # Actually plots nothing (columns are single points). axs[1].plot(col) # Same as plotting 1d. axs = fig_ref.subplots(2) # xlim from the implicit "x=0", ylim from the row datalim. axs[0].set(xlim=(-.06, .06), ylim=(0, 9)) axs[1].plot(col.ravel()) def test_structured_data(): # support for structured data pts = np.array([(1, 1), (2, 2)], dtype=[("ones", float), ("twos", float)]) # this should not read second name as a format and raise ValueError axs = plt.figure().subplots(2) axs[0].plot("ones", "twos", data=pts) axs[1].plot("ones", "twos", "r", data=pts) @image_comparison(['aitoff_proj'], extensions=["png"], remove_text=True, style='mpl20') def test_aitoff_proj(): """ Test aitoff projection ref.: https://github.com/matplotlib/matplotlib/pull/14451 """ x = np.linspace(-np.pi, np.pi, 20) y = np.linspace(-np.pi / 2, np.pi / 2, 20) X, Y = np.meshgrid(x, y) fig, ax = plt.subplots(figsize=(8, 4.2), subplot_kw=dict(projection="aitoff")) ax.grid() ax.plot(X.flat, Y.flat, 'o', markersize=4) @image_comparison(['axvspan_epoch']) def test_axvspan_epoch(): import matplotlib.testing.jpl_units as units units.register() # generate some data t0 = units.Epoch("ET", dt=datetime.datetime(2009, 1, 20)) tf = units.Epoch("ET", dt=datetime.datetime(2009, 1, 21)) dt = units.Duration("ET", units.day.convert("sec")) ax = plt.gca() plt.axvspan(t0, tf, facecolor="blue", alpha=0.25) ax.set_xlim(t0 - 5.0*dt, tf + 5.0*dt) @image_comparison(['axhspan_epoch'], tol=0.02) def test_axhspan_epoch(): import matplotlib.testing.jpl_units as units units.register() # generate some data t0 = units.Epoch("ET", dt=datetime.datetime(2009, 1, 20)) tf = units.Epoch("ET", dt=datetime.datetime(2009, 1, 21)) dt = units.Duration("ET", units.day.convert("sec")) ax = plt.gca() ax.axhspan(t0, tf, facecolor="blue", alpha=0.25) ax.set_ylim(t0 - 5.0*dt, tf + 5.0*dt) @image_comparison(['hexbin_extent.png', 'hexbin_extent.png'], remove_text=True) def test_hexbin_extent(): # this test exposes sf bug 2856228 fig, ax = plt.subplots() data = (np.arange(2000) / 2000).reshape((2, 1000)) x, y = data ax.hexbin(x, y, extent=[.1, .3, .6, .7]) # Reuse testcase from above for a labeled data test data = {"x": x, "y": y} fig, ax = plt.subplots() ax.hexbin("x", "y", extent=[.1, .3, .6, .7], data=data) @image_comparison(['hexbin_empty.png'], remove_text=True) def test_hexbin_empty(): # From #3886: creating hexbin from empty dataset raises ValueError ax = plt.gca() ax.hexbin([], []) def test_hexbin_pickable(): # From #1973: Test that picking a hexbin collection works fig, ax = plt.subplots() data = (np.arange(200) / 200).reshape((2, 100)) x, y = data hb = ax.hexbin(x, y, extent=[.1, .3, .6, .7], picker=-1) mouse_event = SimpleNamespace(x=400, y=300) assert hb.contains(mouse_event)[0] @image_comparison(['hexbin_log.png'], style='mpl20') def test_hexbin_log(): # Issue #1636 (and also test log scaled colorbar) np.random.seed(19680801) n = 100000 x = np.random.standard_normal(n) y = 2.0 + 3.0 * x + 4.0 * np.random.standard_normal(n) y = np.power(2, y * 0.5) fig, ax = plt.subplots() h = ax.hexbin(x, y, yscale='log', bins='log') plt.colorbar(h) def test_inverted_limits(): # Test gh:1553 # Calling invert_xaxis prior to plotting should not disable autoscaling # while still maintaining the inverted direction fig, ax = plt.subplots() ax.invert_xaxis() ax.plot([-5, -3, 2, 4], [1, 2, -3, 5]) assert ax.get_xlim() == (4, -5) assert ax.get_ylim() == (-3, 5) plt.close() fig, ax = plt.subplots() ax.invert_yaxis() ax.plot([-5, -3, 2, 4], [1, 2, -3, 5]) assert ax.get_xlim() == (-5, 4) assert ax.get_ylim() == (5, -3) # Test inverting nonlinear axes. fig, ax = plt.subplots() ax.set_yscale("log") ax.set_ylim(10, 1) assert ax.get_ylim() == (10, 1) @image_comparison(['nonfinite_limits']) def test_nonfinite_limits(): x = np.arange(0., np.e, 0.01) # silence divide by zero warning from log(0) with np.errstate(divide='ignore'): y = np.log(x) x[len(x)//2] = np.nan fig, ax = plt.subplots() ax.plot(x, y) @pytest.mark.style('default') @pytest.mark.parametrize('plot_fun', ['scatter', 'plot', 'fill_between']) @check_figures_equal(extensions=["png"]) def test_limits_empty_data(plot_fun, fig_test, fig_ref): # Check that plotting empty data doesn't change autoscaling of dates x = np.arange("2010-01-01", "2011-01-01", dtype="datetime64[D]") ax_test = fig_test.subplots() ax_ref = fig_ref.subplots() getattr(ax_test, plot_fun)([], []) for ax in [ax_test, ax_ref]: getattr(ax, plot_fun)(x, range(len(x)), color='C0') @image_comparison(['imshow', 'imshow'], remove_text=True, style='mpl20') def test_imshow(): # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' # Create a NxN image N = 100 (x, y) = np.indices((N, N)) x -= N//2 y -= N//2 r = np.sqrt(x**2+y**2-x*y) # Create a contour plot at N/4 and extract both the clip path and transform fig, ax = plt.subplots() ax.imshow(r) # Reuse testcase from above for a labeled data test data = {"r": r} fig = plt.figure() ax = fig.add_subplot(111) ax.imshow("r", data=data) @image_comparison(['imshow_clip'], style='mpl20') def test_imshow_clip(): # As originally reported by Gellule Xg # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' # Create a NxN image N = 100 (x, y) = np.indices((N, N)) x -= N//2 y -= N//2 r = np.sqrt(x**2+y**2-x*y) # Create a contour plot at N/4 and extract both the clip path and transform fig, ax = plt.subplots() c = ax.contour(r, [N/4]) x = c.collections[0] clip_path = x.get_paths()[0] clip_transform = x.get_transform() clip_path = mtransforms.TransformedPath(clip_path, clip_transform) # Plot the image clipped by the contour ax.imshow(r, clip_path=clip_path) @check_figures_equal(extensions=["png"]) def test_imshow_norm_vminvmax(fig_test, fig_ref): """Parameters vmin, vmax should be ignored if norm is given.""" a = [[1, 2], [3, 4]] ax = fig_ref.subplots() ax.imshow(a, vmin=0, vmax=5) ax = fig_test.subplots() with pytest.warns(MatplotlibDeprecationWarning, match="Passing parameters norm and vmin/vmax " "simultaneously is deprecated."): ax.imshow(a, norm=mcolors.Normalize(-10, 10), vmin=0, vmax=5) @image_comparison(['polycollection_joinstyle'], remove_text=True) def test_polycollection_joinstyle(): # Bug #2890979 reported by Matthew West fig, ax = plt.subplots() verts = np.array([[1, 1], [1, 2], [2, 2], [2, 1]]) c = mpl.collections.PolyCollection([verts], linewidths=40) ax.add_collection(c) ax.set_xbound(0, 3) ax.set_ybound(0, 3) @pytest.mark.parametrize( 'x, y1, y2', [ (np.zeros((2, 2)), 3, 3), (np.arange(0.0, 2, 0.02), np.zeros((2, 2)), 3), (np.arange(0.0, 2, 0.02), 3, np.zeros((2, 2))) ], ids=[ '2d_x_input', '2d_y1_input', '2d_y2_input' ] ) def test_fill_between_input(x, y1, y2): fig, ax = plt.subplots() with pytest.raises(ValueError): ax.fill_between(x, y1, y2) @pytest.mark.parametrize( 'y, x1, x2', [ (np.zeros((2, 2)), 3, 3), (np.arange(0.0, 2, 0.02), np.zeros((2, 2)), 3), (np.arange(0.0, 2, 0.02), 3, np.zeros((2, 2))) ], ids=[ '2d_y_input', '2d_x1_input', '2d_x2_input' ] ) def test_fill_betweenx_input(y, x1, x2): fig, ax = plt.subplots() with pytest.raises(ValueError): ax.fill_betweenx(y, x1, x2) @image_comparison(['fill_between_interpolate'], remove_text=True) def test_fill_between_interpolate(): x = np.arange(0.0, 2, 0.02) y1 = np.sin(2*np.pi*x) y2 = 1.2*np.sin(4*np.pi*x) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) ax1.plot(x, y1, x, y2, color='black') ax1.fill_between(x, y1, y2, where=y2 >= y1, facecolor='white', hatch='/', interpolate=True) ax1.fill_between(x, y1, y2, where=y2 <= y1, facecolor='red', interpolate=True) # Test support for masked arrays. y2 = np.ma.masked_greater(y2, 1.0) # Test that plotting works for masked arrays with the first element masked y2[0] = np.ma.masked ax2.plot(x, y1, x, y2, color='black') ax2.fill_between(x, y1, y2, where=y2 >= y1, facecolor='green', interpolate=True) ax2.fill_between(x, y1, y2, where=y2 <= y1, facecolor='red', interpolate=True) @image_comparison(['fill_between_interpolate_decreasing'], style='mpl20', remove_text=True) def test_fill_between_interpolate_decreasing(): p = np.array([724.3, 700, 655]) t = np.array([9.4, 7, 2.2]) prof = np.array([7.9, 6.6, 3.8]) fig, ax = plt.subplots(figsize=(9, 9)) ax.plot(t, p, 'tab:red') ax.plot(prof, p, 'k') ax.fill_betweenx(p, t, prof, where=prof < t, facecolor='blue', interpolate=True, alpha=0.4) ax.fill_betweenx(p, t, prof, where=prof > t, facecolor='red', interpolate=True, alpha=0.4) ax.set_xlim(0, 30) ax.set_ylim(800, 600) # test_symlog and test_symlog2 used to have baseline images in all three # formats, but the png and svg baselines got invalidated by the removal of # minor tick overstriking. @image_comparison(['symlog.pdf']) def test_symlog(): x = np.array([0, 1, 2, 4, 6, 9, 12, 24]) y = np.array([1000000, 500000, 100000, 100, 5, 0, 0, 0]) fig, ax = plt.subplots() ax.plot(x, y) ax.set_yscale('symlog') ax.set_xscale('linear') ax.set_ylim(-1, 10000000) @image_comparison(['symlog2.pdf'], remove_text=True) def test_symlog2(): # Numbers from -50 to 50, with 0.1 as step x = np.arange(-50, 50, 0.001) fig, axs = plt.subplots(5, 1) for ax, linthresh in zip(axs, [20., 2., 1., 0.1, 0.01]): ax.plot(x, x) ax.set_xscale('symlog', linthresh=linthresh) ax.grid(True) axs[-1].set_ylim(-0.1, 0.1) def test_pcolorargs_5205(): # Smoketest to catch issue found in gh:5205 x = [-1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5] y = [-1.5, -1.25, -1.0, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5] X, Y = np.meshgrid(x, y) Z = np.hypot(X, Y) plt.pcolor(Z) plt.pcolor(list(Z)) plt.pcolor(x, y, Z[:-1, :-1]) plt.pcolor(X, Y, list(Z[:-1, :-1])) @image_comparison(['pcolormesh'], remove_text=True) def test_pcolormesh(): n = 12 x = np.linspace(-1.5, 1.5, n) y = np.linspace(-1.5, 1.5, n*2) X, Y = np.meshgrid(x, y) Qx = np.cos(Y) - np.cos(X) Qz = np.sin(Y) + np.sin(X) Qx = (Qx + 1.1) Z = np.hypot(X, Y) / 5 Z = (Z - Z.min()) / Z.ptp() # The color array can include masked values: Zm = ma.masked_where(np.abs(Qz) < 0.5 * np.max(Qz), Z) fig, (ax1, ax2, ax3) = plt.subplots(1, 3) ax1.pcolormesh(Qx, Qz, Z[:-1, :-1], lw=0.5, edgecolors='k') ax2.pcolormesh(Qx, Qz, Z[:-1, :-1], lw=2, edgecolors=['b', 'w']) ax3.pcolormesh(Qx, Qz, Z, shading="gouraud") @image_comparison(['pcolormesh_alpha'], extensions=["png", "pdf"], remove_text=True) def test_pcolormesh_alpha(): n = 12 X, Y = np.meshgrid( np.linspace(-1.5, 1.5, n), np.linspace(-1.5, 1.5, n*2) ) Qx = X Qy = Y + np.sin(X) Z = np.hypot(X, Y) / 5 Z = (Z - Z.min()) / Z.ptp() vir = plt.get_cmap("viridis", 16) # make another colormap with varying alpha colors = vir(np.arange(16)) colors[:, 3] = 0.5 + 0.5*np.sin(np.arange(16)) cmap = mcolors.ListedColormap(colors) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) for ax in ax1, ax2, ax3, ax4: ax.add_patch(mpatches.Rectangle( (0, -1.5), 1.5, 3, facecolor=[.7, .1, .1, .5], zorder=0 )) # ax1, ax2: constant alpha ax1.pcolormesh(Qx, Qy, Z[:-1, :-1], cmap=vir, alpha=0.4, shading='flat', zorder=1) ax2.pcolormesh(Qx, Qy, Z, cmap=vir, alpha=0.4, shading='gouraud', zorder=1) # ax3, ax4: alpha from colormap ax3.pcolormesh(Qx, Qy, Z[:-1, :-1], cmap=cmap, shading='flat', zorder=1) ax4.pcolormesh(Qx, Qy, Z, cmap=cmap, shading='gouraud', zorder=1) @image_comparison(['pcolormesh_datetime_axis.png'], remove_text=False, style='mpl20') def test_pcolormesh_datetime_axis(): fig = plt.figure() fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15) base = datetime.datetime(2013, 1, 1) x = np.array([base + datetime.timedelta(days=d) for d in range(21)]) y = np.arange(21) z1, z2 = np.meshgrid(np.arange(20), np.arange(20)) z = z1 * z2 plt.subplot(221) plt.pcolormesh(x[:-1], y[:-1], z[:-1, :-1]) plt.subplot(222) plt.pcolormesh(x, y, z) x = np.repeat(x[np.newaxis], 21, axis=0) y = np.repeat(y[:, np.newaxis], 21, axis=1) plt.subplot(223) plt.pcolormesh(x[:-1, :-1], y[:-1, :-1], z[:-1, :-1]) plt.subplot(224) plt.pcolormesh(x, y, z) for ax in fig.get_axes(): for label in ax.get_xticklabels(): label.set_ha('right') label.set_rotation(30) @image_comparison(['pcolor_datetime_axis.png'], remove_text=False, style='mpl20') def test_pcolor_datetime_axis(): fig = plt.figure() fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15) base = datetime.datetime(2013, 1, 1) x = np.array([base + datetime.timedelta(days=d) for d in range(21)]) y = np.arange(21) z1, z2 = np.meshgrid(np.arange(20), np.arange(20)) z = z1 * z2 plt.subplot(221) plt.pcolor(x[:-1], y[:-1], z[:-1, :-1]) plt.subplot(222) plt.pcolor(x, y, z) x = np.repeat(x[np.newaxis], 21, axis=0) y = np.repeat(y[:, np.newaxis], 21, axis=1) plt.subplot(223) plt.pcolor(x[:-1, :-1], y[:-1, :-1], z[:-1, :-1]) plt.subplot(224) plt.pcolor(x, y, z) for ax in fig.get_axes(): for label in ax.get_xticklabels(): label.set_ha('right') label.set_rotation(30) def test_pcolorargs(): n = 12 x = np.linspace(-1.5, 1.5, n) y = np.linspace(-1.5, 1.5, n*2) X, Y = np.meshgrid(x, y) Z = np.hypot(X, Y) / 5 _, ax = plt.subplots() with pytest.raises(TypeError): ax.pcolormesh(y, x, Z) with pytest.raises(TypeError): ax.pcolormesh(X, Y, Z.T) with pytest.raises(TypeError): ax.pcolormesh(x, y, Z[:-1, :-1], shading="gouraud") with pytest.raises(TypeError): ax.pcolormesh(X, Y, Z[:-1, :-1], shading="gouraud") x[0] = np.NaN with pytest.raises(ValueError): ax.pcolormesh(x, y, Z[:-1, :-1]) with np.errstate(invalid='ignore'): x = np.ma.array(x, mask=(x < 0)) with pytest.raises(ValueError): ax.pcolormesh(x, y, Z[:-1, :-1]) # Expect a warning with non-increasing coordinates x = [359, 0, 1] y = [-10, 10] X, Y = np.meshgrid(x, y) Z = np.zeros(X.shape) with pytest.warns(UserWarning, match='are not monotonically increasing or decreasing'): ax.pcolormesh(X, Y, Z, shading='auto') @check_figures_equal(extensions=["png"]) def test_pcolornearest(fig_test, fig_ref): ax = fig_test.subplots() x = np.arange(0, 10) y = np.arange(0, 3) np.random.seed(19680801) Z = np.random.randn(2, 9) ax.pcolormesh(x, y, Z, shading='flat') ax = fig_ref.subplots() # specify the centers x2 = x[:-1] + np.diff(x) / 2 y2 = y[:-1] + np.diff(y) / 2 ax.pcolormesh(x2, y2, Z, shading='nearest') @check_figures_equal(extensions=["png"]) def test_pcolornearestunits(fig_test, fig_ref): ax = fig_test.subplots() x = [datetime.datetime.fromtimestamp(x * 3600) for x in range(10)] y = np.arange(0, 3) np.random.seed(19680801) Z = np.random.randn(2, 9) ax.pcolormesh(x, y, Z, shading='flat') ax = fig_ref.subplots() # specify the centers x2 = [datetime.datetime.fromtimestamp((x + 0.5) * 3600) for x in range(9)] y2 = y[:-1] + np.diff(y) / 2 ax.pcolormesh(x2, y2, Z, shading='nearest') @check_figures_equal(extensions=["png"]) def test_pcolordropdata(fig_test, fig_ref): ax = fig_test.subplots() x = np.arange(0, 10) y = np.arange(0, 4) np.random.seed(19680801) Z = np.random.randn(3, 9) # fake dropping the data ax.pcolormesh(x[:-1], y[:-1], Z[:-1, :-1], shading='flat') ax = fig_ref.subplots() # test dropping the data... x2 = x[:-1] y2 = y[:-1] with pytest.warns(MatplotlibDeprecationWarning): ax.pcolormesh(x2, y2, Z, shading='flat') @check_figures_equal(extensions=["png"]) def test_pcolorauto(fig_test, fig_ref): ax = fig_test.subplots() x = np.arange(0, 10) y = np.arange(0, 4) np.random.seed(19680801) Z = np.random.randn(3, 9) ax.pcolormesh(x, y, Z, shading='auto') ax = fig_ref.subplots() # specify the centers x2 = x[:-1] + np.diff(x) / 2 y2 = y[:-1] + np.diff(y) / 2 ax.pcolormesh(x2, y2, Z, shading='auto') @image_comparison(['canonical']) def test_canonical(): fig, ax = plt.subplots() ax.plot([1, 2, 3]) @image_comparison(['arc_angles.png'], remove_text=True, style='default') def test_arc_angles(): # Ellipse parameters w = 2 h = 1 centre = (0.2, 0.5) scale = 2 fig, axs = plt.subplots(3, 3) for i, ax in enumerate(axs.flat): theta2 = i * 360 / 9 theta1 = theta2 - 45 ax.add_patch(mpatches.Ellipse(centre, w, h, alpha=0.3)) ax.add_patch(mpatches.Arc(centre, w, h, theta1=theta1, theta2=theta2)) # Straight lines intersecting start and end of arc ax.plot([scale * np.cos(np.deg2rad(theta1)) + centre[0], centre[0], scale * np.cos(np.deg2rad(theta2)) + centre[0]], [scale * np.sin(np.deg2rad(theta1)) + centre[1], centre[1], scale * np.sin(np.deg2rad(theta2)) + centre[1]]) ax.set_xlim(-scale, scale) ax.set_ylim(-scale, scale) # This looks the same, but it triggers a different code path when it # gets large enough. w *= 10 h *= 10 centre = (centre[0] * 10, centre[1] * 10) scale *= 10 @image_comparison(['arc_ellipse'], remove_text=True) def test_arc_ellipse(): xcenter, ycenter = 0.38, 0.52 width, height = 1e-1, 3e-1 angle = -30 theta = np.deg2rad(np.arange(360)) x = width / 2. * np.cos(theta) y = height / 2. * np.sin(theta) rtheta = np.deg2rad(angle) R = np.array([ [np.cos(rtheta), -np.sin(rtheta)], [np.sin(rtheta), np.cos(rtheta)]]) x, y = np.dot(R, np.array([x, y])) x += xcenter y += ycenter fig = plt.figure() ax = fig.add_subplot(211, aspect='auto') ax.fill(x, y, alpha=0.2, facecolor='yellow', edgecolor='yellow', linewidth=1, zorder=1) e1 = mpatches.Arc((xcenter, ycenter), width, height, angle=angle, linewidth=2, fill=False, zorder=2) ax.add_patch(e1) ax = fig.add_subplot(212, aspect='equal') ax.fill(x, y, alpha=0.2, facecolor='green', edgecolor='green', zorder=1) e2 = mpatches.Arc((xcenter, ycenter), width, height, angle=angle, linewidth=2, fill=False, zorder=2) ax.add_patch(e2) @image_comparison(['markevery'], remove_text=True) def test_markevery(): x = np.linspace(0, 10, 100) y = np.sin(x) * np.sqrt(x/10 + 0.5) # check marker only plot fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y, 'o', label='default') ax.plot(x, y, 'd', markevery=None, label='mark all') ax.plot(x, y, 's', markevery=10, label='mark every 10') ax.plot(x, y, '+', markevery=(5, 20), label='mark every 5 starting at 10') ax.legend() @image_comparison(['markevery_line'], remove_text=True) def test_markevery_line(): x = np.linspace(0, 10, 100) y = np.sin(x) * np.sqrt(x/10 + 0.5) # check line/marker combos fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y, '-o', label='default') ax.plot(x, y, '-d', markevery=None, label='mark all') ax.plot(x, y, '-s', markevery=10, label='mark every 10') ax.plot(x, y, '-+', markevery=(5, 20), label='mark every 5 starting at 10') ax.legend() @image_comparison(['markevery_linear_scales'], remove_text=True) def test_markevery_linear_scales(): cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] cols = 3 gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols) delta = 0.11 x = np.linspace(0, 10 - 2 * delta, 200) + delta y = np.sin(x) + 1.0 + delta for i, case in enumerate(cases): row = (i // cols) col = i % cols plt.subplot(gs[row, col]) plt.title('markevery=%s' % str(case)) plt.plot(x, y, 'o', ls='-', ms=4, markevery=case) @image_comparison(['markevery_linear_scales_zoomed'], remove_text=True) def test_markevery_linear_scales_zoomed(): cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] cols = 3 gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols) delta = 0.11 x = np.linspace(0, 10 - 2 * delta, 200) + delta y = np.sin(x) + 1.0 + delta for i, case in enumerate(cases): row = (i // cols) col = i % cols plt.subplot(gs[row, col]) plt.title('markevery=%s' % str(case)) plt.plot(x, y, 'o', ls='-', ms=4, markevery=case) plt.xlim((6, 6.7)) plt.ylim((1.1, 1.7)) @image_comparison(['markevery_log_scales'], remove_text=True) def test_markevery_log_scales(): cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] cols = 3 gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols) delta = 0.11 x = np.linspace(0, 10 - 2 * delta, 200) + delta y = np.sin(x) + 1.0 + delta for i, case in enumerate(cases): row = (i // cols) col = i % cols plt.subplot(gs[row, col]) plt.title('markevery=%s' % str(case)) plt.xscale('log') plt.yscale('log') plt.plot(x, y, 