forked from 170010011/fr
971 lines
30 KiB
Python
971 lines
30 KiB
Python
|
#******************************************************************************
|
||
|
# Copyright (C) 2013 Kenneth L. Ho
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# Redistributions of source code must retain the above copyright notice, this
|
||
|
# list of conditions and the following disclaimer. Redistributions in binary
|
||
|
# form must reproduce the above copyright notice, this list of conditions and
|
||
|
# the following disclaimer in the documentation and/or other materials
|
||
|
# provided with the distribution.
|
||
|
#
|
||
|
# None of the names of the copyright holders may be used to endorse or
|
||
|
# promote products derived from this software without specific prior written
|
||
|
# permission.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
# POSSIBILITY OF SUCH DAMAGE.
|
||
|
#******************************************************************************
|
||
|
|
||
|
# Python module for interfacing with `id_dist`.
|
||
|
|
||
|
r"""
|
||
|
======================================================================
|
||
|
Interpolative matrix decomposition (:mod:`scipy.linalg.interpolative`)
|
||
|
======================================================================
|
||
|
|
||
|
.. moduleauthor:: Kenneth L. Ho <klho@stanford.edu>
|
||
|
|
||
|
.. versionadded:: 0.13
|
||
|
|
||
|
.. currentmodule:: scipy.linalg.interpolative
|
||
|
|
||
|
An interpolative decomposition (ID) of a matrix :math:`A \in
|
||
|
\mathbb{C}^{m \times n}` of rank :math:`k \leq \min \{ m, n \}` is a
|
||
|
factorization
|
||
|
|
||
|
.. math::
|
||
|
A \Pi =
|
||
|
\begin{bmatrix}
|
||
|
A \Pi_{1} & A \Pi_{2}
|
||
|
\end{bmatrix} =
|
||
|
A \Pi_{1}
|
||
|
\begin{bmatrix}
|
||
|
I & T
|
||
|
\end{bmatrix},
|
||
|
|
||
|
where :math:`\Pi = [\Pi_{1}, \Pi_{2}]` is a permutation matrix with
|
||
|
:math:`\Pi_{1} \in \{ 0, 1 \}^{n \times k}`, i.e., :math:`A \Pi_{2} =
|
||
|
A \Pi_{1} T`. This can equivalently be written as :math:`A = BP`,
|
||
|
where :math:`B = A \Pi_{1}` and :math:`P = [I, T] \Pi^{\mathsf{T}}`
|
||
|
are the *skeleton* and *interpolation matrices*, respectively.
|
||
|
|
||
|
If :math:`A` does not have exact rank :math:`k`, then there exists an
|
||
|
approximation in the form of an ID such that :math:`A = BP + E`, where
|
||
|
:math:`\| E \| \sim \sigma_{k + 1}` is on the order of the :math:`(k +
|
||
|
1)`-th largest singular value of :math:`A`. Note that :math:`\sigma_{k
|
||
|
+ 1}` is the best possible error for a rank-:math:`k` approximation
|
||
|
and, in fact, is achieved by the singular value decomposition (SVD)
|
||
|
:math:`A \approx U S V^{*}`, where :math:`U \in \mathbb{C}^{m \times
|
||
|
k}` and :math:`V \in \mathbb{C}^{n \times k}` have orthonormal columns
|
||
|
and :math:`S = \mathop{\mathrm{diag}} (\sigma_{i}) \in \mathbb{C}^{k
|
||
|
\times k}` is diagonal with nonnegative entries. The principal
|
||
|
advantages of using an ID over an SVD are that:
|
||
|
|
||
|
- it is cheaper to construct;
|
||
|
- it preserves the structure of :math:`A`; and
|
||
|
- it is more efficient to compute with in light of the identity submatrix of :math:`P`.
|
||
|
|
||
|
Routines
|
||
|
========
|
||
|
|
||
|
Main functionality:
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
interp_decomp
|
||
|
reconstruct_matrix_from_id
|
||
|
reconstruct_interp_matrix
|
||
|
reconstruct_skel_matrix
|
||
|
id_to_svd
|
||
|
svd
|
||
|
estimate_spectral_norm
|
||
|
estimate_spectral_norm_diff
|
||
|
estimate_rank
|
||
|
|
||
|
Support functions:
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
seed
|
||
|
rand
|
||
|
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
This module uses the ID software package [1]_ by Martinsson, Rokhlin,
|
||
|
Shkolnisky, and Tygert, which is a Fortran library for computing IDs
|
||
|
using various algorithms, including the rank-revealing QR approach of
|
||
|
[2]_ and the more recent randomized methods described in [3]_, [4]_,
|
||
|
and [5]_. This module exposes its functionality in a way convenient
|
||
|
for Python users. Note that this module does not add any functionality
|
||
|
beyond that of organizing a simpler and more consistent interface.
|
||
|
|
||
|
We advise the user to consult also the `documentation for the ID package
|
||
|
<http://tygert.com/id_doc.4.pdf>`_.
