from numpy import unique from scipy.stats import entropy as scipy_entropy def shannon_entropy(image, base=2): """Calculate the Shannon entropy of an image. The Shannon entropy is defined as S = -sum(pk * log(pk)), where pk are frequency/probability of pixels of value k. Parameters ---------- image : (N, M) ndarray Grayscale input image. base : float, optional The logarithmic base to use. Returns ------- entropy : float Notes ----- The returned value is measured in bits or shannon (Sh) for base=2, natural unit (nat) for base=np.e and hartley (Hart) for base=10. References ---------- .. [1] `https://en.wikipedia.org/wiki/Entropy_(information_theory) `_ .. [2] https://en.wiktionary.org/wiki/Shannon_entropy Examples -------- >>> from skimage import data >>> from skimage.measure import shannon_entropy >>> shannon_entropy(data.camera()) 7.231695011055706 """ _, counts = unique(image, return_counts=True) return scipy_entropy(counts, base=base)