'o', ls='-', ms=4, markevery=case) @image_comparison(['markevery_polar'], style='default', remove_text=True) def test_markevery_polar(): cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] cols = 3 gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols) r = np.linspace(0, 3.0, 200) theta = 2 * np.pi * r for i, case in enumerate(cases): row = (i // cols) col = i % cols plt.subplot(gs[row, col], polar=True) plt.title('markevery=%s' % str(case)) plt.plot(theta, r, 'o', ls='-', ms=4, markevery=case) @image_comparison(['marker_edges'], remove_text=True) def test_marker_edges(): x = np.linspace(0, 1, 10) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, np.sin(x), 'y.', ms=30.0, mew=0, mec='r') ax.plot(x+0.1, np.sin(x), 'y.', ms=30.0, mew=1, mec='r') ax.plot(x+0.2, np.sin(x), 'y.', ms=30.0, mew=2, mec='b') @image_comparison(['bar_tick_label_single.png', 'bar_tick_label_single.png']) def test_bar_tick_label_single(): # From 2516: plot bar with array of string labels for x axis ax = plt.gca() ax.bar(0, 1, align='edge', tick_label='0') # Reuse testcase from above for a labeled data test data = {"a": 0, "b": 1} fig = plt.figure() ax = fig.add_subplot(111) ax = plt.gca() ax.bar("a", "b", align='edge', tick_label='0', data=data) def test_nan_bar_values(): fig, ax = plt.subplots() ax.bar([0, 1], [np.nan, 4]) def test_bar_ticklabel_fail(): fig, ax = plt.subplots() ax.bar([], []) @image_comparison(['bar_tick_label_multiple.png']) def test_bar_tick_label_multiple(): # From 2516: plot bar with array of string labels for x axis ax = plt.gca() ax.bar([1, 2.5], [1, 2], width=[0.2, 0.5], tick_label=['a', 'b'], align='center') @image_comparison(['bar_tick_label_multiple_old_label_alignment.png']) def test_bar_tick_label_multiple_old_alignment(): # Test that the alignment for class is backward compatible matplotlib.rcParams["ytick.alignment"] = "center" ax = plt.gca() ax.bar([1, 2.5], [1, 2], width=[0.2, 0.5], tick_label=['a', 'b'], align='center') @check_figures_equal(extensions=["png"]) def test_bar_decimal_center(fig_test, fig_ref): ax = fig_test.subplots() x0 = [1.5, 8.4, 5.3, 4.2] y0 = [1.1, 2.2, 3.3, 4.4] x = [Decimal(x) for x in x0] y = [Decimal(y) for y in y0] # Test image - vertical, align-center bar chart with Decimal() input ax.bar(x, y, align='center') # Reference image ax = fig_ref.subplots() ax.bar(x0, y0, align='center') @check_figures_equal(extensions=["png"]) def test_barh_decimal_center(fig_test, fig_ref): ax = fig_test.subplots() x0 = [1.5, 8.4, 5.3, 4.2] y0 = [1.1, 2.2, 3.3, 4.4] x = [Decimal(x) for x in x0] y = [Decimal(y) for y in y0] # Test image - horizontal, align-center bar chart with Decimal() input ax.barh(x, y, height=[0.5, 0.5, 1, 1], align='center') # Reference image ax = fig_ref.subplots() ax.barh(x0, y0, height=[0.5, 0.5, 1, 1], align='center') @check_figures_equal(extensions=["png"]) def test_bar_decimal_width(fig_test, fig_ref): x = [1.5, 8.4, 5.3, 4.2] y = [1.1, 2.2, 3.3, 4.4] w0 = [0.7, 1.45, 1, 2] w = [Decimal(i) for i in w0] # Test image - vertical bar chart with Decimal() width ax = fig_test.subplots() ax.bar(x, y, width=w, align='center') # Reference image ax = fig_ref.subplots() ax.bar(x, y, width=w0, align='center') @check_figures_equal(extensions=["png"]) def test_barh_decimal_height(fig_test, fig_ref): x = [1.5, 8.4, 5.3, 4.2] y = [1.1, 2.2, 3.3, 4.4] h0 = [0.7, 1.45, 1, 2] h = [Decimal(i) for i in h0] # Test image - horizontal bar chart with Decimal() height ax = fig_test.subplots() ax.barh(x, y, height=h, align='center') # Reference image ax = fig_ref.subplots() ax.barh(x, y, height=h0, align='center') def test_bar_color_none_alpha(): ax = plt.gca() rects = ax.bar([1, 2], [2, 4], alpha=0.3, color='none', edgecolor='r') for rect in rects: assert rect.get_facecolor() == (0, 0, 0, 0) assert rect.get_edgecolor() == (1, 0, 0, 0.3) def test_bar_edgecolor_none_alpha(): ax = plt.gca() rects = ax.bar([1, 2], [2, 4], alpha=0.3, color='r', edgecolor='none') for rect in rects: assert rect.get_facecolor() == (1, 0, 0, 0.3) assert rect.get_edgecolor() == (0, 0, 0, 0) @image_comparison(['barh_tick_label.png']) def test_barh_tick_label(): # From 2516: plot barh with array of string labels for y axis ax = plt.gca() ax.barh([1, 2.5], [1, 2], height=[0.2, 0.5], tick_label=['a', 'b'], align='center') def test_bar_timedelta(): """Smoketest that bar can handle width and height in delta units.""" fig, ax = plt.subplots() ax.bar(datetime.datetime(2018, 1, 1), 1., width=datetime.timedelta(hours=3)) ax.bar(datetime.datetime(2018, 1, 1), 1., xerr=datetime.timedelta(hours=2), width=datetime.timedelta(hours=3)) fig, ax = plt.subplots() ax.barh(datetime.datetime(2018, 1, 1), 1, height=datetime.timedelta(hours=3)) ax.barh(datetime.datetime(2018, 1, 1), 1, height=datetime.timedelta(hours=3), yerr=datetime.timedelta(hours=2)) fig, ax = plt.subplots() ax.barh([datetime.datetime(2018, 1, 1), datetime.datetime(2018, 1, 1)], np.array([1, 1.5]), height=datetime.timedelta(hours=3)) ax.barh([datetime.datetime(2018, 1, 1), datetime.datetime(2018, 1, 1)], np.array([1, 1.5]), height=[datetime.timedelta(hours=t) for t in [1, 2]]) ax.broken_barh([(datetime.datetime(2018, 1, 1), datetime.timedelta(hours=1))], (10, 20)) def test_boxplot_dates_pandas(pd): # smoke test for boxplot and dates in pandas data = np.random.rand(5, 2) years = pd.date_range('1/1/2000', periods=2, freq=pd.DateOffset(years=1)).year plt.figure() plt.boxplot(data, positions=years) def test_bar_pandas(pd): # Smoke test for pandas df = pd.DataFrame( {'year': [2018, 2018, 2018], 'month': [1, 1, 1], 'day': [1, 2, 3], 'value': [1, 2, 3]}) df['date'] = pd.to_datetime(df[['year', 'month', 'day']]) monthly = df[['date', 'value']].groupby(['date']).sum() dates = monthly.index forecast = monthly['value'] baseline = monthly['value'] fig, ax = plt.subplots() ax.bar(dates, forecast, width=10, align='center') ax.plot(dates, baseline, color='orange', lw=4) def test_bar_pandas_indexed(pd): # Smoke test for indexed pandas df = pd.DataFrame({"x": [1., 2., 3.], "width": [.2, .4, .6]}, index=[1, 2, 3]) fig, ax = plt.subplots() ax.bar(df.x, 1., width=df.width) def test_pandas_minimal_plot(pd): # smoke test that series and index objcets do not warn x = pd.Series([1, 2], dtype="float64") plt.plot(x, x) plt.plot(x.index, x) plt.plot(x) plt.plot(x.index) @image_comparison(['hist_log'], remove_text=True) def test_hist_log(): data0 = np.linspace(0, 1, 200)**3 data = np.concatenate([1 - data0, 1 + data0]) fig = plt.figure() ax = fig.add_subplot(111) ax.hist(data, fill=False, log=True) @check_figures_equal(extensions=["png"]) def test_hist_log_2(fig_test, fig_ref): axs_test = fig_test.subplots(2, 3) axs_ref = fig_ref.subplots(2, 3) for i, histtype in enumerate(["bar", "step", "stepfilled"]): # Set log scale, then call hist(). axs_test[0, i].set_yscale("log") axs_test[0, i].hist(1, 1, histtype=histtype) # Call hist(), then set log scale. axs_test[1, i].hist(1, 1, histtype=histtype) axs_test[1, i].set_yscale("log") # Use hist(..., log=True). for ax in axs_ref[:, i]: ax.hist(1, 1, log=True, histtype=histtype) def test_hist_log_barstacked(): fig, axs = plt.subplots(2) axs[0].hist([[0], [0, 1]], 2, histtype="barstacked") axs[0].set_yscale("log") axs[1].hist([0, 0, 1], 2, histtype="barstacked") axs[1].set_yscale("log") fig.canvas.draw() assert axs[0].get_ylim() == axs[1].get_ylim() @image_comparison(['hist_bar_empty.png'], remove_text=True) def test_hist_bar_empty(): # From #3886: creating hist from empty dataset raises ValueError ax = plt.gca() ax.hist([], histtype='bar') @image_comparison(['hist_step_empty.png'], remove_text=True) def test_hist_step_empty(): # From #3886: creating hist from empty dataset raises ValueError ax = plt.gca() ax.hist([], histtype='step') @image_comparison(['hist_step_filled.png'], remove_text=True) def test_hist_step_filled(): np.random.seed(0) x = np.random.randn(1000, 3) n_bins = 10 kwargs = [{'fill': True}, {'fill': False}, {'fill': None}, {}]*2 types = ['step']*4+['stepfilled']*4 fig, axs = plt.subplots(nrows=2, ncols=4) for kg, _type, ax in zip(kwargs, types, axs.flat): ax.hist(x, n_bins, histtype=_type, stacked=True, **kg) ax.set_title('%s/%s' % (kg, _type)) ax.set_ylim(bottom=-50) patches = axs[0, 0].patches assert all(p.get_facecolor() == p.get_edgecolor() for p in patches) @image_comparison(['hist_density.png']) def test_hist_density(): np.random.seed(19680801) data = np.random.standard_normal(2000) fig, ax = plt.subplots() ax.hist(data, density=True) def test_hist_unequal_bins_density(): # Test correct behavior of normalized histogram with unequal bins # https://github.com/matplotlib/matplotlib/issues/9557 rng = np.random.RandomState(57483) t = rng.randn(100) bins = [-3, -1, -0.5, 0, 1, 5] mpl_heights, _, _ = plt.hist(t, bins=bins, density=True) np_heights, _ = np.histogram(t, bins=bins, density=True) assert_allclose(mpl_heights, np_heights) def test_hist_datetime_datasets(): data = [[datetime.datetime(2017, 1, 1), datetime.datetime(2017, 1, 1)], [datetime.datetime(2017, 1, 1), datetime.datetime(2017, 1, 2)]] fig, ax = plt.subplots() ax.hist(data, stacked=True) ax.hist(data, stacked=False) @pytest.mark.parametrize("bins_preprocess", [mpl.dates.date2num, lambda bins: bins, lambda bins: np.asarray(bins).astype('datetime64')], ids=['date2num', 'datetime.datetime', 'np.datetime64']) def test_hist_datetime_datasets_bins(bins_preprocess): data = [[datetime.datetime(2019, 1, 5), datetime.datetime(2019, 1, 11), datetime.datetime(2019, 2, 1), datetime.datetime(2019, 3, 1)], [datetime.datetime(2019, 1, 11), datetime.datetime(2019, 2, 5), datetime.datetime(2019, 2, 18), datetime.datetime(2019, 3, 1)]] date_edges = [datetime.datetime(2019, 1, 1), datetime.datetime(2019, 2, 1), datetime.datetime(2019, 3, 1)] fig, ax = plt.subplots() _, bins, _ = ax.hist(data, bins=bins_preprocess(date_edges), stacked=True) np.testing.assert_allclose(bins, mpl.dates.date2num(date_edges)) _, bins, _ = ax.hist(data, bins=bins_preprocess(date_edges), stacked=False) np.testing.assert_allclose(bins, mpl.dates.date2num(date_edges)) @pytest.mark.parametrize('data, expected_number_of_hists', [([], 1), ([[]], 1), ([[], []], 2)]) def test_hist_with_empty_input(data, expected_number_of_hists): hists, _, _ = plt.hist(data) hists = np.asarray(hists) if hists.ndim == 1: assert 1 == expected_number_of_hists else: assert hists.shape[0] == expected_number_of_hists @pytest.mark.parametrize("histtype, zorder", [("bar", mpl.patches.Patch.zorder), ("step", mpl.lines.Line2D.zorder), ("stepfilled", mpl.patches.Patch.zorder)]) def test_hist_zorder(histtype, zorder): ax = plt.figure().add_subplot() ax.hist([1, 2], histtype=histtype) assert ax.patches for patch in ax.patches: assert patch.get_zorder() == zorder def contour_dat(): x = np.linspace(-3, 5, 150) y = np.linspace(-3, 5, 120) z = np.cos(x) + np.sin(y[:, np.newaxis]) return x, y, z @image_comparison(['contour_hatching'], remove_text=True, style='mpl20') def test_contour_hatching(): x, y, z = contour_dat() fig = plt.figure() ax = fig.add_subplot(111) ax.contourf(x, y, z, 7, hatches=['/', '\\', '//', '-'], cmap=plt.get_cmap('gray'), extend='both', alpha=0.5) @image_comparison(['contour_colorbar'], style='mpl20') def test_contour_colorbar(): x, y, z = contour_dat() fig = plt.figure() ax = fig.add_subplot(111) cs = ax.contourf(x, y, z, levels=np.arange(-1.8, 1.801, 0.2), cmap=plt.get_cmap('RdBu'), vmin=-0.6, vmax=0.6, extend='both') cs1 = ax.contour(x, y, z, levels=np.arange(-2.2, -0.599, 0.2), colors=['y'], linestyles='solid', linewidths=2) cs2 = ax.contour(x, y, z, levels=np.arange(0.6, 2.2, 0.2), colors=['c'], linewidths=2) cbar = fig.colorbar(cs, ax=ax) cbar.add_lines(cs1) cbar.add_lines(cs2, erase=False) @image_comparison(['hist2d', 'hist2d'], remove_text=True, style='mpl20') def test_hist2d(): np.random.seed(0) # make it not symmetric in case we switch x and y axis x = np.random.randn(100)*2+5 y = np.random.randn(100)-2 fig = plt.figure() ax = fig.add_subplot(111) ax.hist2d(x, y, bins=10, rasterized=True) # Reuse testcase from above for a labeled data test data = {"x": x, "y": y} fig = plt.figure() ax = fig.add_subplot(111) ax.hist2d("x", "y", bins=10, data=data, rasterized=True) @image_comparison(['hist2d_transpose'], remove_text=True, style='mpl20') def test_hist2d_transpose(): np.random.seed(0) # make sure the output from np.histogram is transposed before # passing to pcolorfast x = np.array([5]*100) y = np.random.randn(100)-2 fig = plt.figure() ax = fig.add_subplot(111) ax.hist2d(x, y, bins=10, rasterized=True) def test_hist2d_density(): x, y = np.random.random((2, 100)) ax = plt.figure().subplots() for obj in [ax, plt]: obj.hist2d(x, y, density=True) class TestScatter: @image_comparison(['scatter'], style='mpl20', remove_text=True) def test_scatter_plot(self): data = {"x": np.array([3, 4, 2, 6]), "y": np.array([2, 5, 2, 3]), "c": ['r', 'y', 'b', 'lime'], "s": [24, 15, 19, 29], "c2": ['0.5', '0.6', '0.7', '0.8']} fig, ax = plt.subplots() ax.scatter(data["x"] - 1., data["y"] - 1., c=data["c"], s=data["s"]) ax.scatter(data["x"] + 1., data["y"] + 1., c=data["c2"], s=data["s"]) ax.scatter("x", "y", c="c", s="s", data=data) @image_comparison(['scatter_marker.png'], remove_text=True) def test_scatter_marker(self): fig, (ax0, ax1, ax2) = plt.subplots(ncols=3) ax0.scatter([3, 4, 2, 6], [2, 5, 2, 3], c=[(1, 0, 0), 'y', 'b', 'lime'], s=[60, 50, 40, 30], edgecolors=['k', 'r', 'g', 'b'], marker='s') ax1.scatter([3, 4, 2, 6], [2, 5, 2, 3], c=[(1, 0, 0), 'y', 'b', 'lime'], s=[60, 50, 40, 30], edgecolors=['k', 'r', 'g', 'b'], marker=mmarkers.MarkerStyle('o', fillstyle='top')) # unit area ellipse rx, ry = 3, 1 area = rx * ry * np.pi theta = np.linspace(0, 2 * np.pi, 21) verts = np.column_stack([np.cos(theta) * rx / area, np.sin(theta) * ry / area]) ax2.scatter([3, 4, 2, 6], [2, 5, 2, 3], c=[(1, 0, 0), 'y', 'b', 'lime'], s=[60, 50, 40, 30], edgecolors=['k', 'r', 'g', 'b'], marker=verts) @image_comparison(['scatter_2D'], remove_text=True, extensions=['png']) def test_scatter_2D(self): x = np.arange(3) y = np.arange(2) x, y = np.meshgrid(x, y) z = x + y fig, ax = plt.subplots() ax.scatter(x, y, c=z, s=200, edgecolors='face') @check_figures_equal(extensions=["png"]) def test_scatter_decimal(self, fig_test, fig_ref): x0 = np.array([1.5, 8.4, 5.3, 4.2]) y0 = np.array([1.1, 2.2, 3.3, 4.4]) x = np.array([Decimal(i) for i in x0]) y = np.array([Decimal(i) for i in y0]) c = ['r', 'y', 'b', 'lime'] s = [24, 15, 19, 29] # Test image - scatter plot with Decimal() input ax = fig_test.subplots() ax.scatter(x, y, c=c, s=s) # Reference image ax = fig_ref.subplots() ax.scatter(x0, y0, c=c, s=s) def test_scatter_color(self): # Try to catch cases where 'c' kwarg should have been used. with pytest.raises(ValueError): plt.scatter([1, 2], [1, 2], color=[0.1, 0.2]) with pytest.raises(ValueError): plt.scatter([1, 2, 3], [1, 2, 3], color=[1, 2, 3]) def test_scatter_size_arg_size(self): x = np.arange(4) with pytest.raises(ValueError): plt.scatter(x, x, x[1:]) with pytest.raises(ValueError): plt.scatter(x[1:], x[1:], x) @check_figures_equal(extensions=["png"]) def test_scatter_invalid_color(self, fig_test, fig_ref): ax = fig_test.subplots() cmap = plt.get_cmap("viridis", 16) cmap.set_bad("k", 1) # Set a nonuniform size to prevent the last call to `scatter` (plotting # the invalid points separately in fig_ref) from using the marker # stamping fast path, which would result in slightly offset markers. ax.scatter(range(4), range(4), c=[1, np.nan, 2, np.nan], s=[1, 2, 3, 4], cmap=cmap, plotnonfinite=True) ax = fig_ref.subplots() cmap = plt.get_cmap("viridis", 16) ax.scatter([0, 2], [0, 2], c=[1, 2], s=[1, 3], cmap=cmap) ax.scatter([1, 3], [1, 3], s=[2, 4], color="k") @check_figures_equal(extensions=["png"]) def test_scatter_no_invalid_color(self, fig_test, fig_ref): # With plotninfinite=False we plot only 2 points. ax = fig_test.subplots() cmap = plt.get_cmap("viridis", 16) cmap.set_bad("k", 1) ax.scatter(range(4), range(4), c=[1, np.nan, 2, np.nan], s=[1, 2, 3, 4], cmap=cmap, plotnonfinite=False) ax = fig_ref.subplots() ax.scatter([0, 2], [0, 2], c=[1, 2], s=[1, 3], cmap=cmap) @check_figures_equal(extensions=["png"]) def test_scatter_norm_vminvmax(self, fig_test, fig_ref): """Parameters vmin, vmax should be ignored if norm is given.""" x = [1, 2, 3] ax = fig_ref.subplots() ax.scatter(x, x, c=x, vmin=0, vmax=5) ax = fig_test.subplots() with pytest.warns(MatplotlibDeprecationWarning, match="Passing parameters norm and vmin/vmax " "simultaneously is deprecated."): ax.scatter(x, x, c=x, norm=mcolors.Normalize(-10, 10), vmin=0, vmax=5) @check_figures_equal(extensions=["png"]) def test_scatter_single_point(self, fig_test, fig_ref): ax = fig_test.subplots() ax.scatter(1, 1, c=1) ax = fig_ref.subplots() ax.scatter([1], [1], c=[1]) @check_figures_equal(extensions=["png"]) def test_scatter_different_shapes(self, fig_test, fig_ref): x = np.arange(10) ax = fig_test.subplots() ax.scatter(x, x.reshape(2, 5), c=x.reshape(5, 2)) ax = fig_ref.subplots() ax.scatter(x.reshape(5, 2), x, c=x.reshape(2, 5)) # Parameters for *test_scatter_c*. NB: assuming that the # scatter plot will have 4 elements. The tuple scheme is: # (*c* parameter case, exception regexp key or None if no exception) params_test_scatter_c = [ # single string: ('0.5', None), # Single letter-sequences (["rgby"], "conversion"), # Special cases ("red", None), ("none", None), (None, None), (["r", "g", "b", "none"], None), # Non-valid color spec (FWIW, 'jaune' means yellow in French) ("jaune", "conversion"), (["jaune"], "conversion"), # wrong type before wrong size (["jaune"]*4, "conversion"), # Value-mapping like ([0.5]*3, None), # should emit a warning for user's eyes though ([0.5]*4, None), # NB: no warning as matching size allows mapping ([0.5]*5, "shape"), # list of strings: (['0.5', '0.4', '0.6', '0.7'], None), (['0.5', 'red', '0.6', 'C5'], None), (['0.5', 0.5, '0.6', 'C5'], "conversion"), # RGB values ([[1, 0, 0]], None), ([[1, 0, 0]]*3, "shape"), ([[1, 0, 0]]*4, None), ([[1, 0, 0]]*5, "shape"), # RGBA values ([[1, 0, 0, 0.5]], None), ([[1, 0, 0, 0.5]]*3, "shape"), ([[1, 0, 0, 0.5]]*4, None), ([[1, 0, 0, 0.5]]*5, "shape"), # Mix of valid color specs ([[1, 0, 0, 0.5]]*3 + [[1, 0, 0]], None), ([[1, 0, 0, 0.5], "red", "0.0"], "shape"), ([[1, 0, 0, 0.5], "red", "0.0", "C5"], None), ([[1, 0, 0, 0.5], "red", "0.0", "C5", [0, 1, 0]], "shape"), # Mix of valid and non valid color specs ([[1, 0, 0, 0.5], "red", "jaune"], "conversion"), ([[1, 0, 0, 0.5], "red", "0.0", "jaune"], "conversion"), ([[1, 0, 0, 0.5], "red", "0.0", "C5", "jaune"], "conversion"), ] @pytest.mark.parametrize('c_case, re_key', params_test_scatter_c) def test_scatter_c(self, c_case, re_key): def get_next_color(): return 'blue' # currently unused xsize = 4 # Additional checking of *c* (introduced in #11383). REGEXP = { "shape": "^'c' argument has [0-9]+ elements", # shape mismatch "conversion": "^'c' argument must be a color", # bad vals } if re_key is None: mpl.axes.Axes._parse_scatter_color_args( c=c_case, edgecolors="black", kwargs={}, xsize=xsize, get_next_color_func=get_next_color) else: with pytest.raises(ValueError, match=REGEXP[re_key]): mpl.axes.Axes._parse_scatter_color_args( c=c_case, edgecolors="black", kwargs={}, xsize=xsize, get_next_color_func=get_next_color) @pytest.mark.style('default') @check_figures_equal(extensions=["png"]) def test_scatter_single_color_c(self, fig_test, fig_ref): rgb = [[1, 0.5, 0.05]] rgba = [[1, 0.5, 0.05, .5]] # set via color kwarg ax_ref = fig_ref.subplots() ax_ref.scatter(np.ones(3), range(3), color=rgb) ax_ref.scatter(np.ones(4)*2, range(4), color=rgba) # set