|
||
|
|
||
|
.. [1] P.G. Martinsson, V. Rokhlin, Y. Shkolnisky, M. Tygert. "ID: a
|
||
|
software package for low-rank approximation of matrices via interpolative
|
||
|
decompositions, version 0.2." http://tygert.com/id_doc.4.pdf.
|
||
|
|
||
|
.. [2] H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin. "On the
|
||
|
compression of low rank matrices." *SIAM J. Sci. Comput.* 26 (4): 1389--1404,
|
||
|
2005. :doi:`10.1137/030602678`.
|
||
|
|
||
|
.. [3] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M.
|
||
|
Tygert. "Randomized algorithms for the low-rank approximation of matrices."
|
||
|
*Proc. Natl. Acad. Sci. U.S.A.* 104 (51): 20167--20172, 2007.
|
||
|
:doi:`10.1073/pnas.0709640104`.
|
||
|
|
||
|
.. [4] P.G. Martinsson, V. Rokhlin, M. Tygert. "A randomized
|
||
|
algorithm for the decomposition of matrices." *Appl. Comput. Harmon. Anal.* 30
|
||
|
(1): 47--68, 2011. :doi:`10.1016/j.acha.2010.02.003`.
|
||
|
|
||
|
.. [5] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert. "A fast
|
||
|
randomized algorithm for the approximation of matrices." *Appl. Comput.
|
||
|
Harmon. Anal.* 25 (3): 335--366, 2008. :doi:`10.1016/j.acha.2007.12.002`.
|
||
|
|
||
|
|
||
|
Tutorial
|
||
|
========
|
||
|
|
||
|
Initializing
|
||
|
------------
|
||
|
|
||
|
The first step is to import :mod:`scipy.linalg.interpolative` by issuing the
|
||
|
command:
|
||
|
|
||
|
>>> import scipy.linalg.interpolative as sli
|
||
|
|
||
|
Now let's build a matrix. For this, we consider a Hilbert matrix, which is well
|
||
|
know to have low rank:
|
||
|
|
||
|
>>> from scipy.linalg import hilbert
|
||
|
>>> n = 1000
|
||
|
>>> A = hilbert(n)
|
||
|
|
||
|
We can also do this explicitly via:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> n = 1000
|
||
|
>>> A = np.empty((n, n), order='F')
|
||
|
>>> for j in range(n):
|
||
|
>>> for i in range(m):
|
||
|
>>> A[i,j] = 1. / (i + j + 1)
|
||
|
|
||
|
Note the use of the flag ``order='F'`` in :func:`numpy.empty`. This
|
||
|
instantiates the matrix in Fortran-contiguous order and is important for
|
||
|
avoiding data copying when passing to the backend.
|
||
|
|
||
|
We then define multiplication routines for the matrix by regarding it as a
|
||
|
:class:`scipy.sparse.linalg.LinearOperator`:
|
||
|
|
||
|
>>> from scipy.sparse.linalg import aslinearoperator
|
||
|
>>> L = aslinearoperator(A)
|
||
|
|
||
|
This automatically sets up methods describing the action of the matrix and its
|
||
|
adjoint on a vector.
|
||
|
|
||
|
Computing an ID
|
||
|
---------------
|
||
|
|
||
|
We have several choices of algorithm to compute an ID. These fall largely
|
||
|
according to two dichotomies:
|
||
|
|
||
|
1. how the matrix is represented, i.e., via its entries or via its action on a
|
||
|
vector; and
|
||
|
2. whether to approximate it to a fixed relative precision or to a fixed rank.
|
||
|
|
||
|
We step through each choice in turn below.
|
||
|
|
||
|
In all cases, the ID is represented by three parameters:
|
||
|
|
||
|
1. a rank ``k``;
|
||
|
2. an index array ``idx``; and
|
||
|
3. interpolation coefficients ``proj``.
|
||
|
|
||
|
The ID is specified by the relation
|
||
|
``np.dot(A[:,idx[:k]], proj) == A[:,idx[k:]]``.
|
||
|
|
||
|
From matrix entries
|
||
|
...................
|
||
|
|
||
|
We first consider a matrix given in terms of its entries.
|
||
|
|
||
|
To compute an ID to a fixed precision, type:
|
||
|
|
||
|
>>> k, idx, proj = sli.interp_decomp(A, eps)
|
||
|
|
||
|
where ``eps < 1`` is the desired precision.
|
||
|
|
||
|
To compute an ID to a fixed rank, use:
|
||
|
|
||
|
>>> idx, proj = sli.interp_decomp(A, k)
|
||
|
|
||
|
where ``k >= 1`` is the desired rank.
|
||
|
|
||
|
Both algorithms use random sampling and are usually faster than the
|
||
|
corresponding older, deterministic algorithms, which can be accessed via the
|
||
|
commands:
|
||
|
|
||
|
>>> k, idx, proj = sli.interp_decomp(A, eps, rand=False)
|
||
|
|
||
|
and:
|
||
|
|
||
|
>>> idx, proj = sli.interp_decomp(A, k, rand=False)
|
||
|
|
||
|
respectively.
|
||
|
|
||
|
From matrix action
|
||
|
..................