via broadcasting via c ax_test = fig_test.subplots() ax_test.scatter(np.ones(3), range(3), c=rgb) ax_test.scatter(np.ones(4)*2, range(4), c=rgba) def test_scatter_linewidths(self): x = np.arange(5) fig, ax = plt.subplots() for i in range(3): pc = ax.scatter(x, np.full(5, i), c=f'C{i}', marker='x', s=100, linewidths=i + 1) assert pc.get_linewidths() == i + 1 pc = ax.scatter(x, np.full(5, 3), c='C3', marker='x', s=100, linewidths=[*range(1, 5), None]) assert_array_equal(pc.get_linewidths(), [*range(1, 5), mpl.rcParams['lines.linewidth']]) def _params(c=None, xsize=2, *, edgecolors=None, **kwargs): return (c, edgecolors, kwargs if kwargs is not None else {}, xsize) _result = namedtuple('_result', 'c, colors') @pytest.mark.parametrize( 'params, expected_result', [(_params(), _result(c='b', colors=np.array([[0, 0, 1, 1]]))), (_params(c='r'), _result(c='r', colors=np.array([[1, 0, 0, 1]]))), (_params(c='r', colors='b'), _result(c='r', colors=np.array([[1, 0, 0, 1]]))), # color (_params(color='b'), _result(c='b', colors=np.array([[0, 0, 1, 1]]))), (_params(color=['b', 'g']), _result(c=['b', 'g'], colors=np.array([[0, 0, 1, 1], [0, .5, 0, 1]]))), ]) def test_parse_scatter_color_args(params, expected_result): def get_next_color(): return 'blue' # currently unused c, colors, _edgecolors = mpl.axes.Axes._parse_scatter_color_args( *params, get_next_color_func=get_next_color) assert c == expected_result.c assert_allclose(colors, expected_result.colors) del _params del _result @pytest.mark.parametrize( 'kwargs, expected_edgecolors', [(dict(), None), (dict(c='b'), None), (dict(edgecolors='r'), 'r'), (dict(edgecolors=['r', 'g']), ['r', 'g']), (dict(edgecolor='r'), 'r'), (dict(edgecolors='face'), 'face'), (dict(edgecolors='none'), 'none'), (dict(edgecolor='r', edgecolors='g'), 'r'), (dict(c='b', edgecolor='r', edgecolors='g'), 'r'), (dict(color='r'), 'r'), (dict(color='r', edgecolor='g'), 'g'), ]) def test_parse_scatter_color_args_edgecolors(kwargs, expected_edgecolors): def get_next_color(): return 'blue' # currently unused c = kwargs.pop('c', None) edgecolors = kwargs.pop('edgecolors', None) _, _, result_edgecolors = \ mpl.axes.Axes._parse_scatter_color_args( c, edgecolors, kwargs, xsize=2, get_next_color_func=get_next_color) assert result_edgecolors == expected_edgecolors def test_parse_scatter_color_args_error(): def get_next_color(): return 'blue' # currently unused with pytest.raises(ValueError, match="RGBA values should be within 0-1 range"): c = np.array([[0.1, 0.2, 0.7], [0.2, 0.4, 1.4]]) # value > 1 mpl.axes.Axes._parse_scatter_color_args( c, None, kwargs={}, xsize=2, get_next_color_func=get_next_color) def test_as_mpl_axes_api(): # tests the _as_mpl_axes api from matplotlib.projections.polar import PolarAxes class Polar: def __init__(self): self.theta_offset = 0 def _as_mpl_axes(self): # implement the matplotlib axes interface return PolarAxes, {'theta_offset': self.theta_offset} prj = Polar() prj2 = Polar() prj2.theta_offset = np.pi prj3 = Polar() # testing axes creation with plt.axes ax = plt.axes([0, 0, 1, 1], projection=prj) assert type(ax) == PolarAxes ax_via_gca = plt.gca(projection=prj) assert ax_via_gca is ax plt.close() # testing axes creation with gca ax = plt.gca(projection=prj) assert type(ax) == mpl.axes._subplots.subplot_class_factory(PolarAxes) ax_via_gca = plt.gca(projection=prj) assert ax_via_gca is ax # try getting the axes given a different polar projection with pytest.warns(UserWarning) as rec: ax_via_gca = plt.gca(projection=prj2) assert len(rec) == 1 assert 'Requested projection is different' in str(rec[0].message) assert ax_via_gca is not ax assert ax.get_theta_offset() == 0 assert ax_via_gca.get_theta_offset() == np.pi # try getting the axes given an == (not is) polar projection with pytest.warns(UserWarning): ax_via_gca = plt.gca(projection=prj3) assert len(rec) == 1 assert 'Requested projection is different' in str(rec[0].message) assert ax_via_gca is ax plt.close() # testing axes creation with subplot ax = plt.subplot(121, projection=prj) assert type(ax) == mpl.axes._subplots.subplot_class_factory(PolarAxes) plt.close() def test_pyplot_axes(): # test focusing of Axes in other Figure fig1, ax1 = plt.subplots() fig2, ax2 = plt.subplots() plt.sca(ax1) assert ax1 is plt.gca() assert fig1 is plt.gcf() plt.close(fig1) plt.close(fig2) @image_comparison(['log_scales']) def test_log_scales(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(np.log(np.linspace(0.1, 100))) ax.set_yscale('log', base=5.5) ax.invert_yaxis() ax.set_xscale('log', base=9.0) def test_log_scales_no_data(): _, ax = plt.subplots() ax.set(xscale="log", yscale="log") ax.xaxis.set_major_locator(mticker.MultipleLocator(1)) assert ax.get_xlim() == ax.get_ylim() == (1, 10) def test_log_scales_invalid(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xscale('log') with pytest.warns(UserWarning, match='Attempted to set non-positive'): ax.set_xlim(-1, 10) ax.set_yscale('log') with pytest.warns(UserWarning, match='Attempted to set non-positive'): ax.set_ylim(-1, 10) @image_comparison(['stackplot_test_image', 'stackplot_test_image']) def test_stackplot(): fig = plt.figure() x = np.linspace(0, 10, 10) y1 = 1.0 * x y2 = 2.0 * x + 1 y3 = 3.0 * x + 2 ax = fig.add_subplot(1, 1, 1) ax.stackplot(x, y1, y2, y3) ax.set_xlim((0, 10)) ax.set_ylim((0, 70)) # Reuse testcase from above for a labeled data test data = {"x": x, "y1": y1, "y2": y2, "y3": y3} fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.stackplot("x", "y1", "y2", "y3", data=data) ax.set_xlim((0, 10)) ax.set_ylim((0, 70)) @image_comparison(['stackplot_test_baseline'], remove_text=True) def test_stackplot_baseline(): np.random.seed(0) def layers(n, m): a = np.zeros((m, n)) for i in range(n): for j in range(5): x = 1 / (.1 + np.random.random()) y = 2 * np.random.random() - .5 z = 10 / (.1 + np.random.random()) a[:, i] += x * np.exp(-((np.arange(m) / m - y) * z) ** 2) return a d = layers(3, 100) d[50, :] = 0 # test for fixed weighted wiggle (issue #6313) fig, axs = plt.subplots(2, 2) axs[0, 0].stackplot(range(100), d.T, baseline='zero') axs[0, 1].stackplot(range(100), d.T, baseline='sym') axs[1, 0].stackplot(range(100), d.T, baseline='wiggle') axs[1, 1].stackplot(range(100), d.T, baseline='weighted_wiggle') def _bxp_test_helper( stats_kwargs={}, transform_stats=lambda s: s, bxp_kwargs={}): np.random.seed(937) logstats = mpl.cbook.boxplot_stats( np.random.lognormal(mean=1.25, sigma=1., size=(37, 4)), **stats_kwargs) fig, ax = plt.subplots() if bxp_kwargs.get('vert', True): ax.set_yscale('log') else: ax.set_xscale('log') # Work around baseline images generate back when bxp did not respect the # boxplot.boxprops.linewidth rcParam when patch_artist is False. if not bxp_kwargs.get('patch_artist', False): mpl.rcParams['boxplot.boxprops.linewidth'] = \ mpl.rcParams['lines.linewidth'] ax.bxp(transform_stats(logstats), **bxp_kwargs) @image_comparison(['bxp_baseline.png'], savefig_kwarg={'dpi': 40}, style='default') def test_bxp_baseline(): _bxp_test_helper() @image_comparison(['bxp_rangewhis.png'], savefig_kwarg={'dpi': 40}, style='default') def test_bxp_rangewhis(): _bxp_test_helper(stats_kwargs=dict(whis=[0, 100])) @image_comparison(['bxp_percentilewhis.png'], savefig_kwarg={'dpi': 40}, style='default') def test_bxp_percentilewhis(): _bxp_test_helper(stats_kwargs=dict(whis=[5, 95])) @image_comparison(['bxp_with_xlabels.png'], savefig_kwarg={'dpi': 40}, style='default') def test_bxp_with_xlabels(): def transform(stats): for s, label in zip(stats, list('ABCD')): s['label'] = label return stats _bxp_test_helper(transform_stats=transform) @image_comparison(['bxp_horizontal.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default', tol=0.1) def test_bxp_horizontal(): _bxp_test_helper(bxp_kwargs=dict(vert=False)) @image_comparison(['bxp_with_ylabels.png'], savefig_kwarg={'dpi': 40}, style='default', tol=0.1) def test_bxp_with_ylabels(): def transform(stats): for s, label in zip(stats, list('ABCD')): s['label'] = label return stats _bxp_test_helper(transform_stats=transform, bxp_kwargs=dict(vert=False)) @image_comparison(['bxp_patchartist.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_patchartist(): _bxp_test_helper(bxp_kwargs=dict(patch_artist=True)) @image_comparison(['bxp_custompatchartist.png'], remove_text=True, savefig_kwarg={'dpi': 100}, style='default') def test_bxp_custompatchartist(): _bxp_test_helper(bxp_kwargs=dict( patch_artist=True, boxprops=dict(facecolor='yellow', edgecolor='green', ls=':'))) @image_comparison(['bxp_customoutlier.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_customoutlier(): _bxp_test_helper(bxp_kwargs=dict( flierprops=dict(linestyle='none', marker='d', mfc='g'))) @image_comparison(['bxp_withmean_custompoint.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_showcustommean(): _bxp_test_helper(bxp_kwargs=dict( showmeans=True, meanprops=dict(linestyle='none', marker='d', mfc='green'), )) @image_comparison(['bxp_custombox.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_custombox(): _bxp_test_helper(bxp_kwargs=dict( boxprops=dict(linestyle='--', color='b', lw=3))) @image_comparison(['bxp_custommedian.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_custommedian(): _bxp_test_helper(bxp_kwargs=dict( medianprops=dict(linestyle='--', color='b', lw=3))) @image_comparison(['bxp_customcap.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_customcap(): _bxp_test_helper(bxp_kwargs=dict( capprops=dict(linestyle='--', color='g', lw=3))) @image_comparison(['bxp_customwhisker.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_customwhisker(): _bxp_test_helper(bxp_kwargs=dict( whiskerprops=dict(linestyle='-', color='m', lw=3))) @image_comparison(['bxp_withnotch.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_shownotches(): _bxp_test_helper(bxp_kwargs=dict(shownotches=True)) @image_comparison(['bxp_nocaps.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_nocaps(): _bxp_test_helper(bxp_kwargs=dict(showcaps=False)) @image_comparison(['bxp_nobox.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_nobox(): _bxp_test_helper(bxp_kwargs=dict(showbox=False)) @image_comparison(['bxp_no_flier_stats.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_no_flier_stats(): def transform(stats): for s in stats: s.pop('fliers', None) return stats _bxp_test_helper(transform_stats=transform, bxp_kwargs=dict(showfliers=False)) @image_comparison(['bxp_withmean_point.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_showmean(): _bxp_test_helper(bxp_kwargs=dict(showmeans=True, meanline=False)) @image_comparison(['bxp_withmean_line.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_showmeanasline(): _bxp_test_helper(bxp_kwargs=dict(showmeans=True, meanline=True)) @image_comparison(['bxp_scalarwidth.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_scalarwidth(): _bxp_test_helper(bxp_kwargs=dict(widths=.25)) @image_comparison(['bxp_customwidths.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_customwidths(): _bxp_test_helper(bxp_kwargs=dict(widths=[0.10, 0.25, 0.65, 0.85])) @image_comparison(['bxp_custompositions.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_custompositions(): _bxp_test_helper(bxp_kwargs=dict(positions=[1, 5, 6, 7])) def test_bxp_bad_widths(): with pytest.raises(ValueError): _bxp_test_helper(bxp_kwargs=dict(widths=[1])) def test_bxp_bad_positions(): with pytest.raises(ValueError): _bxp_test_helper(bxp_kwargs=dict(positions=[2, 3])) @image_comparison(['boxplot', 'boxplot'], tol=1.28, style='default') def test_boxplot(): # Randomness used for bootstrapping. np.random.seed(937) x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() ax.boxplot([x, x], bootstrap=10000, notch=1) ax.set_ylim((-30, 30)) # Reuse testcase from above for a labeled data test data = {"x": [x, x]} fig, ax = plt.subplots() ax.boxplot("x", bootstrap=10000, notch=1, data=data) ax.set_ylim((-30, 30)) @image_comparison(['boxplot_sym2.png'], remove_text=True, style='default') def test_boxplot_sym2(): # Randomness used for bootstrapping. np.random.seed(937) x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, [ax1, ax2] = plt.subplots(1, 2) ax1.boxplot([x, x], bootstrap=10000, sym='^') ax1.set_ylim((-30, 30)) ax2.boxplot([x, x], bootstrap=10000, sym='g') ax2.set_ylim((-30, 30)) @image_comparison(['boxplot_sym.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_boxplot_sym(): x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() ax.boxplot([x, x], sym='gs') ax.set_ylim((-30, 30)) @image_comparison(['boxplot_autorange_false_whiskers.png', 'boxplot_autorange_true_whiskers.png'], style='default') def test_boxplot_autorange_whiskers(): # Randomness used for bootstrapping. np.random.seed(937) x = np.ones(140) x = np.hstack([0, x, 2]) fig1, ax1 = plt.subplots() ax1.boxplot([x, x], bootstrap=10000, notch=1) ax1.set_ylim((-5, 5)) fig2, ax2 = plt.subplots() ax2.boxplot([x, x], bootstrap=10000, notch=1, autorange=True) ax2.set_ylim((-5, 5)) def _rc_test_bxp_helper(ax, rc_dict): x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) with matplotlib.rc_context(rc_dict): ax.boxplot([x, x]) return ax @image_comparison(['boxplot_rc_parameters'], savefig_kwarg={'dpi': 100}, remove_text=True, tol=1, style='default') def test_boxplot_rc_parameters(): # Randomness used for bootstrapping. np.random.seed(937) fig, ax = plt.subplots(3) rc_axis0 = { 'boxplot.notch': True, 'boxplot.whiskers': [5, 95], 'boxplot.bootstrap': 10000, 'boxplot.flierprops.color': 'b', 'boxplot.flierprops.marker': 'o', 'boxplot.flierprops.markerfacecolor': 'g', 'boxplot.flierprops.markeredgecolor': 'b', 'boxplot.flierprops.markersize': 5, 'boxplot.flierprops.linestyle': '--', 'boxplot.flierprops.linewidth': 2.0, 'boxplot.boxprops.color': 'r', 'boxplot.boxprops.linewidth': 2.0, 'boxplot.boxprops.linestyle': '--', 'boxplot.capprops.color': 'c', 'boxplot.capprops.linewidth': 2.0, 'boxplot.capprops.linestyle': '--', 'boxplot.medianprops.color': 'k', 'boxplot.medianprops.linewidth': 2.0, 'boxplot.medianprops.linestyle': '--', } rc_axis1 = { 'boxplot.vertical': False, 'boxplot.whiskers': [0, 100], 'boxplot.patchartist': True, } rc_axis2 = { 'boxplot.whiskers': 2.0, 'boxplot.showcaps': False, 'boxplot.showbox': False, 'boxplot.showfliers': False, 'boxplot.showmeans': True, 'boxplot.meanline': True, 'boxplot.meanprops.color': 'c', 'boxplot.meanprops.linewidth': 2.0, 'boxplot.meanprops.linestyle': '--', 'boxplot.whiskerprops.color': 'r', 'boxplot.whiskerprops.linewidth': 2.0, 'boxplot.whiskerprops.linestyle': '-.', } dict_list = [rc_axis0, rc_axis1, rc_axis2] for axis, rc_axis in zip(ax, dict_list): _rc_test_bxp_helper(axis, rc_axis) assert (matplotlib.patches.PathPatch in [type(t) for t in ax[1].get_children()]) @image_comparison(['boxplot_with_CIarray.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_boxplot_with_CIarray(): # Randomness used for bootstrapping. np.random.seed(937) x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig = plt.figure() ax = fig.add_subplot(111) CIs = np.array([[-1.5, 3.], [-1., 3.5]]) # show a boxplot with Matplotlib medians and confidence intervals, and # another with manual values ax.boxplot([x, x], bootstrap=10000, usermedians=[None, 1.0], conf_intervals=CIs, notch=1) ax.set_ylim((-30, 30)) @image_comparison(['boxplot_no_inverted_whisker.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_boxplot_no_weird_whisker(): x = np.array([3, 9000, 150, 88, 350, 200000, 1400, 960], dtype=np.float64) ax1 = plt.axes() ax1.boxplot(x) ax1.set_yscale('log') ax1.yaxis.grid(False, which='minor') ax1.xaxis.grid(False) def test_boxplot_bad_medians(): x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() with pytest.raises(ValueError): ax.boxplot(x, usermedians=[1, 2]) with pytest.raises(ValueError): ax.boxplot([x, x], usermedians=[[1, 2], [1, 2]]) def test_boxplot_bad_ci(): x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() with pytest.raises(ValueError): ax.boxplot([x, x], conf_intervals=[[1, 2]]) with pytest.raises(ValueError): ax.boxplot([x, x], conf_intervals=[[1, 2], [1]]) def test_boxplot_zorder(): x = np.arange(10) fix, ax = plt.subplots() assert ax.boxplot(x)['boxes'][0].get_zorder() == 2 assert ax.boxplot(x, zorder=10)['boxes'][0].get_zorder() == 10 def test_boxplot_marker_behavior(): plt.rcParams['lines.marker'] = 's' plt.rcParams['boxplot.flierprops.marker'] = 'o' plt.rcParams['boxplot.meanprops.marker'] = '^' fig, ax = plt.subplots() test_data = np.arange(100) test_data[-1] = 150 # a flier point bxp_handle = ax.boxplot(test_data, showmeans=True) for bxp_lines in ['whiskers', 'caps', 'boxes', 'medians']: for each_line in bxp_handle[bxp_lines]: # Ensure that the rcParams['lines.marker'] is overridden by '' assert each_line.get_marker() == '' # Ensure that markers for fliers and means aren't overridden with '' assert bxp_handle['fliers'][0].get_marker() == 'o' assert bxp_handle['means'][0].get_marker() == '^' @image_comparison(['boxplot_mod_artists_after_plotting.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_boxplot_mod_artist_after_plotting(): x = [0.15, 0.11, 0.06, 0.06, 0.12, 0.56, -0.56] fig, ax = plt.subplots() bp = ax.boxplot(x, sym="o") for key in bp: for obj in bp[key]: obj.set_color('green') @image_comparison(['violinplot_vert_baseline.png', 'violinplot_vert_baseline.png']) def test_vert_violinplot_baseline(): # First 9 digits of frac(sqrt(2)) np.random.seed(414213562) data = [np.random.normal(size=100) for i in range(4)] ax = plt.axes() ax.violinplot(data, positions=range(4), showmeans=0, showextrema=0, showmedians=0) # Reuse testcase from above for a labeled data test data = {"d": data} fig, ax = plt.subplots() ax = plt.axes() ax.violinplot("d", positions=range(4), showmeans=0, showextrema=0, showmedians=0, data=data) @image_comparison(['violinplot_vert_showmeans.png']) def test_vert_violinplot_showmeans(): ax = plt.axes() # First 9 digits of frac(sqrt(3)) np.random.seed(732050807) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), showmeans=1, showextrema=0, showmedians=0) @image_comparison(['violinplot_vert_showextrema.png']) def test_vert_violinplot_showextrema(): ax = plt.axes() # First 9 digits of frac(sqrt(5)) np.random.seed(236067977) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), showmeans=0, showextrema=1, showmedians=0) @image_comparison(['violinplot_vert_showmedians.png']) def test_vert_violinplot_showmedians(): ax = plt.axes() # First 9 digits of frac(sqrt(7)) np.random.seed(645751311) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), showmeans=0, showextrema=0, showmedians=1) @image_comparison(['violinplot_vert_showall.png']) def test_vert_violinplot_showall(): ax = plt.axes() # First 9 digits of frac(sqrt(11)) np.random.seed(316624790) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), showmeans=1, showextrema=1, showmedians=1, quantiles=[[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6]]) @image_comparison(['violinplot_vert_custompoints_10.png']) def test_vert_violinplot_custompoints_10(): ax = plt.axes() # First 9 digits of frac(sqrt(13)) np.random.seed(605551275) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), showmeans=0, showextrema=0, showmedians=0, points=10) @image_comparison(['violinplot_vert_custompoints_200.png']) def test_vert_violinplot_custompoints_200(): ax = plt.axes() # First 9 digits of frac(sqrt(17)) np.random.seed(123105625) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), showmeans=0, showextrema=0, showmedians=0, points=200) @image_comparison(['violinplot_horiz_baseline.png']) def test_horiz_violinplot_baseline(): ax = plt.axes() # First 9 digits of frac(sqrt(19)) np.random.seed(358898943) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=0, showmedians=0) @image_comparison(['violinplot_horiz_showmedians.png']) def test_horiz_violinplot_showmedians(): ax = plt.axes() # First 9 digits of frac(sqrt(23)) np.random.seed(795831523) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=0, showmedians=1) @image_comparison(['violinplot_horiz_showmeans.png']) def test_horiz_violinplot_showmeans(): ax = plt.axes() # First 9 digits of frac(sqrt(29)) np.random.seed(385164807) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=1, showextrema=0, showmedians=0) @image_comparison(['violinplot_horiz_showextrema.png']) def test_horiz_violinplot_showextrema(): ax = plt.axes() # First 9 digits of frac(sqrt(31)) np.random.seed(567764362) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=1, showmedians=0) @image_comparison(['violinplot_horiz_showall.png']) def test_horiz_violinplot_showall(): ax = plt.axes() # First 9 digits of frac(sqrt(37)) np.random.seed(82762530) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=1, showextrema=1, showmedians=1, quantiles=[[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6]]) @image_comparison(['violinplot_horiz_custompoints_10.png']) def test_horiz_violinplot_custompoints_10(): ax = plt.axes() # First 9 digits of frac(sqrt(41)) np.random.seed(403124237) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=0, showmedians=0, points=10) @image_comparison(['violinplot_horiz_custompoints_200.png']) def test_horiz_violinplot_custompoints_200(): ax = plt.axes() # First 9 digits of frac(sqrt(43)) np.random.seed(557438524) data = [np.random.normal(size=100) for i in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=0, showmedians=0, points=200) def test_violinplot_bad_positions(): ax = plt.axes() # First 9 digits of frac(sqrt(47)) np.random.seed(855654600) data = [np.random.normal(size=100) for i in range(4)] with pytest.raises(ValueError): ax.violinplot(data, positions=range(5)) def test_violinplot_bad_widths(): ax = plt.axes() # First 9 digits of frac(sqrt(53)) np.random.seed(280109889) data = [np.random.normal(size=100) for i in range(4)] with pytest.raises(ValueError): ax.violinplot(data, positions=range(4), widths=[1, 2, 3]) def test_violinplot_bad_quantiles(): ax = plt.axes() # First 9 digits of frac(sqrt(73)) np.random.seed(544003745) data = [np.random.normal(size=100)] # Different size quantile list and plots with pytest.raises(ValueError): ax.violinplot(data, quantiles=[[0.1, 0.2], [0.5, 0.7]]) def test_violinplot_outofrange_quantiles(): ax = plt.axes() # First 9 digits of frac(sqrt(79)) np.random.seed(888194417) data = [np.random.normal(size=100)] # Quantile value above 100 with pytest.raises(ValueError): ax.violinplot(data, quantiles=[[0.1, 0.2, 0.3, 1.05]]) # Quantile value below 0 with pytest.raises(ValueError): ax.violinplot(data, quantiles=[[-0.05, 0.2, 0.3, 0.75]]) @check_figures_equal(extensions=["png"]) def test_violinplot_single_list_quantiles(fig_test, fig_ref): # Ensures quantile list for 1D can be passed in as single list # First 9 digits of frac(sqrt(83)) np.random.seed(110433579) data = [np.random.normal(size=100)] # Test image ax = fig_test.subplots() ax.violinplot(data, quantiles=[0.1, 0.3, 0.9]) # Reference image ax = fig_ref.subplots() ax.violinplot(data, quantiles=[[0.1, 0.3, 0.9]]) @check_figures_equal(extensions=["png"]) def test_violinplot_pandas_series(fig_test, fig_ref, pd): np.random.seed(110433579) s1 = pd.Series(np.random.normal(size=7), index=[9, 8, 7, 6, 5, 4, 3]) s2 = pd.Series(np.random.normal(size=9), index=list('ABCDEFGHI')) s3 = pd.Series(np.random.normal(size=11)) fig_test.subplots().violinplot([s1, s2, s3]) fig_ref.subplots().violinplot([s1.values, s2.values, s3.values]) def test_manage_xticks(): _, ax = plt.subplots() ax.set_xlim(0, 4) old_xlim = ax.get_xlim() np.random.seed(0) y1 = np.random.normal(10, 3, 20) y2 = np.random.normal(3, 1, 20) ax.boxplot([y1, y2], positions=[1, 2], manage_ticks=False) new_xlim = ax.get_xlim() assert_array_equal(old_xlim, new_xlim) def test_boxplot_not_single(): fig, ax = plt.subplots() ax.boxplot(np.random.rand(100), positions=[3]) ax.boxplot(np.random.rand(100), positions=[5]) fig.canvas.draw() assert ax.get_xlim() == (2.5, 5.5) assert list(ax.get_xticks()) == [3, 5] assert [t.get_text() for t in ax.get_xticklabels()] == ["3", "5"] def test_tick_space_size_0(): # allow font size to be zero, which affects ticks when there is # no other text in the figure. plt.plot([0, 1], [0, 1]) matplotlib.rcParams.update({'font.size': 0}) b = io.BytesIO() plt.savefig(b, dpi=80, format='raw') @image_comparison(['errorbar_basic', 'errorbar_mixed', 'errorbar_basic']) def test_errorbar(): x = np.arange(0.1, 4, 0.5) y = np.exp(-x) yerr = 0.1 + 0.2*np.sqrt(x) xerr = 0.1 + yerr # First illustrate basic pyplot interface, using defaults where possible. fig = plt.figure() ax = fig.gca() ax.errorbar(x, y, xerr=0.2, yerr=0.4) ax.set_title("Simplest errorbars, 0.2 in x, 0.4 in y") # Now switch to a more OO interface to exercise more features. fig, axs = plt.subplots(nrows=2, ncols=2, sharex=True) ax = axs[0, 0] ax.errorbar(x, y, yerr=yerr, fmt='o') ax.set_title('Vert. symmetric') # With 4 subplots, reduce the number of axis ticks to avoid crowding. ax.locator_params(nbins=4) ax = axs[0, 1] ax.errorbar(x, y, xerr=xerr, fmt='o', alpha=0.4) ax.set_title('Hor. symmetric w/ alpha') ax = axs[1, 0] ax.errorbar(x, y, yerr=[yerr, 2*yerr], xerr=[xerr, 2*xerr], fmt='--o') ax.set_title('H, V asymmetric') ax = axs[1, 1] ax.set_yscale('log') # Here we have to be careful to keep all y values positive: ylower = np.maximum(1e-2, y - yerr) yerr_lower = y - ylower ax.errorbar(x, y, yerr=[yerr_lower, 2*yerr], xerr=xerr, fmt='o', ecolor='g', capthick=2) ax.set_title('Mixed sym., log y') fig.suptitle('Variable errorbars') # Reuse the first testcase from above for a labeled data test data = {"x": x, "y": y} fig = plt.figure() ax = fig.gca() ax.errorbar("x", "y", xerr=0.2, yerr=0.4, data=data) ax.set_title("Simplest errorbars, 0.2 in x, 0.4 in y") def test_errorbar_colorcycle(): f, ax = plt.subplots() x = np.arange(10) y = 2*x e1, _, _ = ax.errorbar(x, y, c=None) e2, _, _ = ax.errorbar(x, 2*y, c=None) ln1, = ax.plot(x, 4*y) assert mcolors.to_rgba(e1.get_color()) == mcolors.to_rgba('C0') assert mcolors.to_rgba(e2.get_color()) == mcolors.to_rgba('C1') assert mcolors.to_rgba(ln1.get_color()) == mcolors.to_rgba('C2') @check_figures_equal() def test_errorbar_cycle_ecolor(fig_test, fig_ref): x = np.arange(0.1, 4, 0.5) y = [np.exp(-x+n) for n in range(4)] axt = fig_test.subplots() axr = fig_ref.subplots() for yi, color in zip(y, ['C0', 'C1', 'C2', 'C3']): axt.errorbar(x, yi, yerr=(yi * 0.25), linestyle='-', marker='o', ecolor='black') axr.errorbar(x, yi, yerr=(yi * 0.25), linestyle='-', marker='o', color=color, ecolor='black') def test_errorbar_shape(): fig = plt.figure() ax = fig.gca() x = np.arange(0.1, 4, 0.5) y = np.exp(-x) yerr1 = 0.1 + 0.2*np.sqrt(x) yerr = np.vstack((yerr1, 2*yerr1)).T xerr = 0.1 + yerr with pytest.raises(ValueError): ax.errorbar(x, y, yerr=yerr, fmt='o') with pytest.raises(ValueError): ax.errorbar(x, y, xerr=xerr, fmt='o') with pytest.raises(ValueError): ax.errorbar(x, y, yerr=yerr, xerr=xerr, fmt='o') @image_comparison(['errorbar_limits']) def test_errorbar_limits(): x = np.arange(0.5, 5.5, 0.5) y = np.exp(-x) xerr = 0.1 yerr = 0.2 ls = 'dotted' fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # standard error bars plt.errorbar(x, y, xerr=xerr, yerr=yerr, ls=ls, color='blue') # including upper limits uplims = np.zeros_like(x) uplims[[1, 5, 9]] = True plt.errorbar(x, y+0.5, xerr=xerr, yerr=yerr, uplims=uplims, ls=ls, color='green') # including lower limits lolims = np.zeros_like(x) lolims[[2, 4, 8]] = True plt.errorbar(x, y+1.0, xerr=xerr, yerr=yerr, lolims=lolims, ls=ls, color='red') # including upper and lower limits plt.errorbar(x, y+1.5, marker='o', ms=8, xerr=xerr, yerr=yerr, lolims=lolims, uplims=uplims, ls=ls, color='magenta') # including xlower and xupper limits xerr = 0.2 yerr = np.full_like(x, 0.2) yerr[[3, 6]] = 0.3 xlolims = lolims xuplims = uplims lolims = np.zeros_like(x) uplims = np.zeros_like(x) lolims[[6]] = True uplims[[3]] = True plt.errorbar(x, y+2.1, marker='o', ms=8, xerr=xerr, yerr=yerr, xlolims=xlolims, xuplims=xuplims, uplims=uplims, lolims=lolims, ls='none', mec='blue', capsize=0, color='cyan') ax.set_xlim((0, 5.5)) ax.set_title('Errorbar upper and lower limits') def test_errobar_nonefmt(): # Check that passing 'none' as a format still plots errorbars x = np.arange(5) y = np.arange(5) plotline, _, barlines = plt.errorbar(x, y, xerr=1, yerr=1, fmt='none') assert plotline is None for errbar in barlines: assert np.all(errbar.get_color() == mcolors.to_rgba('C0')) @image_comparison(['errorbar_with_prop_cycle.png'], style='mpl20', remove_text=True) def test_errorbar_with_prop_cycle(): _cycle = cycler(ls=['--', ':'], marker=['s', 's'], mfc=['k', 'w']) plt.rc("axes", prop_cycle=_cycle) fig, ax = plt.subplots() ax.errorbar(x=[2, 4, 10], y=[3, 2, 4], yerr=0.5) ax.errorbar(x=[2, 4, 10], y=[6, 4, 2], yerr=0.5) @check_figures_equal() def test_errorbar_offsets(fig_test, fig_ref): x = np.linspace(0, 1, 15) y = x * (1-x) yerr = y/6 ax_ref = fig_ref.subplots() ax_test = fig_test.subplots() for color, shift in zip('rgbk', [0, 0, 2, 7]): y += .02 # Using feature in question ax_test.errorbar(x, y, yerr, errorevery=(shift, 4), capsize=4, c=color) # Using manual errorbars # n.b. errorbar draws the main plot at z=2.1 by default ax_ref.plot(x, y, c=color, zorder=2.1) ax_ref.errorbar(x[shift::4], y[shift::4], yerr[shift::4], capsize=4, c=color, fmt='none') @image_comparison(['hist_stacked_stepfilled', 'hist_stacked_stepfilled']) def test_hist_stacked_stepfilled(): # make some data d1 = np.linspace(1, 3, 20) d2 = np.linspace(0, 10, 50) fig = plt.figure() ax = fig.add_subplot(111) ax.hist((d1, d2), histtype="stepfilled", stacked=True) # Reuse testcase from above for a labeled data test data = {"x": (d1, d2)} fig = plt.figure() ax = fig.add_subplot(111) ax.hist("x", histtype="stepfilled", stacked=True, data=data) @image_comparison(['hist_offset']) def test_hist_offset(): # make some data d1 = np.linspace(0, 10, 50) d2 = np.linspace(1, 3, 20) fig = plt.figure() ax = fig.add_subplot(111) ax.hist(d1, bottom=5) ax.hist(d2, bottom=15) @image_comparison(['hist_step.png'], remove_text=True) def test_hist_step(): # make some data d1 = np.linspace(1, 3, 20) fig = plt.figure() ax = fig.add_subplot(111) ax.hist(d1, histtype="step") ax.set_ylim(0, 10) ax.set_xlim(-1, 5) @image_comparison(['hist_step_horiz.png']) def test_hist_step_horiz(): # make some data d1 = np.linspace(0, 10, 50) d2 = np.linspace(1, 3, 20) fig = plt.figure() ax = fig.add_subplot(111) ax.hist((d1, d2), histtype="step", orientation="horizontal") @image_comparison(['hist_stacked_weights']) def test_hist_stacked_weighted(): # make some data d1 = np.linspace(0, 10, 50) d2 = np.linspace(1, 3, 20) w1 = np.linspace(0.01, 3.5, 50) w2 = np.linspace(0.05, 2., 20) fig = plt.figure() ax = fig.add_subplot(111) ax.hist((d1, d2), weights=(w1, w2), histtype="stepfilled", stacked=True) @pytest.mark.parametrize("use_line_collection", [True, False], ids=['w/ line collection', 'w/o line collection']) @image_comparison(['stem.png'], style='mpl20', remove_text=True) def test_stem(use_line_collection): x = np.linspace(0.1, 2 * np.pi, 100) args = (x, np.cos(x)) # Label is a single space to force a legend to be drawn, but to avoid any # text being drawn kwargs = dict(linefmt='C2-.', markerfmt='k+', basefmt='C1-.', label=' ', use_line_collection=use_line_collection) fig, ax = plt.subplots() ax.stem(*args, **kwargs) ax.legend() def test_stem_args(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) x = list(range(10)) y = list(range(10)) # Test the call signatures ax.stem(y) ax.stem(x, y) ax.stem(x, y, 'r--') ax.stem(x, y, 'r--', basefmt='b--') def test_stem_dates(): fig, ax = plt.subplots(1, 1) xs = [dateutil.parser.parse("2013-9-28 11:00:00"), dateutil.parser.parse("2013-9-28 12:00:00")] ys = [100, 200] ax.stem(xs, ys, "*-") @image_comparison(['hist_stacked_stepfilled_alpha']) def test_hist_stacked_stepfilled_alpha(): # make some data d1 = np.linspace(1, 3, 20) d2 = np.linspace(0, 10, 50) fig = plt.figure() ax = fig.add_subplot(111) ax.hist((d1, d2), histtype="stepfilled", stacked=True, alpha=0.5) @image_comparison(['hist_stacked_step']) def test_hist_stacked_step(): # make some data d1 = np.linspace(1, 3, 20) d2 = np.linspace(0, 10, 50) fig = plt.figure() ax = fig.add_subplot(111) ax.hist((d1, d2), histtype="step", stacked=True) @image_comparison(['hist_stacked_normed']) def test_hist_stacked_density(): # make some data d1 = np.linspace(1, 3, 20) d2 = np.linspace(0, 10, 50) fig, ax = plt.subplots() ax.hist((d1, d2), stacked=True, density=True) @image_comparison(['hist_step_bottom.png'], remove_text=True) def test_hist_step_bottom(): # make some data d1 = np.linspace(1, 3, 20) fig = plt.figure() ax = fig.add_subplot(111) ax.hist(d1, bottom=np.arange(10), histtype="stepfilled") def test_hist_stepfilled_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, histtype='stepfilled') xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0], [2, 0], [2, 0], [1, 0], [1, 0], [0, 0]] assert_array_equal(polygon.get_xy(), xy) def test_hist_step_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, histtype='step') xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stepfilled_bottom_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, bottom=[1, 2, 1.5], histtype='stepfilled') xy = [[0, 1], [0, 3], [1, 3], [1, 5], [2, 5], [2, 2.5], [3, 2.5], [3, 1.5], [2, 1.5], [2, 2], [1, 2], [1, 1], [0, 1]] assert_array_equal(polygon.get_xy(), xy) def test_hist_step_bottom_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, bottom=[1, 2, 1.5], histtype='step') xy = [[0, 1], [0, 3], [1, 3], [1, 5], [2, 5], [2, 2.5], [3, 2.5], [3, 1.5]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stacked_stepfilled_geometry(): bins = [0, 1, 2, 3] data_1 = [0, 0, 1, 1, 1, 2] data_2 = [0, 1, 2] _, _, patches = plt.hist([data_1, data_2], bins=bins, stacked=True, histtype='stepfilled') assert len(patches) == 2 polygon, = patches[0] xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0], [2, 0], [2, 0], [1, 0], [1, 0], [0, 0]] assert_array_equal(polygon.get_xy(), xy) polygon, = patches[1] xy = [[0, 2], [0, 3], [1, 3], [1, 4], [2, 4], [2, 2], [3, 2], [3, 1], [2, 1], [2, 3], [1, 3], [1, 2], [0, 2]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stacked_step_geometry(): bins = [0, 1, 2, 3] data_1 = [0, 0, 1, 1, 1, 2] data_2 = [0, 1, 2] _, _, patches = plt.hist([data_1, data_2], bins=bins, stacked=True, histtype='step') assert len(patches) == 2 polygon, = patches[0] xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0]] assert_array_equal(polygon.get_xy(), xy) polygon, = patches[1] xy = [[0, 2], [0, 3], [1, 3], [1, 4], [2, 4], [2, 2], [3, 2], [3, 1]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stacked_stepfilled_bottom_geometry(): bins = [0, 1, 2, 3] data_1 = [0, 0, 1, 1, 1, 2] data_2 = [0, 1, 2] _, _, patches = plt.hist([data_1, data_2], bins=bins, stacked=True, bottom=[1, 2, 1.5], histtype='stepfilled') assert len(patches) == 2 polygon, = patches[0] xy = [[0, 1], [0, 3], [1, 3], [1, 5], [2, 5], [2, 2.5], [3, 2.5], [3, 1.5], [2, 1.5], [2, 2], [1, 2], [1, 1], [0, 1]] assert_array_equal(polygon.get_xy(), xy) polygon, = patches[1] xy = [[0, 3], [0, 4], [1, 4], [1, 6], [2, 6], [2, 3.5], [3, 3.5], [3, 2.5], [2, 2.5], [2, 5], [1, 5], [1, 3], [0, 3]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stacked_step_bottom_geometry(): bins = [0, 1, 2, 3] data_1 = [0, 0, 1, 1, 1, 2] data_2 = [0, 1, 2] _, _, patches = plt.hist([data_1, data_2], bins=bins, stacked=True, bottom=[1, 2, 1.5], histtype='step') assert len(patches) == 2 polygon, = patches[0] xy = [[0, 1], [0, 3], [1, 3], [1, 5], [2, 5], [2, 2.5], [3, 2.5], [3, 1.5]] assert_array_equal(polygon.get_xy(), xy) polygon, = patches[1] xy = [[0, 3], [0, 4], [1, 4], [1, 6], [2, 6], [2, 3.5], [3, 3.5], [3, 2.5]] assert_array_equal(polygon.get_xy(), xy) @image_comparison(['hist_stacked_bar']) def test_hist_stacked_bar(): # make some data d = [[100, 100, 100, 100, 200, 320, 450, 80, 20, 600, 310, 800], [20, 23, 50, 11, 100, 420], [120, 120, 120, 140, 140, 150, 180], [60, 60, 60, 60, 300, 300, 5, 5, 5, 5, 10, 300], [555, 555, 555, 30, 30, 30, 30, 30, 100, 100, 100, 100, 30, 30], [30, 30, 30, 30, 400, 400, 400, 400, 400, 400, 400, 400]] colors = [(0.5759849696758961, 1.0, 0.0), (0.0, 1.0, 0.350624650815206), (0.0, 1.0, 0.6549834156005998), (0.0, 0.6569064625276622, 1.0), (0.28302699607823545, 0.0, 1.0), (0.6849123462299822, 0.0, 1.0)] labels = ['green', 'orange', ' yellow', 'magenta', 'black'] fig = plt.figure() ax = fig.add_subplot(111) ax.hist(d, bins=10, histtype='barstacked', align='mid', color=colors, label=labels) ax.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0), ncol=1) def test_hist_emptydata(): fig = plt.figure() ax = fig.add_subplot(111) ax.hist([[], range(10), range(10)], histtype="step") def test_hist_labels(): # test singleton labels OK fig, ax = plt.subplots() l = ax.hist([0, 1], label=0) assert l[2][0].get_label() == '0' l = ax.hist([0, 1], label=[0]) assert l[2][0].get_label() == '0' l = ax.hist([0, 1], label=None) assert l[2][0].get_label() == '_nolegend_' l = ax.hist([0, 1], label='0') assert l[2][0].get_label() == '0' l = ax.hist([0, 1], label='00') assert l[2][0].get_label() == '00' @image_comparison(['transparent_markers'], remove_text=True) def test_transparent_markers(): np.random.seed(0) data = np.random.random(50) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(data, 'D', mfc='none', markersize=100) @image_comparison(['rgba_markers'], remove_text=True) def test_rgba_markers(): fig, axs = plt.subplots(ncols=2) rcolors = [(1, 0, 0, 1), (1, 0, 0, 0.5)] bcolors = [(0, 0, 1, 1), (0, 0, 1, 0.5)] alphas = [None, 0.2] kw = dict(ms=100, mew=20) for i, alpha in enumerate(alphas): for j, rcolor in enumerate(rcolors): for k, bcolor in enumerate(bcolors): axs[i].plot(j+1, k+1, 'o', mfc=bcolor, mec=rcolor, alpha=alpha, **kw) axs[i].plot(j+1, k+3, 'x', mec=rcolor, alpha=alpha, **kw) for ax in axs: ax.axis([-1, 4, 0, 5]) @image_comparison(['mollweide_grid'], remove_text=True) def test_mollweide_grid(): # test that both horizontal and vertical gridlines appear on the Mollweide # projection fig = plt.figure() ax = fig.add_subplot(111, projection='mollweide') ax.grid() def test_mollweide_forward_inverse_closure(): # test that the round-trip Mollweide forward->inverse transformation is an # approximate identity fig = plt.figure() ax = fig.add_subplot(111, projection='mollweide') # set up 1-degree grid in longitude, latitude lon = np.linspace(-np.pi, np.pi, 360) lat = np.linspace(-np.pi / 2.0, np.pi / 2.0, 180) lon, lat = np.meshgrid(lon, lat) ll = np.vstack((lon.flatten(), lat.flatten())).T # perform forward transform xy = ax.transProjection.transform(ll) # perform inverse transform ll2 = ax.transProjection.inverted().transform(xy) # compare np.testing.assert_array_almost_equal(ll, ll2, 3) def test_mollweide_inverse_forward_closure(): # test that the round-trip Mollweide inverse->forward transformation is an # approximate identity fig = plt.figure() ax = fig.add_subplot(111, projection='mollweide') # set up grid in x, y x = np.linspace(0, 1, 500) x, y = np.meshgrid(x, x) xy = np.vstack((x.flatten(), y.flatten())).T # perform inverse transform ll = ax.transProjection.inverted().transform(xy) # perform forward transform xy2 = ax.transProjection.transform(ll) # compare np.testing.assert_array_almost_equal(xy, xy2, 3) @image_comparison(['test_alpha'], remove_text=True) def test_alpha(): np.random.seed(0) data = np.random.random(50) fig = plt.figure() ax = fig.add_subplot(111) # alpha=.5 markers, solid line ax.plot(data, '-D', color=[1, 0, 0], mfc=[1, 0, 0, .5], markersize=20, lw=10) # everything solid by kwarg ax.plot(data + 2, '-D', color=[1, 0, 0, .5], mfc=[1, 0, 0, .5], markersize=20, lw=10, alpha=1) # everything alpha=.5 by kwarg ax.plot(data + 4, '-D', color=[1, 0, 0], mfc=[1, 0, 0], markersize=20, lw=10, alpha=.5) # everything alpha=.5 by colors ax.plot(data + 6, '-D', color=[1, 0, 0, .5], mfc=[1, 0, 0, .5], markersize=20, lw=10) # alpha=.5 line, solid markers ax.plot(data + 8, '-D', color=[1, 0, 0, .5], mfc=[1, 0, 0], markersize=20, lw=10) @image_comparison(['eventplot', 'eventplot'], remove_text=True) def test_eventplot(): np.random.seed(0) data1 = np.random.random([32, 20]).tolist() data2 = np.random.random([6, 20]).tolist() data = data1 + data2 num_datasets = len(data) colors1 = [[0, 1, .7]] * len(data1) colors2 = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, .75, 0], [1, 0, 1], [0, 1, 1]] colors = colors1 + colors2 lineoffsets1 = 12 + np.arange(0, len(data1)) * .33 lineoffsets2 = [-15, -3, 1, 1.5, 6, 10] lineoffsets = lineoffsets1.tolist() + lineoffsets2 linelengths1 = [.33] * len(data1) linelengths2 = [5, 2, 1, 1, 3, 1.5] linelengths = linelengths1 + linelengths2 fig = plt.figure() axobj = fig.add_subplot(111) colls = axobj.eventplot(data, colors=colors, lineoffsets=lineoffsets, linelengths=linelengths) num_collections = len(colls) assert num_collections == num_datasets # Reuse testcase from above for a labeled data test data = {"pos": data, "c": colors, "lo": lineoffsets, "ll": linelengths} fig = plt.figure() axobj = fig.add_subplot(111) colls = axobj.eventplot("pos", colors="c", lineoffsets="lo", linelengths="ll", data=data) num_collections = len(colls) assert num_collections == num_datasets @image_comparison(['test_eventplot_defaults.png'], remove_text=True) def test_eventplot_defaults(): """ test that eventplot produces the correct output given the default params (see bug #3728) """ np.random.seed(0) data1 = np.random.random([32, 20]).tolist() data2 = np.random.random([6, 20]).tolist() data = data1 + data2 fig = plt.figure() axobj = fig.add_subplot(111) axobj.eventplot(data) @pytest.mark.parametrize(('colors'), [ ('0.5',), # string color with multiple characters: not OK before #8193 fix ('tab:orange', 'tab:pink', 'tab:cyan', 'bLacK'), # case-insensitive ('red', (0, 1, 0), None, (1, 0, 1, 0.5)), # a tricky case mixing types ]) def test_eventplot_colors(colors): """Test the *colors* parameter of eventplot. Inspired by issue #8193.""" data = [[i] for i in range(4)] # 4 successive events of different nature # Build the list of the expected colors expected = [c if c is not None else 'C0' for c in colors] # Convert the list into an array of RGBA values # NB: ['rgbk'] is not a valid argument for to_rgba_array, while 'rgbk' is. if len(expected) == 1: expected = expected[0] expected = np.broadcast_to(mcolors.to_rgba_array(expected), (len(data), 4)) fig, ax = plt.subplots() if len(colors) == 1: # tuple with a single string (like '0.5' or 'rgbk') colors = colors[0] collections = ax.eventplot(data, colors=colors) for coll, color in zip(collections, expected): assert_allclose(coll.get_color(), color) @image_comparison(['test_eventplot_problem_kwargs.png'], remove_text=True) def test_eventplot_problem_kwargs(recwarn): """ test that 'singular' versions of LineCollection props raise an IgnoredKeywordWarning rather than overriding the 'plural' versions (e.g. to prevent 'color' from overriding 'colors', see issue #4297) """ np.random.seed(0) data1 = np.random.random([20]).tolist() data2 = np.random.random([10]).tolist() data = [data1, data2] fig = plt.figure() axobj = fig.add_subplot(111) axobj.eventplot(data, colors=['r', 'b'], color=['c', 'm'], linewidths=[2, 1], linewidth=[1, 2], linestyles=['solid', 'dashed'], linestyle=['dashdot', 'dotted']) # check that three IgnoredKeywordWarnings were raised assert len(recwarn) == 3 assert all(issubclass(wi.category, MatplotlibDeprecationWarning) for wi in recwarn) def test_empty_eventplot(): fig, ax = plt.subplots(1, 1) ax.eventplot([[]], colors=[(0.0, 0.0, 0.0, 0.0)]) plt.draw() @pytest.mark.parametrize('data', [[[]], [[], [0, 1]], [[0, 1], []]]) @pytest.mark.parametrize( 'orientation', ['_empty', 'vertical', 'horizontal', None, 'none']) def test_eventplot_orientation(data, orientation): """Introduced when fixing issue #6412.""" opts = {} if orientation == "_empty" else {'orientation': orientation} fig, ax = plt.subplots(1, 1) with (pytest.warns(MatplotlibDeprecationWarning) if orientation in [None, 'none'] else nullcontext()): ax.eventplot(data, **opts) plt.draw() @image_comparison(['marker_styles.png'], remove_text=True) def test_marker_styles(): fig = plt.figure() ax = fig.add_subplot(111) for y, marker in enumerate(sorted(matplotlib.markers.MarkerStyle.markers, key=lambda x: str(type(x))+str(x))): ax.plot((y % 2)*5 + np.arange(10)*10, np.ones(10)*10*y, linestyle='', marker=marker, markersize=10+y/5, label=marker) @image_comparison(['rc_markerfill.png']) def test_markers_fillstyle_rcparams(): fig, ax = plt.subplots() x = np.arange(7) for idx, (style, marker) in enumerate( [('top', 's'), ('bottom', 'o'), ('none', '^')]): matplotlib.rcParams['markers.fillstyle'] = style ax.plot(x+idx, marker=marker) @image_comparison(['vertex_markers.png'], remove_text=True) def test_vertex_markers(): data = list(range(10)) marker_as_tuple = ((-1, -1), (1, -1), (1, 1), (-1, 1)) marker_as_list = [(-1, -1), (1, -1), (1, 1), (-1, 1)] fig = plt.figure() ax = fig.add_subplot(111) ax.plot(data, linestyle='', marker=marker_as_tuple, mfc='k') ax.plot(data[::-1], linestyle='', marker=marker_as_list, mfc='b') ax.set_xlim([-1, 10]) ax.set_ylim([-1, 10]) @image_comparison(['vline_hline_zorder', 'errorbar_zorder'], tol=0 if platform.machine() == 'x86_64' else 0.02) def test_eb_line_zorder(): x = list(range(10)) # First illustrate basic pyplot interface, using defaults where possible. fig = plt.figure() ax = fig.gca() ax.plot(x, lw=10, zorder=5) ax.axhline(1, color='red', lw=10, zorder=1) ax.axhline(5, color='green', lw=10, zorder=10) ax.axvline(7, color='m', lw=10, zorder=7) ax.axvline(2, color='k', lw=10, zorder=3) ax.set_title("axvline and axhline zorder test") # Now switch to a more OO interface to exercise more features. fig = plt.figure() ax = fig.gca() x = list(range(10)) y = np.zeros(10) yerr = list(range(10)) ax.errorbar(x, y, yerr=yerr, zorder=5, lw=5, color='r') for j in range(10): ax.axhline(j, lw=5, color='k', zorder=j) ax.axhline(-j, lw=5, color='k', zorder=j) ax.set_title("errorbar zorder test") @check_figures_equal() def test_axline(fig_test, fig_ref): ax = fig_test.subplots() ax.set(xlim=(-1, 1), ylim=(-1, 1)) ax.axline((0, 0), (1, 1)) ax.axline((0, 0), (1, 0), color='C1') ax.axline((0, 0.5), (1, 0.5), color='C2') # slopes ax.axline((-0.7, -0.5), slope=0, color='C3') ax.axline((1, -0.5), slope=-0.5, color='C4') ax.axline((-0.5, 1), slope=float('inf'), color='C5') ax = fig_ref.subplots() ax.set(xlim=(-1, 1), ylim=(-1, 1)) ax.plot([-1, 1], [-1, 1]) ax.axhline(0, color='C1') ax.axhline(0.5, color='C2') # slopes ax.axhline(-0.5, color='C3') ax.plot([-1, 1], [0.5, -0.5], color='C4') ax.axvline(-0.5, color='C5') def test_axline_args(): """Exactly one of *xy2* and *slope* must be specified.""" fig, ax = plt.subplots() with pytest.raises(TypeError): ax.axline((0, 0)) # missing second parameter with pytest.raises(TypeError): ax.axline((0, 0), (1, 1), slope=1) # redundant parameters ax.set_xscale('log') with pytest.raises(TypeError): ax.axline((0, 0), slope=1) ax.set_xscale('linear') ax.set_yscale('log') with pytest.raises(TypeError): ax.axline((0, 0), slope=1) @image_comparison(['vlines_basic', 'vlines_with_nan', 'vlines_masked'], extensions=['png']) def test_vlines(): # normal x1 = [2, 3, 4, 5, 7] y1 = [2, -6, 3, 8, 2] fig1, ax1 = plt.subplots() ax1.vlines(x1, 0, y1, colors='g', linewidth=5) # GH #7406 x2 = [2, 3, 4, 5, 6, 7] y2 = [2, -6, 3, 8, np.nan, 2] fig2, (ax2, ax3, ax4) = plt.subplots(nrows=3, figsize=(4, 8)) ax2.vlines(x2, 0, y2, colors='g', linewidth=5) x3 = [2, 3, 4, 5, 6, 7] y3 = [np.nan, 2, -6, 3, 8, 2] ax3.vlines(x3, 0, y3, colors='r', linewidth=3, linestyle='--') x4 = [2, 3, 4, 5, 6, 7] y4 = [np.nan, 2, -6, 3, 8, np.nan] ax4.vlines(x4, 0, y4, colors='k', linewidth=2) # tweak the x-axis so we can see the lines better for ax in [ax1, ax2, ax3, ax4]: ax.set_xlim(0, 10) # check that the y-lims are all automatically the same assert ax1.get_ylim() == ax2.get_ylim() assert ax1.get_ylim() == ax3.get_ylim() assert ax1.get_ylim() == ax4.get_ylim() fig3, ax5 = plt.subplots() x5 = np.ma.masked_equal([2, 4, 6, 8, 10, 12], 8) ymin5 = np.ma.masked_equal([0, 1, -1, 0, 2, 1], 2) ymax5 = np.ma.masked_equal([13, 14, 15, 16, 17, 18], 18) ax5.vlines(x5, ymin5, ymax5, colors='k', linewidth=2) ax5.set_xlim(0, 15) def test_vlines_default(): fig, ax = plt.subplots() with mpl.rc_context({'lines.color': 'red'}): lines = ax.vlines(0.5, 0, 1) assert mpl.colors.same_color(lines.get_color(), 'red') @image_comparison(['hlines_basic', 'hlines_with_nan', 'hlines_masked'], extensions=['png']) def test_hlines(): # normal y1 = [2, 3, 4, 5, 7] x1 = [2, -6, 3, 8, 2] fig1, ax1 = plt.subplots() ax1.hlines(y1, 0, x1, colors='g', linewidth=5) # GH #7406 y2 = [2, 3, 4, 5, 6, 7] x2 = [2, -6, 3, 8, np.nan, 2] fig2, (ax2, ax3, ax4) = plt.subplots(nrows=3, figsize=(4, 8)) ax2.hlines(y2, 0, x2, colors='g', linewidth=5) y3 = [2, 3, 4, 5, 6, 7] x3 = [np.nan, 2, -6, 3, 8, 2] ax3.hlines(y3, 0, x3, colors='r', linewidth=3, linestyle='--') y4 = [2, 3, 4, 5, 6, 7] x4 = [np.nan, 2, -6, 3, 8, np.nan] ax4.hlines(y4, 0, x4, colors='k', linewidth=2) # tweak the y-axis so we can see the lines better for ax in [ax1, ax2, ax3, ax4]: ax.set_ylim(0, 10) # check that the x-lims are all automatically the same assert ax1.get_xlim() == ax2.get_xlim() assert ax1.get_xlim() == ax3.get_xlim() assert ax1.get_xlim() == ax4.get_xlim() fig3, ax5 = plt.subplots() y5 = np.ma.masked_equal([2, 4, 6, 8, 10, 12], 8) xmin5 = np.ma.masked_equal([0, 1, -1, 0, 2, 1], 2) xmax5 = np.ma.masked_equal([13, 14, 15, 16, 17, 18], 18) ax5.hlines(y5, xmin5, xmax5, colors='k', linewidth=2) ax5.set_ylim(0, 15) def test_hlines_default(): fig, ax = plt.subplots() with mpl.rc_context({'lines.color': 'red'}): lines = ax.hlines(0.5, 0, 1) assert mpl.colors.same_color(lines.get_color(), 'red') @pytest.mark.parametrize('data', [[1, 2, 3, np.nan, 5], np.ma.masked_equal([1, 2, 3, 4, 5], 4)]) @check_figures_equal(extensions=["png"]) def test_lines_with_colors(fig_test, fig_ref, data): test_colors = ['red', 'green', 'blue', 'purple', 'orange'] fig_test.add_subplot(2, 1, 1).vlines(data, 0, 1, colors=test_colors, linewidth=5) fig_test.add_subplot(2, 1, 2).hlines(data, 0, 1, colors=test_colors, linewidth=5) expect_xy = [1, 2, 3, 5] expect_color = ['red', 'green', 'blue', 'orange'] fig_ref.add_subplot(2, 1, 1).vlines(expect_xy, 0, 1, colors=expect_color, linewidth=5) fig_ref.add_subplot(2, 1, 2).hlines(expect_xy, 0, 1, colors=expect_color, linewidth=5) @image_comparison(['step_linestyle', 'step_linestyle'], remove_text=True) def test_step_linestyle(): x = y = np.arange(10) # First illustrate basic pyplot interface, using defaults where possible. fig, ax_lst = plt.subplots(2, 2) ax_lst = ax_lst.flatten() ln_styles = ['-', '--', '-.', ':'] for ax, ls in zip(ax_lst, ln_styles): ax.step(x, y, lw=5, linestyle=ls, where='pre') ax.step(x, y + 1, lw=5, linestyle=ls, where='mid') ax.step(x, y + 2, lw=5, linestyle=ls, where='post') ax.set_xlim([-1, 5]) ax.set_ylim([-1, 7]) # Reuse testcase from above for a labeled data test data = {"X": x, "Y0": y, "Y1": y+1, "Y2": y+2} fig, ax_lst = plt.subplots(2, 2) ax_lst = ax_lst.flatten() ln_styles = ['-', '--', '-.', ':'] for ax, ls in zip(ax_lst, ln_styles): ax.step("X", "Y0", lw=5, linestyle=ls, where='pre', data=data) ax.step("X", "Y1", lw=5, linestyle=ls, where='mid', data=data) ax.step("X", "Y2", lw=5, linestyle=ls, where='post', data=data) ax.set_xlim([-1, 5]) ax.set_ylim([-1, 7]) @image_comparison(['mixed_collection'], remove_text=True) def test_mixed_collection(): # First illustrate basic pyplot interface, using defaults where possible. fig = plt.figure() ax = fig.add_subplot(1, 1, 1) c = mpatches.Circle((8, 8), radius=4, facecolor='none', edgecolor='green') # PDF can optimize this one p1 = mpl.collections.PatchCollection([c], match_original=True) p1.set_offsets([[0, 0], [24, 24]]) p1.set_linewidths([1, 5]) # PDF can't optimize this one, because the alpha of the edge changes p2 = mpl.collections.PatchCollection([c], match_original=True) p2.set_offsets([[48, 0], [-32, -16]]) p2.set_linewidths([1, 5]) p2.set_edgecolors([[0, 0, 0.1, 1.0], [0, 0, 0.1, 0.5]]) ax.patch.set_color('0.5') ax.add_collection(p1) ax.add_collection(p2) ax.set_xlim(0, 16) ax.set_ylim(0, 16) def test_subplot_key_hash(): ax = plt.subplot(np.int32(5), np.int64(1), 1) ax.twinx() assert ax.get_subplotspec().get_geometry() == (5, 1, 0, 0) @image_comparison( ["specgram_freqs.png", "specgram_freqs_linear.png", "specgram_noise.png", "specgram_noise_linear.png"], remove_text=True, tol=0.07, style="default") def test_specgram(): """Test axes.specgram in default (psd) mode.""" # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' n = 1000 Fs = 10. fstims = [[Fs/4, Fs/5, Fs/11], [Fs/4.7, Fs/5.6, Fs/11.9]] NFFT_freqs = int(10 * Fs / np.min(fstims)) x = np.arange(0, n, 1/Fs) y_freqs = np.concatenate( np.sin(2 * np.pi * np.multiply.outer(fstims, x)).sum(axis=1)) NFFT_noise = int(10 * Fs / 11) np.random.seed(0) y_noise = np.concatenate([np.random.standard_normal(n), np.random.rand(n)]) all_sides = ["default", "onesided", "twosided"] for y, NFFT in [(y_freqs, NFFT_freqs), (y_noise, NFFT_noise)]: noverlap = NFFT // 2 pad_to = int(2 ** np.ceil(np.log2(NFFT))) for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides) for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, scale="linear", norm=matplotlib.colors.LogNorm()) @image_comparison( ["specgram_magnitude_freqs.png", "specgram_magnitude_freqs_linear.png", "specgram_magnitude_noise.png", "specgram_magnitude_noise_linear.png"], remove_text=True, tol=0.07, style="default") def test_specgram_magnitude(): """Test axes.specgram in magnitude mode.""" # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' n = 1000 Fs = 10. fstims = [[Fs/4, Fs/5, Fs/11], [Fs/4.7, Fs/5.6, Fs/11.9]] NFFT_freqs = int(100 * Fs / np.min(fstims)) x = np.arange(0, n, 1/Fs) y = np.sin(2 * np.pi * np.multiply.outer(fstims, x)).sum(axis=1) y[:, -1] = 1 y_freqs = np.hstack(y) NFFT_noise = int(10 * Fs / 11) np.random.seed(0) y_noise = np.concatenate([np.random.standard_normal(n), np.random.rand(n)]) all_sides = ["default", "onesided", "twosided"] for y, NFFT in [(y_freqs, NFFT_freqs), (y_noise, NFFT_noise)]: noverlap = NFFT // 2 pad_to = int(2 ** np.ceil(np.log2(NFFT))) for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, mode="magnitude") for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, mode="magnitude", scale="linear", norm=matplotlib.colors.LogNorm()) @image_comparison( ["specgram_angle_freqs.png", "specgram_phase_freqs.png", "specgram_angle_noise.png", "specgram_phase_noise.png"], remove_text=True, tol=0.07, style="default") def test_specgram_angle(): """Test axes.specgram in angle and phase modes.""" # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' n = 1000 Fs = 10. fstims = [[Fs/4, Fs/5, Fs/11], [Fs/4.7, Fs/5.6, Fs/11.9]] NFFT_freqs = int(10 * Fs / np.min(fstims)) x = np.arange(0, n, 1/Fs) y = np.sin(2 * np.pi * np.multiply.outer(fstims, x)).sum(axis=1) y[:, -1] = 1 y_freqs = np.hstack(y) NFFT_noise = int(10 * Fs / 11) np.random.seed(0) y_noise = np.concatenate([np.random.standard_normal(n), np.random.rand(n)]) all_sides = ["default", "onesided", "twosided"] for y, NFFT in [(y_freqs, NFFT_freqs), (y_noise, NFFT_noise)]: noverlap = NFFT // 2 pad_to = int(2 ** np.ceil(np.log2(NFFT))) for mode in ["angle", "phase"]: for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, mode=mode) with pytest.raises(ValueError): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, mode=mode, scale="dB") def test_specgram_fs_none(): """Test axes.specgram when Fs is None, should not throw error.""" spec, freqs, t, im = plt.specgram(np.ones(300), Fs=None, scale='linear') xmin, xmax, freq0, freq1 = im.get_extent() assert xmin == 32 and xmax == 96 @image_comparison( ["psd_freqs.png", "csd_freqs.png", "psd_noise.png", "csd_noise.png"], remove_text=True, tol=0.002) def test_psd_csd(): n = 10000 Fs = 100. fstims = [[Fs/4, Fs/5, Fs/11], [Fs/4.7, Fs/5.6, Fs/11.9]] NFFT_freqs = int(1000 * Fs / np.min(fstims)) x = np.arange(0, n, 1/Fs) ys_freqs = np.sin(2 * np.pi * np.multiply.outer(fstims, x)).sum(axis=1) NFFT_noise = int(1000 * Fs / 11) np.random.seed(0) ys_noise = [np.random.standard_normal(n), np.random.rand(n)] all_kwargs = [{"sides": "default"}, {"sides": "onesided", "return_line": False}, {"sides": "twosided", "return_line": True}] for ys, NFFT in [(ys_freqs, NFFT_freqs), (ys_noise, NFFT_noise)]: noverlap = NFFT // 2 pad_to = int(2 ** np.ceil(np.log2(NFFT))) for ax, kwargs in zip(plt.figure().subplots(3), all_kwargs): ret = ax.psd(np.concatenate(ys), NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, **kwargs) assert len(ret) == 2 + kwargs.get("return_line", False) ax.set(xlabel="", ylabel="") for ax, kwargs in zip(plt.figure().subplots(3), all_kwargs): ret = ax.csd(*ys, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, **kwargs) assert len(ret) == 2 + kwargs.get("return_line", False) ax.set(xlabel="", ylabel="") @image_comparison( ["magnitude_spectrum_freqs_linear.png", "magnitude_spectrum_freqs_dB.png", "angle_spectrum_freqs.png", "phase_spectrum_freqs.png", "magnitude_spectrum_noise_linear.png", "magnitude_spectrum_noise_dB.png", "angle_spectrum_noise.png", "phase_spectrum_noise.png"], remove_text=True) def test_spectrum(): n = 10000 Fs = 100. fstims1 = [Fs/4, Fs/5, Fs/11] NFFT = int(1000 * Fs / min(fstims1)) pad_to = int(2 ** np.ceil(np.log2(NFFT))) x = np.arange(0, n, 1/Fs) y_freqs = ((np.sin(2 * np.pi * np.outer(x, fstims1)) * 10**np.arange(3)) .sum(axis=1)) np.random.seed(0) y_noise = np.hstack([np.random.standard_normal(n), np.random.rand(n)]) - .5 all_sides = ["default", "onesided", "twosided"] kwargs = {"Fs": Fs, "pad_to": pad_to} for y in [y_freqs, y_noise]: for ax, sides in zip(plt.figure().subplots(3), all_sides): spec, freqs, line = ax.magnitude_spectrum(y, sides=sides, **kwargs) ax.set(xlabel="", ylabel="") for ax, sides in zip(plt.figure().subplots(3), all_sides): spec, freqs, line = ax.magnitude_spectrum(y, sides=sides, **kwargs, scale="dB") ax.set(xlabel="", ylabel="") for ax, sides in zip(plt.figure().subplots(3), all_sides): spec, freqs, line = ax.angle_spectrum(y, sides=sides, **kwargs) ax.set(xlabel="", ylabel="") for ax, sides in zip(plt.figure().subplots(3), all_sides): spec, freqs, line = ax.phase_spectrum(y, sides=sides, **kwargs) ax.set(xlabel="", ylabel="") @image_comparison(['twin_spines.png'], remove_text=True) def test_twin_spines(): def make_patch_spines_invisible(ax): ax.set_frame_on(True) ax.patch.set_visible(False) for sp in ax.spines.values(): sp.set_visible(False) fig = plt.figure(figsize=(4, 3)) fig.subplots_adjust(right=0.75) host = fig.add_subplot(111) par1 = host.twinx() par2 = host.twinx() # Offset the right spine of par2. The ticks and label have already been # placed on the right by twinx above. par2.spines["right"].set_position(("axes", 1.2)) # Having been created by twinx, par2 has its frame off, so the line of # its detached spine is invisible. First, activate the frame but make # the patch and spines invisible. make_patch_spines_invisible(par2) # Second, show the right spine. par2.spines["right"].set_visible(True) p1, = host.plot([0, 1, 2], [0, 1, 2], "b-") p2, = par1.plot([0, 1, 2], [0, 3, 2], "r-") p3, = par2.plot([0, 1, 2], [50, 30, 15], "g-") host.set_xlim(0, 2) host.set_ylim(0, 2) par1.set_ylim(0, 4) par2.set_ylim(1, 65) host.yaxis.label.set_color(p1.get_color()) par1.yaxis.label.set_color(p2.get_color()) par2.yaxis.label.set_color(p3.get_color()) tkw = dict(size=4, width=1.5) host.tick_params(axis='y', colors=p1.get_color(), **tkw) par1.tick_params(axis='y', colors=p2.get_color(), **tkw) par2.tick_params(axis='y', colors=p3.get_color(), **tkw) host.tick_params(axis='x', **tkw) @image_comparison(['twin_spines_on_top.png', 'twin_spines_on_top.png'], remove_text=True) def test_twin_spines_on_top(): matplotlib.rcParams['axes.linewidth'] = 48.0 matplotlib.rcParams['lines.linewidth'] = 48.0 fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) data = np.array([[1000, 1100, 1200, 1250], [310, 301, 360, 400]]) ax2 = ax1.twinx() ax1.plot(data[0], data[1]/1E3, color='#BEAED4') ax1.fill_between(data[0], data[1]/1E3, color='#BEAED4', alpha=.8) ax2.plot(data[0], data[1]/1E3, color='#7FC97F') ax2.fill_between(data[0], data[1]/1E3, color='#7FC97F', alpha=.5) # Reuse testcase from above for a labeled data test data = {"i": data[0], "j": data[1]/1E3} fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) ax2 = ax1.twinx() ax1.plot("i", "j", color='#BEAED4', data=data) ax1.fill_between("i", "j", color='#BEAED4', alpha=.8, data=data) ax2.plot("i", "j", color='#7FC97F', data=data) ax2.fill_between("i", "j", color='#7FC97F', alpha=.5, data=data) @pytest.mark.parametrize("grid_which, major_visible, minor_visible", [ ("both", True, True), ("major", True, False), ("minor", False, True), ]) def test_rcparam_grid_minor(grid_which, major_visible, minor_visible): mpl.rcParams.update({"axes.grid": True, "axes.grid.which": grid_which}) fig, ax = plt.subplots() fig.canvas.draw() assert all(tick.gridline.get_visible() == major_visible for tick in ax.xaxis.majorTicks) assert all(tick.gridline.get_visible() == minor_visible for tick in ax.xaxis.minorTicks) def test_grid(): fig, ax = plt.subplots() ax.grid() fig.canvas.draw() assert ax.xaxis.majorTicks[0].gridline.get_visible() ax.grid(visible=False) fig.canvas.draw() assert not ax.xaxis.majorTicks[0].gridline.get_visible() ax.grid(visible=True) fig.canvas.draw() assert ax.xaxis.majorTicks[0].gridline.get_visible() ax.grid() fig.canvas.draw() assert not ax.xaxis.majorTicks[0].gridline.get_visible() def test_vline_limit(): fig = plt.figure() ax = fig.gca() ax.axvline(0.5) ax.plot([-0.1, 0, 0.2, 0.1]) (ymin, ymax) = ax.get_ylim() assert_allclose(ax.get_ylim(), (-.1, .2)) def test_empty_shared_subplots(): # empty plots with shared axes inherit limits from populated plots fig, axs = plt.subplots(nrows=1, ncols=2, sharex=True, sharey=True) axs[0].plot([1, 2, 3], [2, 4, 6]) x0, x1 = axs[1].get_xlim() y0, y1 = axs[1].get_ylim() assert x0 <= 1 assert x1 >= 3 assert y0 <= 2 assert y1 >= 6 def test_shared_with_aspect_1(): # allow sharing one axis for adjustable in ['box', 'datalim']: fig, axs = plt.subplots(nrows=2, sharex=True) axs[0].set_aspect(2, adjustable=adjustable, share=True) assert axs[1].get_aspect() == 2 assert axs[1].get_adjustable() == adjustable fig, axs = plt.subplots(nrows=2, sharex=True) axs[0].set_aspect(2, adjustable=adjustable) assert axs[1].get_aspect() == 'auto' def test_shared_with_aspect_2(): # Share 2 axes only with 'box': fig, axs = plt.subplots(nrows=2, sharex=True, sharey=True) axs[0].set_aspect(2, share=True) axs[0].plot([1, 2], [3, 4]) axs[1].plot([3, 4], [1, 2]) plt.draw() # Trigger apply_aspect(). assert axs[0].get_xlim() == axs[1].get_xlim() assert axs[0].get_ylim() == axs[1].get_ylim() def test_shared_with_aspect_3(): # Different aspect ratios: for adjustable in ['box', 'datalim']: fig, axs = plt.subplots(nrows=2, sharey=True) axs[0].set_aspect(2, adjustable=adjustable) axs[1].set_aspect(0.5, adjustable=adjustable) axs[0].plot([1, 2], [3, 4]) axs[1].plot([3, 4], [1, 2]) plt.draw() # Trigger apply_aspect(). assert axs[0].get_xlim() != axs[1].get_xlim() assert axs[0].get_ylim() == axs[1].get_ylim() fig_aspect = fig.bbox_inches.height / fig.bbox_inches.width for ax in axs: p = ax.get_position() box_aspect = p.height / p.width lim_aspect = ax.viewLim.height / ax.viewLim.width expected = fig_aspect * box_aspect / lim_aspect assert round(expected, 4) == round(ax.get_aspect(), 4) @pytest.mark.parametrize('twin', ('x', 'y')) def test_twin_with_aspect(twin): fig, ax = plt.subplots() # test twinx or twiny ax_twin = getattr(ax, 'twin{}'.format(twin))() ax.set_aspect(5) ax_twin.set_aspect(2) assert_array_equal(ax.bbox.extents, ax_twin.bbox.extents) def test_relim_visible_only(): x1 = (0., 10.) y1 = (0., 10.) x2 = (-10., 20.) y2 = (-10., 30.) fig = matplotlib.figure.Figure() ax = fig.add_subplot(111) ax.plot(x1, y1) assert ax.get_xlim() == x1 assert ax.get_ylim() == y1 l = ax.plot(x2, y2) assert ax.get_xlim() == x2 assert ax.get_ylim() == y2 l[0].set_visible(False) assert ax.get_xlim() == x2 assert ax.get_ylim() == y2 ax.relim(visible_only=True) ax.autoscale_view() assert ax.get_xlim() == x1 assert ax.get_ylim() == y1 def test_text_labelsize(): """ tests for issue #1172 """ fig = plt.figure() ax = fig.gca() ax.tick_params(labelsize='large') ax.tick_params(direction='out') @image_comparison(['pie_default.png']) def test_pie_default(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') fig1, ax1 = plt.subplots(figsize=(8, 6)) ax1.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90) @image_comparison(['pie_linewidth_0', 'pie_linewidth_0', 'pie_linewidth_0'], extensions=['png']) def test_pie_linewidth_0(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') # Reuse testcase from above for a labeled data test data = {"l": labels, "s": sizes, "c": colors, "ex": explode} fig = plt.figure() ax = fig.gca() ax.pie("s", explode="ex", labels="l", colors="c", autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, data=data) ax.axis('equal') # And again to test the pyplot functions which should also be able to be # called with a data kwarg plt.figure() plt.pie("s", explode="ex", labels="l", colors="c", autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, data=data) plt.axis('equal') @image_comparison(['pie_center_radius.png']) def test_pie_center_radius(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, center=(1, 2), radius=1.5) plt.annotate("Center point", xy=(1, 2), xytext=(1, 1.5), arrowprops=dict(arrowstyle="->", connectionstyle="arc3")) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_linewidth_2.png']) def test_pie_linewidth_2(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 2}) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_ccw_true.png']) def test_pie_ccw_true(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, counterclock=True) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_frame_grid.png']) def test_pie_frame_grid(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] # only "explode" the 2nd slice (i.e. 'Hogs') explode = (0, 0.1, 0, 0) plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, frame=True, center=(2, 2)) plt.pie(sizes[::-1], explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, frame=True, center=(5, 2)) plt.pie(sizes, explode=explode[::-1], labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, frame=True, center=(3, 5)) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_rotatelabels_true.png']) def test_pie_rotatelabels_true(): # The slices will be ordered and plotted counter-clockwise. labels = 'Hogwarts', 'Frogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, rotatelabels=True) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_no_label.png']) def test_pie_nolabel_but_legend(): labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, labeldistance=None, rotatelabels=True) plt.axis('equal') plt.ylim(-1.2, 1.2) plt.legend() def test_pie_textprops(): data = [23, 34, 45] labels = ["Long name 1", "Long name 2", "Long name 3"] textprops = dict(horizontalalignment="center", verticalalignment="top", rotation=90, rotation_mode="anchor", size=12, color="red") _, texts, autopct = plt.gca().pie(data, labels=labels, autopct='%.2f', textprops=textprops) for labels in [texts, autopct]: for tx in labels: assert tx.get_ha() == textprops["horizontalalignment"] assert tx.get_va() == textprops["verticalalignment"] assert tx.get_rotation() == textprops["rotation"] assert tx.get_rotation_mode() == textprops["rotation_mode"] assert tx.get_size() == textprops["size"] assert tx.get_color() == textprops["color"] def test_pie_get_negative_values(): # Test the ValueError raised when feeding negative values into axes.pie fig, ax = plt.subplots() with pytest.raises(ValueError): ax.pie([5, 5, -3], explode=[0, .1, .2]) def test_normalize_kwarg_warn_pie(): fig, ax = plt.subplots() with pytest.warns(MatplotlibDeprecationWarning): ax.pie(x=[0], normalize=None) def test_normalize_kwarg_pie(): fig, ax = plt.subplots() x = [0.3, 0.3, 0.1] t1 = ax.pie(x=x, normalize=True) assert abs(t1[0][-1].theta2 - 360.) < 1e-3 t2 = ax.pie(x=x, normalize=False) assert abs(t2[0][-1].theta2 - 360.) > 1e-3 @image_comparison(['set_get_ticklabels.png']) def test_set_get_ticklabels(): # test issue 2246 fig, ax = plt.subplots(2) ha = ['normal', 'set_x/yticklabels'] ax[0].plot(np.arange(10)) ax[0].set_title(ha[0]) ax[1].plot(np.arange(10)) ax[1].set_title(ha[1]) # set ticklabel to 1 plot in normal way ax[0].set_xticks(range(10)) ax[0].set_yticks(range(10)) ax[0].set_xticklabels(['a', 'b', 'c', 'd'] + 6 * ['']) ax[0].set_yticklabels(['11', '12', '13', '14'] + 6 * ['']) # set ticklabel to the other plot, expect the 2 plots have same label # setting pass get_ticklabels return value as ticklabels argument ax[1].set_xticks(ax[0].get_xticks()) ax[1].set_yticks(ax[0].get_yticks()) ax[1].set_xticklabels(ax[0].get_xticklabels()) ax[1].set_yticklabels(ax[0].get_yticklabels()) def test_subsampled_ticklabels(): # test issue 11937 fig, ax = plt.subplots() ax.plot(np.arange(10)) ax.xaxis.set_ticks(np.arange(10) + 0.1) ax.locator_params(nbins=5) ax.xaxis.set_ticklabels([c for c in "bcdefghijk"]) plt.draw() labels = [t.get_text() for t in ax.xaxis.get_ticklabels()] assert labels == ['b', 'd', 'f', 'h', 'j'] def test_mismatched_ticklabels(): fig, ax = plt.subplots() ax.plot(np.arange(10)) ax.xaxis.set_ticks([1.5, 2.5]) with pytest.raises(ValueError): ax.xaxis.set_ticklabels(['a', 'b', 'c']) def test_empty_ticks_fixed_loc(): # Smoke test that [] can be used to unset all tick labels fig, ax = plt.subplots() ax.bar([1, 2], [1, 2]) ax.set_xticks([1, 2]) ax.set_xticklabels([]) @image_comparison(['retain_tick_visibility.png']) def test_retain_tick_visibility(): fig, ax = plt.subplots() plt.plot([0, 1, 2], [0, -1, 4]) plt.setp(ax.get_yticklabels(), visible=False) ax.tick_params(axis="y", which="both", length=0) def test_tick_label_update(): # test issue 9397 fig, ax = plt.subplots() # Set up a dummy formatter def formatter_func(x, pos): return "unit value" if x == 1 else "" ax.xaxis.set_major_formatter(plt.FuncFormatter(formatter_func)) # Force some of the x-axis ticks to be outside of the drawn range ax.set_xticks([-1, 0, 1, 2, 3]) ax.set_xlim(-0.5, 2.5) ax.figure.canvas.draw() tick_texts = [tick.get_text() for tick in ax.xaxis.get_ticklabels()] assert tick_texts == ["", "", "unit value", "", ""] @image_comparison(['o_marker_path_snap.png'], savefig_kwarg={'dpi': 72}) def test_o_marker_path_snap(): fig, ax = plt.subplots() ax.margins(.1) for ms in range(1, 15): ax.plot([1, 2, ], np.ones(2) + ms, 'o', ms=ms) for ms in np.linspace(1, 10, 25): ax.plot([3, 4, ], np.ones(2) + ms, 'o', ms=ms) def test_margins(): # test all ways margins can be called data = [1, 10] xmin = 0.0 xmax = len(data) - 1.0 ymin = min(data) ymax = max(data) fig1, ax1 = plt.subplots(1, 1) ax1.plot(data) ax1.margins(1) assert ax1.margins() == (1, 1) assert ax1.get_xlim() == (xmin - (xmax - xmin) * 1, xmax + (xmax - xmin) * 1) assert ax1.get_ylim() == (ymin - (ymax - ymin) * 1, ymax + (ymax - ymin) * 1) fig2, ax2 = plt.subplots(1, 1) ax2.plot(data) ax2.margins(0.5, 2) assert ax2.margins() == (0.5, 2) assert ax2.get_xlim() == (xmin - (xmax - xmin) * 0.5, xmax + (xmax - xmin) * 0.5) assert ax2.get_ylim() == (ymin - (ymax - ymin) * 2, ymax + (ymax - ymin) * 2) fig3, ax3 = plt.subplots(1, 1) ax3.plot(data) ax3.margins(x=-0.2, y=0.5) assert ax3.margins() == (-0.2, 0.5) assert ax3.get_xlim() == (xmin - (xmax - xmin) * -0.2, xmax + (xmax - xmin) * -0.2) assert ax3.get_ylim() == (ymin - (ymax - ymin) * 0.5, ymax + (ymax - ymin) * 0.5) def test_set_margin_updates_limits(): mpl.style.use("default") fig, ax = plt.subplots() ax.plot([1, 2], [1, 2]) ax.set(xscale="log", xmargin=0) assert ax.get_xlim() == (1, 2) def test_length_one_hist(): fig, ax = plt.subplots() ax.hist(1) ax.hist([1]) def test_pathological_hexbin(): # issue #2863 mylist = [10] * 100 fig, ax = plt.subplots(1, 1) ax.hexbin(mylist, mylist) fig.savefig(io.BytesIO()) # Check that no warning is emitted. def test_color_None(): # issue 3855 fig, ax = plt.subplots() ax.plot([1, 2], [1, 2], color=None) def test_color_alias(): # issues 4157 and 4162 fig, ax = plt.subplots() line = ax.plot([0, 1], c='lime')[0] assert 'lime' == line.get_color() def test_numerical_hist_label(): fig, ax = plt.subplots() ax.hist([range(15)] * 5, label=range(5)) ax.legend() def test_unicode_hist_label(): fig, ax = plt.subplots() a = (b'\xe5\xbe\x88\xe6\xbc\x82\xe4\xba\xae, ' + b'r\xc3\xb6m\xc3\xa4n ch\xc3\xa4r\xc3\xa1ct\xc3\xa8rs') b = b'\xd7\xa9\xd7\x9c\xd7\x95\xd7\x9d' labels = [a.decode('utf-8'), 'hi aardvark', b.decode('utf-8'), ] ax.hist([range(15)] * 3, label=labels) ax.legend() def test_move_offsetlabel(): data = np.random.random(10) * 1e-22 fig, ax = plt.subplots() ax.plot(data) fig.canvas.draw() before = ax.yaxis.offsetText.get_position() assert ax.yaxis.offsetText.get_horizontalalignment() == 'left' ax.yaxis.tick_right() fig.canvas.draw() after = ax.yaxis.offsetText.get_position() assert after[0] > before[0] and after[1] == before[1] assert ax.yaxis.offsetText.get_horizontalalignment() == 'right' fig, ax = plt.subplots() ax.plot(data) fig.canvas.draw() before = ax.xaxis.offsetText.get_position() assert ax.xaxis.offsetText.get_verticalalignment() == 'top' ax.xaxis.tick_top() fig.canvas.draw() after = ax.xaxis.offsetText.get_position() assert after[0] == before[0] and after[1] > before[1] assert ax.xaxis.offsetText.get_verticalalignment() == 'bottom' @image_comparison(['rc_spines.png'], savefig_kwarg={'dpi': 40}) def test_rc_spines(): rc_dict = { 'axes.spines.left': False, 'axes.spines.right': False, 'axes.spines.top': False, 'axes.spines.bottom': False} with matplotlib.rc_context(rc_dict): fig, ax = plt.subplots() @image_comparison(['rc_grid.png'], savefig_kwarg={'dpi': 40}) def test_rc_grid(): fig = plt.figure() rc_dict0 = { 'axes.grid': True, 'axes.grid.axis': 'both' } rc_dict1 = { 'axes.grid': True, 'axes.grid.axis': 'x' } rc_dict2 = { 'axes.grid': True, 'axes.grid.axis': 'y' } dict_list = [rc_dict0, rc_dict1, rc_dict2] for i, rc_dict in enumerate(dict_list, 1): with matplotlib.rc_context(rc_dict): fig.add_subplot(3, 1, i) def test_rc_tick(): d = {'xtick.bottom': False, 'xtick.top': True, 'ytick.left': True, 'ytick.right': False} with plt.rc_context(rc=d): fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) xax = ax1.xaxis yax = ax1.yaxis # tick1On bottom/left assert not xax._major_tick_kw['tick1On'] assert xax._major_tick_kw['tick2On'] assert not xax._minor_tick_kw['tick1On'] assert xax._minor_tick_kw['tick2On'] assert yax._major_tick_kw['tick1On'] assert not yax._major_tick_kw['tick2On'] assert yax._minor_tick_kw['tick1On'] assert not yax._minor_tick_kw['tick2On'] def test_rc_major_minor_tick(): d = {'xtick.top': True, 'ytick.right': True, # Enable all ticks 'xtick.bottom': True, 'ytick.left': True, # Selectively disable 'xtick.minor.bottom': False, 'xtick.major.bottom': False, 'ytick.major.left': False, 'ytick.minor.left': False} with plt.rc_context(rc=d): fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) xax = ax1.xaxis yax = ax1.yaxis # tick1On bottom/left assert not xax._major_tick_kw['tick1On'] assert xax._major_tick_kw['tick2On'] assert not xax._minor_tick_kw['tick1On'] assert xax._minor_tick_kw['tick2On'] assert not yax._major_tick_kw['tick1On'] assert yax._major_tick_kw['tick2On'] assert not yax._minor_tick_kw['tick1On'] assert yax._minor_tick_kw['tick2On'] def test_square_plot(): x = np.arange(4) y = np.array([1., 3., 5., 7.]) fig, ax = plt.subplots() ax.plot(x, y, 'mo') ax.axis('square') xlim, ylim = ax.get_xlim(), ax.get_ylim() assert np.diff(xlim) == np.diff(ylim) assert ax.get_aspect() == 1 assert_array_almost_equal( ax.get_position(original=True).extents, (0.125, 0.1, 0.9, 0.9)) assert_array_almost_equal( ax.get_position(original=False).extents, (0.2125, 0.1, 0.8125, 0.9)) def test_bad_plot_args(): with pytest.raises(ValueError): plt.plot(None) with pytest.raises(ValueError): plt.plot(None, None) with pytest.raises(ValueError): plt.plot(np.zeros((2, 2)), np.zeros((2, 3))) with pytest.raises(ValueError): plt.plot((np.arange(5).reshape((1, -1)), np.arange(5).reshape(-1, 1))) @pytest.mark.parametrize( "xy, cls", [ ((), mpl.image.AxesImage), # (0, N) (((3, 7), (2, 6)), mpl.image.AxesImage), # (xmin, xmax) ((range(5), range(4)), mpl.image.AxesImage), # regular grid (([1, 2, 4, 8, 16], [0, 1, 2, 3]), # irregular grid mpl.image.PcolorImage), ((np.random.random((4, 5)), np.random.random((4, 5))), # 2D coords mpl.collections.QuadMesh), ] ) @pytest.mark.parametrize( "data", [np.arange(12).reshape((3, 4)), np.random.rand(3, 4, 3)] ) def test_pcolorfast(xy, data, cls): fig, ax = plt.subplots() assert type(ax.pcolorfast(*xy, data)) == cls def test_shared_scale(): fig, axs = plt.subplots(2, 2, sharex=True, sharey=True) axs[0, 0].set_xscale("log") axs[0, 0].set_yscale("log") for ax in axs.flat: assert ax.get_yscale() == 'log' assert ax.get_xscale() == 'log' axs[1, 1].set_xscale("linear") axs[1, 1].set_yscale("linear") for ax in axs.flat: assert ax.get_yscale() == 'linear' assert ax.get_xscale() == 'linear' def test_shared_bool(): with pytest.raises(TypeError): plt.subplot(sharex=True) with pytest.raises(TypeError): plt.subplot(sharey=True) def test_violin_point_mass(): """Violin plot should handle point mass pdf gracefully.""" plt.violinplot(np.array([0, 0])) def generate_errorbar_inputs(): base_xy = cycler('x', [np.arange(5)]) + cycler('y', [np.ones(5)]) err_cycler = cycler('err', [1, [1, 1, 1, 1, 1], [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], np.ones(5), np.ones((2, 5)), None ]) xerr_cy = cycler('xerr', err_cycler) yerr_cy = cycler('yerr', err_cycler) empty = ((cycler('x', [[]]) + cycler('y', [[]])) * cycler('xerr', [[], None]) * cycler('yerr', [[], None])) xerr_only = base_xy * xerr_cy yerr_only = base_xy * yerr_cy both_err = base_xy * yerr_cy * xerr_cy return [*xerr_only, *yerr_only, *both_err, *empty] @pytest.mark.parametrize('kwargs', generate_errorbar_inputs()) def test_errorbar_inputs_shotgun(kwargs): ax = plt.gca() eb = ax.errorbar(**kwargs) eb.remove() @image_comparison(["dash_offset"], remove_text=True) def test_dash_offset(): fig, ax = plt.subplots() x = np.linspace(0, 10) y = np.ones_like(x) for j in range(0, 100, 2): ax.plot(x, j*y, ls=(j, (10, 10)), lw=5, color='k') def test_title_pad(): # check that title padding puts the title in the right # place... fig, ax = plt.subplots() ax.set_title('aardvark', pad=30.) m = ax.titleOffsetTrans.get_matrix() assert m[1, -1] == (30. / 72. * fig.dpi) ax.set_title('aardvark', pad=0.) m = ax.titleOffsetTrans.get_matrix() assert m[1, -1] == 0. # check that it is reverted... ax.set_title('aardvark', pad=None) m = ax.titleOffsetTrans.get_matrix() assert m[1, -1] == (matplotlib.rcParams['axes.titlepad'] / 72. * fig.dpi) def test_title_location_roundtrip(): fig, ax = plt.subplots() # set default title location plt.rcParams['axes.titlelocation'] = 'center' ax.set_title('aardvark') ax.set_title('left', loc='left') ax.set_title('right', loc='right') assert 'left' == ax.get_title(loc='left') assert 'right' == ax.get_title(loc='right') assert 'aardvark' == ax.get_title(loc='center') with pytest.raises(ValueError): ax.get_title(loc='foo') with pytest.raises(ValueError): ax.set_title('fail', loc='foo') @image_comparison(["loglog.png"], remove_text=True, tol=0.02) def test_loglog(): fig, ax = plt.subplots() x = np.arange(1, 11) ax.loglog(x, x**3, lw=5) ax.tick_params(length=25, width=2) ax.tick_params(length=15, width=2, which='minor') @pytest.mark.parametrize("new_api", [False, True]) @image_comparison(["test_loglog_nonpos.png"], remove_text=True, style='mpl20') def test_loglog_nonpos(new_api): fig, axs = plt.subplots(3, 3) x = np.arange(1, 11) y = x**3 y[7] = -3. x[4] = -10 for (i, j), ax in np.ndenumerate(axs): mcx = ['mask', 'clip', ''][j] mcy = ['mask', 'clip', ''][i] if new_api: if mcx == mcy: if mcx: ax.loglog(x, y**3, lw=2, nonpositive=mcx) else: ax.loglog(x, y**3, lw=2) else: ax.loglog(x, y**3, lw=2) if mcx: ax.set_xscale("log", nonpositive=mcx) if mcy: ax.set_yscale("log", nonpositive=mcy) else: kws = {} if mcx: kws['nonposx'] = mcx if mcy: kws['nonposy'] = mcy with (pytest.warns(MatplotlibDeprecationWarning) if kws else nullcontext()): ax.loglog(x, y**3, lw=2, **kws) @pytest.mark.style('default') def test_axes_margins(): fig, ax = plt.subplots() ax.plot([0, 1, 2, 3]) assert ax.get_ybound()[0] != 0 fig, ax = plt.subplots() ax.bar([0, 1, 2, 3], [1, 1, 1, 1]) assert ax.get_ybound()[0] == 0 fig, ax = plt.subplots() ax.barh([0, 1, 2, 3], [1, 1, 1, 1]) assert ax.get_xbound()[0] == 0 fig, ax = plt.subplots() ax.pcolor(np.zeros((10, 10))) assert ax.get_xbound() == (0, 10) assert ax.get_ybound() == (0, 10) fig, ax = plt.subplots() ax.pcolorfast(np.zeros((10, 10))) assert ax.get_xbound() == (0, 10) assert ax.get_ybound() == (0, 10) fig, ax = plt.subplots() ax.hist(np.arange(10)) assert ax.get_ybound()[0] == 0 fig, ax = plt.subplots() ax.imshow(np.zeros((10, 10))) assert ax.get_xbound() == (-0.5, 9.5) assert ax.get_ybound() == (-0.5, 9.5) @pytest.fixture(params=['x', 'y']) def shared_axis_remover(request): def _helper_x(ax): ax2 = ax.twinx() ax2.remove() ax.set_xlim(0, 15) r = ax.xaxis.get_major_locator()() assert r[-1] > 14 def _helper_y(ax): ax2 = ax.twiny() ax2.remove() ax.set_ylim(0, 15) r = ax.yaxis.get_major_locator()() assert r[-1] > 14 return {"x": _helper_x, "y": _helper_y}[request.param] @pytest.fixture(params=['gca', 'subplots', 'subplots_shared', 'add_axes']) def shared_axes_generator(request): # test all of the ways to get fig/ax sets if request.param == 'gca': fig = plt.figure() ax = fig.gca() elif request.param == 'subplots': fig, ax = plt.subplots() elif request.param == 'subplots_shared': fig, ax_lst = plt.subplots(2, 2, sharex='all', sharey='all') ax = ax_lst[0][0] elif request.param == 'add_axes': fig = plt.figure() ax = fig.add_axes([.1, .1, .8, .8]) return fig, ax def test_remove_shared_axes(shared_axes_generator, shared_axis_remover): # test all of the ways to get fig/ax sets fig, ax = shared_axes_generator shared_axis_remover(ax) def test_remove_shared_axes_relim(): fig, ax_lst = plt.subplots(2, 2, sharex='all', sharey='all') ax = ax_lst[0][0] orig_xlim = ax_lst[0][1].get_xlim() ax.remove() ax.set_xlim(0, 5) assert_array_equal(ax_lst[0][1].get_xlim(), orig_xlim) def test_shared_axes_autoscale(): l = np.arange(-80, 90, 40) t = np.random.random_sample((l.size, l.size)) ax1 = plt.subplot(211) ax1.set_xlim(-1000, 1000) ax1.set_ylim(-1000, 1000) ax1.contour(l, l, t) ax2 = plt.subplot(212, sharex=ax1, sharey=ax1) ax2.contour(l, l, t) assert not ax1.get_autoscalex_on() and not ax2.get_autoscalex_on() assert not ax1.get_autoscaley_on() and not ax2.get_autoscaley_on() assert ax1.get_xlim() == ax2.get_xlim() == (-1000, 1000) assert ax1.get_ylim() == ax2.get_ylim() == (-1000, 1000) def test_adjust_numtick_aspect(): fig, ax = plt.subplots() ax.yaxis.get_major_locator().set_params(nbins='auto') ax.set_xlim(0, 1000) ax.set_aspect('equal') fig.canvas.draw() assert len(ax.yaxis.get_major_locator()()) == 2 ax.set_ylim(0, 1000) fig.canvas.draw() assert len(ax.yaxis.get_major_locator()()) > 2 @image_comparison(["auto_numticks.png"], style='default') def test_auto_numticks(): # Make tiny, empty subplots, verify that there are only 3 ticks. fig, axs = plt.subplots(4, 4) @image_comparison(["auto_numticks_log.png"], style='default') def test_auto_numticks_log(): # Verify that there are not too many ticks with a large log range. fig, ax = plt.subplots() matplotlib.rcParams['axes.autolimit_mode'] = 'round_numbers' ax.loglog([1e-20, 1e5], [1e-16, 10]) def test_broken_barh_empty(): fig, ax = plt.subplots() ax.broken_barh([], (.1, .5)) def test_broken_barh_timedelta(): """Check that timedelta works as x, dx pair for this method.""" fig, ax = plt.subplots() d0 = datetime.datetime(2018, 11, 9, 0, 0, 0) pp = ax.broken_barh([(d0, datetime.timedelta(hours=1))], [1, 2]) assert pp.get_paths()[0].vertices[0, 0] == mdates.date2num(d0) assert pp.get_paths()[0].vertices[2, 0] == mdates.date2num(d0) + 1 / 24 def test_pandas_pcolormesh(pd): time = pd.date_range('2000-01-01', periods=10) depth = np.arange(20) data = np.random.rand(19, 9) fig, ax = plt.subplots() ax.pcolormesh(time, depth, data) def test_pandas_indexing_dates(pd): dates = np.arange('2005-02', '2005-03', dtype='datetime64[D]') values = np.sin(np.array(range(len(dates)))) df = pd.DataFrame({'dates': dates, 'values': values}) ax = plt.gca() without_zero_index = df[np.array(df.index) % 2 == 1].copy() ax.plot('dates', 'values', data=without_zero_index) def test_pandas_errorbar_indexing(pd): df = pd.DataFrame(np.random.uniform(size=(5, 4)), columns=['x', 'y', 'xe', 'ye'], index=[1, 2, 3, 4, 5]) fig, ax = plt.subplots() ax.errorbar('x', 'y', xerr='xe', yerr='ye', data=df) def test_pandas_index_shape(pd): df = pd.DataFrame({"XX": [4, 5, 6], "YY": [7, 1, 2]}) fig, ax = plt.subplots() ax.plot(df.index, df['YY']) def test_pandas_indexing_hist(pd): ser_1 = pd.Series(data=[1, 2, 2, 3, 3, 4, 4, 4, 4, 5]) ser_2 = ser_1.iloc[1:] fig, ax = plt.subplots() ax.hist(ser_2) def test_pandas_bar_align_center(pd): # Tests fix for issue 8767 df = pd.DataFrame({'a': range(2), 'b': range(2)}) fig, ax = plt.subplots(1) ax.bar(df.loc[df['a'] == 1, 'b'], df.loc[df['a'] == 1, 'b'], align='center') fig.canvas.draw() def test_axis_set_tick_params_labelsize_labelcolor(): # Tests fix for issue 4346 axis_1 = plt.subplot() axis_1.yaxis.set_tick_params(labelsize=30, labelcolor='red', direction='out') # Expected values after setting the ticks assert axis_1.yaxis.majorTicks[0]._size == 4.0 assert axis_1.yaxis.majorTicks[0].tick1line.get_color() == 'k' assert axis_1.yaxis.majorTicks[0].label1.get_size() == 30.0 assert axis_1.yaxis.majorTicks[0].label1.get_color() == 'red' def test_axes_tick_params_gridlines(): # Now treating grid params like other Tick params ax = plt.subplot() ax.tick_params(grid_color='b', grid_linewidth=5, grid_alpha=0.5, grid_linestyle='dashdot') for axis in ax.xaxis, ax.yaxis: assert axis.majorTicks[0].gridline.get_color() == 'b' assert axis.majorTicks[0].gridline.get_linewidth() == 5 assert axis.majorTicks[0].gridline.get_alpha() == 0.5 assert axis.majorTicks[0].gridline.get_linestyle() == '-.' def test_axes_tick_params_ylabelside(): # Tests fix for issue 10267 ax = plt.subplot() ax.tick_params(labelleft=False, labelright=True, which='major') ax.tick_params(labelleft=False, labelright=True, which='minor') # expects left false, right true assert ax.yaxis.majorTicks[0].label1.get_visible() is False assert ax.yaxis.majorTicks[0].label2.get_visible() is True assert ax.yaxis.minorTicks[0].label1.get_visible() is False assert ax.yaxis.minorTicks[0].label2.get_visible() is True def test_axes_tick_params_xlabelside(): # Tests fix for issue 10267 ax = plt.subplot() ax.tick_params(labeltop=True, labelbottom=False, which='major') ax.tick_params(labeltop=True, labelbottom=False, which='minor') # expects top True, bottom False # label1.get_visible() mapped to labelbottom # label2.get_visible() mapped to labeltop assert ax.xaxis.majorTicks[0].label1.get_visible() is False assert ax.xaxis.majorTicks[0].label2.get_visible() is True assert ax.xaxis.minorTicks[0].label1.get_visible() is False assert ax.xaxis.minorTicks[0].label2.get_visible() is True def test_none_kwargs(): ax = plt.figure().subplots() ln, = ax.plot(range(32), linestyle=None) assert ln.get_linestyle() == '-' def test_ls_ds_conflict(): # Passing the drawstyle with the linestyle is deprecated since 3.1. # We still need to test this until it's removed from the code. # But we don't want to see the deprecation warning in the test. with matplotlib.cbook._suppress_matplotlib_deprecation_warning(), \ pytest.raises(ValueError): plt.plot(range(32), linestyle='steps-pre:', drawstyle='steps-post') def test_bar_uint8(): xs = [0, 1, 2, 3] b = plt.bar(np.array(xs, dtype=np.uint8), [2, 3, 4, 5], align="edge") for (patch, x) in zip(b.patches, xs): assert patch.xy[0] == x @image_comparison(['date_timezone_x.png'], tol=1.0) def test_date_timezone_x(): # Tests issue 5575 time_index = [datetime.datetime(2016, 2, 22, hour=x, tzinfo=dateutil.tz.gettz('Canada/Eastern')) for x in range(3)] # Same Timezone plt.figure(figsize=(20, 12)) plt.subplot(2, 1, 1) plt.plot_date(time_index, [3] * 3, tz='Canada/Eastern') # Different Timezone plt.subplot(2, 1, 2) plt.plot_date(time_index, [3] * 3, tz='UTC') @image_comparison(['date_timezone_y.png']) def test_date_timezone_y(): # Tests issue 5575 time_index = [datetime.datetime(2016, 2, 22, hour=x, tzinfo=dateutil.tz.gettz('Canada/Eastern')) for x in range(3)] # Same Timezone plt.figure(figsize=(20, 12)) plt.subplot(2, 1, 1) plt.plot_date([3] * 3, time_index, tz='Canada/Eastern', xdate=False, ydate=True) # Different Timezone plt.subplot(2, 1, 2) plt.plot_date([3] * 3, time_index, tz='UTC', xdate=False, ydate=True) @image_comparison(['date_timezone_x_and_y.png'], tol=1.0) def test_date_timezone_x_and_y(): # Tests issue 5575 UTC = datetime.timezone.utc time_index = [datetime.datetime(2016, 2, 22, hour=x, tzinfo=UTC) for x in range(3)] # Same Timezone plt.figure(figsize=(20, 12)) plt.subplot(2, 1, 1) plt.plot_date(time_index, time_index, tz='UTC', ydate=True) # Different Timezone plt.subplot(2, 1, 2) plt.plot_date(time_index, time_index, tz='US/Eastern', ydate=True) @image_comparison(['axisbelow.png'], remove_text=True) def test_axisbelow(): # Test 'line' setting added in 6287. # Show only grids, not frame or ticks, to make this test # independent of future change to drawing order of those elements. axs = plt.figure().subplots(ncols=3, sharex=True, sharey=True) settings = (False, 'line', True) for ax, setting in zip(axs, settings): ax.plot((0, 10), (0, 10), lw=10, color='m') circ = mpatches.Circle((3, 3), color='r') ax.add_patch(circ) ax.grid(color='c', linestyle='-', linewidth=3) ax.tick_params(top=False, bottom=False, left=False, right=False) for spine in ax.spines.values(): spine.set_visible(False) ax.set_axisbelow(setting) def test_titletwiny(): plt.style.use('mpl20') fig, ax = plt.subplots(dpi=72) ax2 = ax.twiny() xlabel2 = ax2.set_xlabel('Xlabel2') title = ax.set_title('Title') fig.canvas.draw() renderer = fig.canvas.get_renderer() # ------- Test that title is put above Xlabel2 (Xlabel2 at top) ---------- bbox_y0_title = title.get_window_extent(renderer).y0 # bottom of title bbox_y1_xlabel2 = xlabel2.get_window_extent(renderer).y1 # top of xlabel2 y_diff = bbox_y0_title - bbox_y1_xlabel2 assert np.isclose(y_diff, 3) def test_titlesetpos(): # Test that title stays put if we set it manually fig, ax = plt.subplots() fig.subplots_adjust(top=0.8) ax2 = ax.twiny() ax.set_xlabel('Xlabel') ax2.set_xlabel('Xlabel2') ax.set_title('Title') pos = (0.5, 1.11) ax.title.set_position(pos) renderer = fig.canvas.get_renderer() ax._update_title_position(renderer) assert ax.title.get_position() == pos def test_title_xticks_top(): # Test that title moves if xticks on top of axes. mpl.rcParams['axes.titley'] = None fig, ax = plt.subplots() ax.xaxis.set_ticks_position('top') ax.set_title('xlabel top') fig.canvas.draw() assert ax.title.get_position()[1] > 1.04 def test_title_xticks_top_both(): # Test that title moves if xticks on top of axes. mpl.rcParams['axes.titley'] = None fig, ax = plt.subplots() ax.tick_params(axis="x", bottom=True, top=True, labelbottom=True, labeltop=True) ax.set_title('xlabel top') fig.canvas.draw() assert ax.title.get_position()[1] > 1.04 def test_title_no_move_off_page(): # If an axes is off the figure (ie. if it is cropped during a save) # make sure that the automatic title repositioning does not get done. mpl.rcParams['axes.titley'] = None fig = plt.figure() ax = fig.add_axes([0.1, -0.5, 0.8, 0.2]) ax.tick_params(axis="x", bottom=True, top=True, labelbottom=True, labeltop=True) tt = ax.set_title('Boo') fig.canvas.draw() assert tt.get_position()[1] == 1.0 def test_offset_label_color(): # Tests issue 6440 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot([1.01e9, 1.02e9, 1.03e9]) ax.yaxis.set_tick_params(labelcolor='red') assert ax.yaxis.get_offset_text().get_color() == 'red' def test_offset_text_visible(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot([1.01e9, 1.02e9, 1.03e9]) ax.yaxis.set_tick_params(label1On=False, label2On=True) assert ax.yaxis.get_offset_text().get_visible() ax.yaxis.set_tick_params(label2On=False) assert not ax.yaxis.get_offset_text().get_visible() def test_large_offset(): fig, ax = plt.subplots() ax.plot((1 + np.array([0, 1.e-12])) * 1.e27) fig.canvas.draw() def test_barb_units(): fig, ax = plt.subplots() dates = [datetime.datetime(2017, 7, 15, 18, i) for i in range(0, 60, 10)] y = np.linspace(0, 5, len(dates)) u = v = np.linspace(0, 50, len(dates)) ax.barbs(dates, y, u, v) def test_quiver_units(): fig, ax = plt.subplots() dates = [datetime.datetime(2017, 7, 15, 18, i) for i in range(0, 60, 10)] y = np.linspace(0, 5, len(dates)) u = v = np.linspace(0, 50, len(dates)) ax.quiver(dates, y, u, v) def test_bar_color_cycle(): to_rgb = mcolors.to_rgb fig, ax = plt.subplots() for j in range(5): ln, = ax.plot(range(3)) brs = ax.bar(range(3), range(3)) for br in brs: assert to_rgb(ln.get_color()) == to_rgb(br.get_facecolor()) def test_tick_param_label_rotation(): fix, (ax, ax2) = plt.subplots(1, 2) ax.plot([0, 1], [0, 1]) ax2.plot([0, 1], [0, 1]) ax.xaxis.set_tick_params(which='both', rotation=75) ax.yaxis.set_tick_params(which='both', rotation=90) for text in ax.get_xticklabels(which='both'): assert text.get_rotation() == 75 for text in ax.get_yticklabels(which='both'): assert text.get_rotation() == 90 ax2.tick_params(axis='x', labelrotation=53) ax2.tick_params(axis='y', rotation=35) for text in ax2.get_xticklabels(which='major'): assert text.get_rotation() == 53 for text in ax2.get_yticklabels(which='major'): assert text.get_rotation() == 35 @pytest.mark.style('default') def test_fillbetween_cycle(): fig, ax = plt.subplots() for j in range(3): cc = ax.fill_between(range(3), range(3)) target = mcolors.to_rgba('C{}'.format(j)) assert tuple(cc.get_facecolors().squeeze()) == tuple(target) for j in range(3, 6): cc = ax.fill_betweenx(range(3), range(3)) target = mcolors.to_rgba('C{}'.format(j)) assert tuple(cc.get_facecolors().squeeze()) == tuple(target) target = mcolors.to_rgba('k') for al in ['facecolor', 'facecolors', 'color']: cc = ax.fill_between(range(3), range(3), **{al: 'k'}) assert tuple(cc.get_facecolors().squeeze()) == tuple(target) edge_target = mcolors.to_rgba('k') for j, el in enumerate(['edgecolor', 'edgecolors'], start=6): cc = ax.fill_between(range(3), range(3), **{el: 'k'}) face_target = mcolors.to_rgba('C{}'.format(j)) assert tuple(cc.get_facecolors().squeeze()) == tuple(face_target) assert tuple(cc.get_edgecolors().squeeze()) == tuple(edge_target) def test_log_margins(): plt.rcParams['axes.autolimit_mode'] = 'data' fig, ax = plt.subplots() margin = 0.05 ax.set_xmargin(margin) ax.semilogx([10, 100], [10, 100]) xlim0, xlim1 = ax.get_xlim() transform = ax.xaxis.get_transform() xlim0t, xlim1t = transform.transform([xlim0, xlim1]) x0t, x1t = transform.transform([10, 100]) delta = (x1t - x0t) * margin assert_allclose([xlim0t + delta, xlim1t - delta], [x0t, x1t]) def test_color_length_mismatch(): N = 5 x, y = np.arange(N), np.arange(N) colors = np.arange(N+1) fig, ax = plt.subplots() with pytest.raises(ValueError): ax.scatter(x, y, c=colors) c_rgb = (0.5, 0.5, 0.5) ax.scatter(x, y, c=c_rgb) ax.scatter(x, y, c=[c_rgb] * N) def test_eventplot_legend(): plt.eventplot([1.0], label='Label') plt.legend() def test_bar_broadcast_args(): fig, ax = plt.subplots() # Check that a bar chart with a single height for all bars works. ax.bar(range(4), 1) # Check that a horizontal chart with one width works. ax.barh(0, 1, left=range(4), height=1) # Check that edgecolor gets broadcast. rect1, rect2 = ax.bar([0, 1], [0, 1], edgecolor=(.1, .2, .3, .4)) assert rect1.get_edgecolor() == rect2.get_edgecolor() == (.1, .2, .3, .4) def test_invalid_axis_limits(): plt.plot([0, 1], [0, 1]) with pytest.raises(ValueError): plt.xlim(np.nan) with pytest.raises(ValueError): plt.xlim(np.inf) with pytest.raises(ValueError): plt.ylim(np.nan) with pytest.raises(ValueError): plt.ylim(np.inf) # Test all 4 combinations of logs/symlogs for minorticks_on() @pytest.mark.parametrize('xscale', ['symlog', 'log']) @pytest.mark.parametrize('yscale', ['symlog', 'log']) def test_minorticks_on(xscale, yscale): ax = plt.subplot(111) ax.plot([1, 2, 3, 4]) ax.set_xscale(xscale) ax.set_yscale(yscale) ax.minorticks_on() def test_twinx_knows_limits(): fig, ax = plt.subplots() ax.axvspan(1, 2) xtwin = ax.twinx() xtwin.plot([0, 0.5], [1, 2]) # control axis fig2, ax2 = plt.subplots() ax2.axvspan(1, 2) ax2.plot([0, 0.5], [1, 2]) assert_array_equal(xtwin.viewLim.intervalx, ax2.viewLim.intervalx) def test_zero_linewidth(): # Check that setting a zero linewidth doesn't error plt.plot([0, 1], [0, 1], ls='--', lw=0) def test_empty_errorbar_legend(): fig, ax = plt.subplots() ax.errorbar([], [], xerr=[], label='empty y') ax.errorbar([], [], yerr=[], label='empty x') ax.legend() @check_figures_equal(extensions=["png"]) def test_plot_decimal(fig_test, fig_ref): x0 = np.arange(-10, 10, 0.3) y0 = [5.2 * x ** 3 - 2.1 * x ** 2 + 7.34 * x + 4.5 for x in x0] x = [Decimal(i) for i in x0] y = [Decimal(i) for i in y0] # Test image - line plot with Decimal input fig_test.subplots().plot(x, y) # Reference image fig_ref.subplots().plot(x0, y0) # pdf and svg tests fail using travis' old versions of gs and inkscape. @check_figures_equal(extensions=["png"]) def test_markerfacecolor_none_alpha(fig_test, fig_ref): fig_test.subplots().plot(0, "o", mfc="none", alpha=.5) fig_ref.subplots().plot(0, "o", mfc="w", alpha=.5) def test_tick_padding_tightbbox(): """Test that tick padding gets turned off if axis is off""" plt.rcParams["xtick.direction"] = "out" plt.rcParams["ytick.direction"] = "out" fig, ax = plt.subplots() bb = ax.get_tightbbox(fig.canvas.get_renderer()) ax.axis('off') bb2 = ax.get_tightbbox(fig.canvas.get_renderer()) assert bb.x0 < bb2.x0 assert bb.y0 < bb2.y0 def test_inset(): """ Ensure that inset_ax argument is indeed optional """ dx, dy = 0.05, 0.05 # generate 2 2d grids for the x & y bounds y, x = np.mgrid[slice(1, 5 + dy, dy), slice(1, 5 + dx, dx)] z = np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) fig, ax = plt.subplots() ax.pcolormesh(x, y, z[:-1, :-1]) ax.set_aspect(1.) ax.apply_aspect() # we need to apply_aspect to make the drawing below work. xlim = [1.5, 2.15] ylim = [2, 2.5] rect = [xlim[0], ylim[0], xlim[1] - xlim[0], ylim[1] - ylim[0]] rec, connectors = ax.indicate_inset(bounds=rect) assert connectors is None fig.canvas.draw() xx = np.array([[1.5, 2.], [2.15, 2.5]]) assert np.all(rec.get_bbox().get_points() == xx) def test_zoom_inset(): dx, dy = 0.05, 0.05 # generate 2 2d grids for the x & y bounds y, x = np.mgrid[slice(1, 5 + dy, dy), slice(1, 5 + dx, dx)] z = np.sin(x)**10 + np.cos(10 + y*x) * np.cos(x) fig, ax = plt.subplots() ax.pcolormesh(x, y, z[:-1, :-1]) ax.set_aspect(1.) ax.apply_aspect() # we need to apply_aspect to make the drawing below work. # Make the inset_axes... Position axes coordinates... axin1 = ax.inset_axes([0.7, 0.7, 0.35, 0.35]) # redraw the data in the inset axes... axin1.pcolormesh(x, y, z[:-1, :-1]) axin1.set_xlim([1.5, 2.15]) axin1.set_ylim([2, 2.5]) axin1.set_aspect(ax.get_aspect()) rec, connectors = ax.indicate_inset_zoom(axin1) assert len(connectors) == 4 fig.canvas.draw() xx = np.array([[1.5, 2.], [2.15, 2.5]]) assert(np.all(rec.get_bbox().get_points() == xx)) xx = np.array([[0.6325, 0.692308], [0.8425, 0.907692]]) np.testing.assert_allclose( axin1.get_position().get_points(), xx, rtol=1e-4) @pytest.mark.parametrize('x_inverted', [False, True]) @pytest.mark.parametrize('y_inverted', [False, True]) def test_indicate_inset_inverted(x_inverted, y_inverted): """ Test that the inset lines are correctly located with inverted data axes. """ fig, (ax1, ax2) = plt.subplots(1, 2) x = np.arange(10) ax1.plot(x, x, 'o') if x_inverted: ax1.invert_xaxis() if y_inverted: ax1.invert_yaxis() rect, bounds = ax1.indicate_inset([2, 2, 5, 4], ax2) lower_left, upper_left, lower_right, upper_right = bounds sign_x = -1 if x_inverted else 1 sign_y = -1 if y_inverted else 1 assert sign_x * (lower_right.xy2[0] - lower_left.xy2[0]) > 0 assert sign_x * (upper_right.xy2[0] - upper_left.xy2[0]) > 0 assert sign_y * (upper_left.xy2[1] - lower_left.xy2[1]) > 0 assert sign_y * (upper_right.xy2[1] - lower_right.xy2[1]) > 0 def test_set_position(): fig, ax = plt.subplots() ax.set_aspect(3.) ax.set_position([0.1, 0.1, 0.4, 0.4], which='both') assert np.allclose(ax.get_position().width, 0.1) ax.set_aspect(2.) ax.set_position([0.1, 0.1, 0.4, 0.4], which='original') assert np.allclose(ax.get_position().width, 0.15) ax.set_aspect(3.) ax.set_position([0.1, 0.1, 0.4, 0.4], which='active') assert np.allclose(ax.get_position().width, 0.1) def test_spines_properbbox_after_zoom(): fig, ax = plt.subplots() bb = ax.spines['bottom'].get_window_extent(fig.canvas.get_renderer()) # this is what zoom calls: ax._set_view_from_bbox((320, 320, 500, 500), 'in', None, False, False) bb2 = ax.spines['bottom'].get_window_extent(fig.canvas.get_renderer()) np.testing.assert_allclose(bb.get_points(), bb2.get_points(), rtol=1e-6) def test_cartopy_backcompat(): class Dummy(matplotlib.axes.Axes): ... class DummySubplot(matplotlib.axes.SubplotBase, Dummy): _axes_class = Dummy matplotlib.axes._subplots._subplot_classes[Dummy] = DummySubplot FactoryDummySubplot = matplotlib.axes.subplot_class_factory(Dummy) assert DummySubplot is FactoryDummySubplot def test_gettightbbox_ignoreNaN(): fig, ax = plt.subplots() remove_ticks_and_titles(fig) ax.text(np.NaN, 1, 'Boo') renderer = fig.canvas.get_renderer() np.testing.assert_allclose(ax.get_tightbbox(renderer).width, 496) def test_scatter_series_non_zero_index(pd): # create non-zero index ids = range(10, 18) x = pd.Series(np.random.uniform(size=8), index=ids) y = pd.Series(np.random.uniform(size=8), index=ids) c = pd.Series([1, 1, 1, 1, 1, 0, 0, 0], index=ids) plt.scatter(x, y, c) def test_scatter_empty_data(): # making sure this does not raise an exception plt.scatter([], []) plt.scatter([], [], s=[], c=[]) @image_comparison(['annotate_across_transforms.png'], style='mpl20', remove_text=True) def test_annotate_across_transforms(): x = np.linspace(0, 10, 200) y = np.exp(-x) * np.sin(x) fig, ax = plt.subplots(figsize=(3.39, 3)) ax.plot(x, y) axins = ax.inset_axes([0.4, 0.5, 0.3, 0.3]) axins.set_aspect(0.2) axins.xaxis.set_visible(False) axins.yaxis.set_visible(False) ax.annotate("", xy=(x[150], y[150]), xycoords=ax.transData, xytext=(1, 0), textcoords=axins.transAxes, arrowprops=dict(arrowstyle="->")) @image_comparison(['secondary_xy.png'], style='mpl20') def test_secondary_xy(): fig, axs = plt.subplots(1, 2, figsize=(10, 5), constrained_layout=True) def invert(x): with np.errstate(divide='ignore'): return 1 / x for nn, ax in enumerate(axs): ax.plot(np.arange(2, 11), np.arange(2, 11)) if nn == 0: secax = ax.secondary_xaxis else: secax = ax.secondary_yaxis secax(0.2, functions=(invert, invert)) secax(0.4, functions=(lambda x: 2 * x, lambda x: x / 2)) secax(0.6, functions=(lambda x: x**2, lambda x: x**(1/2))) secax(0.8) def test_secondary_fail(): fig, ax = plt.subplots() ax.plot(np.arange(2, 11), np.arange(2, 11)) with pytest.raises(ValueError): ax.secondary_xaxis(0.2, functions=(lambda x: 1 / x)) with pytest.raises(ValueError): ax.secondary_xaxis('right') with pytest.raises(ValueError): ax.secondary_yaxis('bottom') def test_secondary_resize(): fig, ax = plt.subplots(figsize=(10, 5)) ax.plot(np.arange(2, 11), np.arange(2, 11)) def invert(x): with np.errstate(divide='ignore'): return 1 / x ax.secondary_xaxis('top', functions=(invert, invert)) fig.canvas.draw() fig.set_size_inches((7, 4)) assert_allclose(ax.get_position().extents, [0.125, 0.1, 0.9, 0.9]) def test_secondary_minorloc(): fig, ax = plt.subplots(figsize=(10, 5)) ax.plot(np.arange(2, 11), np.arange(2, 11)) def invert(x): with np.errstate(divide='ignore'): return 1 / x secax = ax.secondary_xaxis('top', functions=(invert, invert)) assert isinstance(secax._axis.get_minor_locator(), mticker.NullLocator) secax.minorticks_on() assert isinstance(secax._axis.get_minor_locator(), mticker.AutoMinorLocator) ax.set_xscale('log') plt.draw() assert isinstance(secax._axis.get_minor_locator(), mticker.LogLocator) ax.set_xscale('linear') plt.draw() assert isinstance(secax._axis.get_minor_locator(), mticker.NullLocator) def test_secondary_formatter(): fig, ax = plt.subplots() ax.set_xscale("log") secax = ax.secondary_xaxis("top") secax.xaxis.set_major_formatter(mticker.ScalarFormatter()) fig.canvas.draw() assert isinstance( secax.xaxis.get_major_formatter(), mticker.ScalarFormatter) def color_boxes(fig, axs): """ Helper for the tests below that test the extents of various axes elements """ fig.canvas.draw() renderer = fig.canvas.get_renderer() bbaxis = [] for nn, axx in enumerate([axs.xaxis, axs.yaxis]): bb = axx.get_tightbbox(renderer) if bb: axisr = plt.Rectangle( (bb.x0, bb.y0), width=bb.width, height=bb.height, linewidth=0.7, edgecolor='y', facecolor="none", transform=None, zorder=3) fig.add_artist(axisr) bbaxis += [bb] bbspines = [] for nn, a in enumerate(['bottom', 'top', 'left', 'right']): bb = axs.spines[a].get_window_extent(renderer) spiner = plt.Rectangle( (bb.x0, bb.y0), width=bb.width, height=bb.height, linewidth=0.7, edgecolor="green", facecolor="none", transform=None, zorder=3) fig.add_artist(spiner) bbspines += [bb] bb = axs.get_window_extent() rect2 = plt.Rectangle( (bb.x0, bb.y0), width=bb.width, height=bb.height, linewidth=1.5, edgecolor="magenta", facecolor="none", transform=None, zorder=2) fig.add_artist(rect2) bbax = bb bb2 = axs.get_tightbbox(renderer) rect2 = plt.Rectangle( (bb2.x0, bb2.y0), width=bb2.width, height=bb2.height, linewidth=3, edgecolor="red", facecolor="none", transform=None, zorder=1) fig.add_artist(rect2) bbtb = bb2 return bbaxis, bbspines, bbax, bbtb def test_normal_axes(): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) fig.canvas.draw() plt.close(fig) bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) # test the axis bboxes target = [ [123.375, 75.88888888888886, 983.25, 33.0], [85.51388888888889, 99.99999999999997, 53.375, 993.0] ] for nn, b in enumerate(bbaxis): targetbb = mtransforms.Bbox.from_bounds(*target[nn]) assert_array_almost_equal(b.bounds, targetbb.bounds, decimal=2) target = [ [150.0, 119.999, 930.0, 11.111], [150.0, 1080.0, 930.0, 0.0], [150.0, 119.9999, 11.111, 960.0], [1068.8888, 119.9999, 11.111, 960.0] ] for nn, b in enumerate(bbspines): targetbb = mtransforms.Bbox.from_bounds(*target[nn]) assert_array_almost_equal(b.bounds, targetbb.bounds, decimal=2) target = [150.0, 119.99999999999997, 930.0, 960.0] targetbb = mtransforms.Bbox.from_bounds(*target) assert_array_almost_equal(bbax.bounds, targetbb.bounds, decimal=2) target = [85.5138, 75.88888, 1021.11, 1017.11] targetbb = mtransforms.Bbox.from_bounds(*target) assert_array_almost_equal(bbtb.bounds, targetbb.bounds, decimal=2) # test that get_position roundtrips to get_window_extent axbb = ax.get_position().transformed(fig.transFigure).bounds assert_array_almost_equal(axbb, ax.get_window_extent().bounds, decimal=2) def test_nodecorator(): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) fig.canvas.draw() ax.set(xticklabels=[], yticklabels=[]) bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) # test the axis bboxes target = [ None, None ] for nn, b in enumerate(bbaxis): assert b is None target = [ [150.0, 119.999, 930.0, 11.111], [150.0, 1080.0, 930.0, 0.0], [150.0, 119.9999, 11.111, 960.0], [1068.8888, 119.9999, 11.111, 960.0] ] for nn, b in enumerate(bbspines): targetbb = mtransforms.Bbox.from_bounds(*target[nn]) assert_allclose(b.bounds, targetbb.bounds, atol=1e-2) target = [150.0, 119.99999999999997, 930.0, 960.0] targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbax.bounds, targetbb.bounds, atol=1e-2) target = [150., 120., 930., 960.] targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbtb.bounds, targetbb.bounds, atol=1e-2) def test_displaced_spine(): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) ax.set(xticklabels=[], yticklabels=[]) ax.spines['bottom'].set_position(('axes', -0.1)) fig.canvas.draw() bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) target = [ [150., 24., 930., 11.111111], [150.0, 1080.0, 930.0, 0.0], [150.0, 119.9999, 11.111, 960.0], [1068.8888, 119.9999, 11.111, 960.0] ] for nn, b in enumerate(bbspines): targetbb = mtransforms.Bbox.from_bounds(*target[nn]) target = [150.0, 119.99999999999997, 930.0, 960.0] targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbax.bounds, targetbb.bounds, atol=1e-2) target = [150., 24., 930., 1056.] targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbtb.bounds, targetbb.bounds, atol=1e-2) def test_tickdirs(): """ Switch the tickdirs and make sure the bboxes switch with them """ targets = [[[150.0, 120.0, 930.0, 11.1111], [150.0, 120.0, 11.111, 960.0]], [[150.0, 108.8889, 930.0, 11.111111111111114], [138.889, 120, 11.111, 960.0]], [[150.0, 114.44444444444441, 930.0, 11.111111111111114], [144.44444444444446, 119.999, 11.111, 960.0]]] for dnum, dirs in enumerate(['in', 'out', 'inout']): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) ax.tick_params(direction=dirs) fig.canvas.draw() bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) for nn, num in enumerate([0, 2]): targetbb = mtransforms.Bbox.from_bounds(*targets[dnum][nn]) assert_allclose( bbspines[num].bounds, targetbb.bounds, atol=1e-2) def test_minor_accountedfor(): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) fig.canvas.draw() ax.tick_params(which='both', direction='out') bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) targets = [[150.0, 108.88888888888886, 930.0, 11.111111111111114], [138.8889, 119.9999, 11.1111, 960.0]] for n in range(2): targetbb = mtransforms.Bbox.from_bounds(*targets[n]) assert_allclose( bbspines[n * 2].bounds, targetbb.bounds, atol=1e-2) fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) fig.canvas.draw() ax.tick_params(which='both', direction='out') ax.minorticks_on() ax.tick_params(axis='both', which='minor', length=30) fig.canvas.draw() bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) targets = [[150.0, 36.66666666666663, 930.0, 83.33333333333334], [66.6667, 120.0, 83.3333, 960.0]] for n in range(2): targetbb = mtransforms.Bbox.from_bounds(*targets[n]) assert_allclose( bbspines[n * 2].bounds, targetbb.bounds, atol=1e-2) @check_figures_equal(extensions=["png"]) def test_axis_bool_arguments(fig_test, fig_ref): # Test if False and "off" give the same fig_test.add_subplot(211).axis(False) fig_ref.add_subplot(211).axis("off") # Test if True after False gives the same as "on" ax = fig_test.add_subplot(212) ax.axis(False) ax.axis(True) fig_ref.add_subplot(212).axis("on") def test_axis_extent_arg(): fig, ax = plt.subplots() xmin = 5 xmax = 10 ymin = 15 ymax = 20 extent = ax.axis([xmin, xmax, ymin, ymax]) # test that the docstring is correct assert tuple(extent) == (xmin, xmax, ymin, ymax) # test that limits were set per the docstring assert (xmin, xmax) == ax.get_xlim() assert (ymin, ymax) == ax.get_ylim() def test_datetime_masked(): # make sure that all-masked data falls back to the viewlim # set in convert.axisinfo.... x = np.array([datetime.datetime(2017, 1, n) for n in range(1, 6)]) y = np.array([1, 2, 3, 4, 5]) m = np.ma.masked_greater(y, 0) fig, ax = plt.subplots() ax.plot(x, m) dt = mdates.date2num(np.datetime64('0000-12-31')) assert ax.get_xlim() == (730120.0 + dt, 733773.0 + dt) def test_hist_auto_bins(): _, bins, _ = plt.hist([[1, 2, 3], [3, 4, 5, 6]], bins='auto') assert bins[0] <= 1 assert bins[-1] >= 6 def test_hist_nan_data(): fig, (ax1, ax2) = plt.subplots(2) data = [1, 2, 3] nan_data = data + [np.nan] bins, edges, _ = ax1.hist(data) with np.errstate(invalid='ignore'): nanbins, nanedges, _ = ax2.hist(nan_data) np.testing.assert_allclose(bins, nanbins) np.testing.assert_allclose(edges, nanedges) def test_hist_range_and_density(): _, bins, _ = plt.hist(np.random.rand(10), "auto", range=(0, 1), density=True) assert bins[0] == 0 assert bins[-1] == 1 def test_bar_errbar_zorder(): # Check that the zorder of errorbars is always greater than the bar they # are plotted on fig, ax = plt.subplots() x = [1, 2, 3] barcont = ax.bar(x=x, height=x, yerr=x, capsize=5, zorder=3) data_line, caplines, barlinecols = barcont.errorbar.lines for bar in barcont.patches: for capline in caplines: assert capline.zorder > bar.zorder for barlinecol in barlinecols: assert barlinecol.zorder > bar.zorder def test_set_ticks_inverted(): fig, ax = plt.subplots() ax.invert_xaxis() ax.set_xticks([.3, .7]) assert ax.get_xlim() == (1, 0) def test_aspect_nonlinear_adjustable_box(): fig = plt.figure(figsize=(10, 10)) # Square. ax = fig.add_subplot() ax.plot([.4, .6], [.4, .6]) # Set minpos to keep logit happy. ax.set(xscale="log", xlim=(1, 10), yscale="logit", ylim=(1/11, 1/1001), aspect=1, adjustable="box") ax.margins(0) pos = fig.transFigure.transform_bbox(ax.get_position()) assert pos.height / pos.width == pytest.approx(2) def test_aspect_nonlinear_adjustable_datalim(): fig = plt.figure(figsize=(10, 10)) # Square. ax = fig.add_axes([.1, .1, .8, .8]) # Square. ax.plot([.4, .6], [.4, .6]) # Set minpos to keep logit happy. ax.set(xscale="log", xlim=(1, 100), yscale="logit", ylim=(1 / 101, 1 / 11), aspect=1, adjustable="datalim") ax.margins(0) ax.apply_aspect() assert ax.get_xlim() == pytest.approx([1*10**(1/2), 100/10**(1/2)]) assert ax.get_ylim() == (1 / 101, 1 / 11) def test_box_aspect(): # Test if axes with box_aspect=1 has same dimensions # as axes with aspect equal and adjustable="box" fig1, ax1 = plt.subplots() axtwin = ax1.twinx() axtwin.plot([12, 344]) ax1.set_box_aspect(1) fig2, ax2 = plt.subplots() ax2.margins(0) ax2.plot([0, 2], [6, 8]) ax2.set_aspect("equal", adjustable="box") fig1.canvas.draw() fig2.canvas.draw() bb1 = ax1.get_position() bbt = axtwin.get_position() bb2 = ax2.get_position() assert_array_equal(bb1.extents, bb2.extents) assert_array_equal(bbt.extents, bb2.extents) def test_box_aspect_custom_position(): # Test if axes with custom position and box_aspect # behaves the same independent of the order of setting those. fig1, ax1 = plt.subplots() ax1.set_position([0.1, 0.1, 0.9, 0.2]) fig1.canvas.draw() ax1.set_box_aspect(1.) fig2, ax2 = plt.subplots() ax2.set_box_aspect(1.) fig2.canvas.draw() ax2.set_position([0.1, 0.1, 0.9, 0.2]) fig1.canvas.draw() fig2.canvas.draw() bb1 = ax1.get_position() bb2 = ax2.get_position() assert_array_equal(bb1.extents, bb2.extents) def test_bbox_aspect_axes_init(): # Test that box_aspect can be given to axes init and produces # all equal square axes. fig, axs = plt.subplots(2, 3, subplot_kw=dict(box_aspect=1), constrained_layout=True) fig.canvas.draw() renderer = fig.canvas.get_renderer() sizes = [] for ax in axs.flat: bb = ax.get_window_extent(renderer) sizes.extend([bb.width, bb.height]) assert_allclose(sizes, sizes[0]) def test_redraw_in_frame(): fig, ax = plt.subplots(1, 1) ax.plot([1, 2, 3]) fig.canvas.draw() ax.redraw_in_frame() def test_invisible_axes(): # invisible axes should not respond to events... fig, ax = plt.subplots() assert fig.canvas.inaxes((200, 200)) is not None ax.set_visible(False) assert fig.canvas.inaxes((200, 200)) is None def test_xtickcolor_is_not_markercolor(): plt.rcParams['lines.markeredgecolor'] = 'white' ax = plt.axes() ticks = ax.xaxis.get_major_ticks() for tick in ticks: assert tick.tick1line.get_markeredgecolor() != 'white' def test_ytickcolor_is_not_markercolor(): plt.rcParams['lines.markeredgecolor'] = 'white' ax = plt.axes() ticks = ax.yaxis.get_major_ticks() for tick in ticks: assert tick.tick1line.get_markeredgecolor() != 'white' @pytest.mark.parametrize('auto', (True, False, None)) def test_unautoscaley(auto): fig, ax = plt.subplots() x = np.arange(100) y = np.linspace(-.1, .1, 100) ax.scatter(x, y) post_auto = ax.get_autoscaley_on() if auto is None else auto ax.set_ylim((-.5, .5), auto=auto) assert post_auto == ax.get_autoscaley_on() fig.canvas.draw() assert_array_equal(ax.get_ylim(), (-.5, .5)) @pytest.mark.parametrize('auto', (True, False, None)) def test_unautoscalex(auto): fig, ax = plt.subplots() x = np.arange(100) y = np.linspace(-.1, .1, 100) ax.scatter(y, x) post_auto = ax.get_autoscalex_on() if auto is None else auto ax.set_xlim((-.5, .5), auto=auto) assert post_auto == ax.get_autoscalex_on() fig.canvas.draw() assert_array_equal(ax.get_xlim(), (-.5, .5)) @check_figures_equal(extensions=["png"]) def test_polar_interpolation_steps_variable_r(fig_test, fig_ref): l, = fig_test.add_subplot(projection="polar").plot([0, np.pi/2], [1, 2]) l.get_path()._interpolation_steps = 100 fig_ref.add_subplot(projection="polar").plot( np.linspace(0, np.pi/2, 101), np.linspace(1, 2, 101)) @pytest.mark.style('default') def test_autoscale_tiny_sticky(): fig, ax = plt.subplots() ax.bar(0, 1e-9) fig.canvas.draw() assert ax.get_ylim() == (0, 1.05e-9) @pytest.mark.parametrize('size', [size for size in mfont_manager.font_scalings if size is not None] + [8, 10, 12]) @pytest.mark.style('default') def test_relative_ticklabel_sizes(size): mpl.rcParams['xtick.labelsize'] = size mpl.rcParams['ytick.labelsize'] = size fig, ax = plt.subplots() fig.canvas.draw() for name, axis in zip(['x', 'y'], [ax.xaxis, ax.yaxis]): for tick in axis.get_major_ticks(): assert tick.label1.get_size() == axis._get_tick_label_size(name)