|
||
|
|
||
|
Now consider a matrix given in terms of its action on a vector as a
|
||
|
:class:`scipy.sparse.linalg.LinearOperator`.
|
||
|
|
||
|
To compute an ID to a fixed precision, type:
|
||
|
|
||
|
>>> k, idx, proj = sli.interp_decomp(L, eps)
|
||
|
|
||
|
To compute an ID to a fixed rank, use:
|
||
|
|
||
|
>>> idx, proj = sli.interp_decomp(L, k)
|
||
|
|
||
|
These algorithms are randomized.
|
||
|
|
||
|
Reconstructing an ID
|
||
|
--------------------
|
||
|
|
||
|
The ID routines above do not output the skeleton and interpolation matrices
|
||
|
explicitly but instead return the relevant information in a more compact (and
|
||
|
sometimes more useful) form. To build these matrices, write:
|
||
|
|
||
|
>>> B = sli.reconstruct_skel_matrix(A, k, idx)
|
||
|
|
||
|
for the skeleton matrix and:
|
||
|
|
||
|
>>> P = sli.reconstruct_interp_matrix(idx, proj)
|
||
|
|
||
|
for the interpolation matrix. The ID approximation can then be computed as:
|
||
|
|
||
|
>>> C = np.dot(B, P)
|
||
|
|
||
|
This can also be constructed directly using:
|
||
|
|
||
|
>>> C = sli.reconstruct_matrix_from_id(B, idx, proj)
|
||
|
|
||
|
without having to first compute ``P``.
|
||
|
|
||
|
Alternatively, this can be done explicitly as well using:
|
||
|
|
||
|
>>> B = A[:,idx[:k]]
|
||
|
>>> P = np.hstack([np.eye(k), proj])[:,np.argsort(idx)]
|
||
|
>>> C = np.dot(B, P)
|
||
|
|
||
|
Computing an SVD
|
||
|
----------------
|
||
|
|
||
|
An ID can be converted to an SVD via the command:
|
||
|
|
||
|
>>> U, S, V = sli.id_to_svd(B, idx, proj)
|
||
|
|
||
|
The SVD approximation is then:
|
||
|
|
||
|
>>> C = np.dot(U, np.dot(np.diag(S), np.dot(V.conj().T)))
|
||
|
|
||
|
The SVD can also be computed "fresh" by combining both the ID and conversion
|
||
|
steps into one command. Following the various ID algorithms above, there are
|
||
|
correspondingly various SVD algorithms that one can employ.
|
||
|
|
||
|
From matrix entries
|
||
|
...................
|
||
|
|
||
|
We consider first SVD algorithms for a matrix given in terms of its entries.
|
||
|
|
||
|
To compute an SVD to a fixed precision, type:
|
||
|
|
||
|
>>> U, S, V = sli.svd(A, eps)
|
||
|
|
||
|
To compute an SVD to a fixed rank, use:
|
||
|
|
||
|
>>> U, S, V = sli.svd(A, k)
|
||
|
|
||
|
Both algorithms use random sampling; for the determinstic versions, issue the
|
||
|
keyword ``rand=False`` as above.
|
||
|
|
||
|
From matrix action
|
||
|
..................
|
||
|
|
||
|
Now consider a matrix given in terms of its action on a vector.
|
||
|
|
||
|
To compute an SVD to a fixed precision, type:
|
||
|
|
||
|
>>> U, S, V = sli.svd(L, eps)
|
||
|
|
||
|
To compute an SVD to a fixed rank, use:
|
||
|
|
||
|
>>> U, S, V = sli.svd(L, k)
|
||
|
|
||
|
Utility routines
|
||
|
----------------
|
||
|
|
||
|
Several utility routines are also available.
|
||
|
|
||
|
To estimate the spectral norm of a matrix, use:
|
||
|
|
||
|
>>> snorm = sli.estimate_spectral_norm(A)
|
||
|
|
||
|
This algorithm is based on the randomized power method and thus requires only
|
||
|
matrix-vector products. The number of iterations to take can be set using the
|
||
|
keyword ``its`` (default: ``its=20``). The matrix is interpreted as a
|
||
|
:class:`scipy.sparse.linalg.LinearOperator`, but it is also valid to supply it
|
||
|
as a :class:`numpy.ndarray`, in which case it is trivially converted using
|
||
|
:func:`scipy.sparse.linalg.aslinearoperator`.
|
||
|
|
||
|
The same algorithm can also estimate the spectral norm of the difference of two
|
||
|
matrices ``A1`` and ``A2`` as follows:
|
||
|
|
||
|
>>> diff = sli.estimate_spectral_norm_diff(A1, A2)
|
||
|
|
||
|
This is often useful for checking the accuracy of a matrix approximation.
|
||
|
|
||
|
Some routines in :mod:`scipy.linalg.interpolative` require estimating the rank
|
||
|
of a matrix as well. This can be done with either:
|
||
|
|
||
|
>>> k = sli.estimate_rank(A, eps)
|
||
|
|
||
|
or:
|
||
|
|
||
|
>>> k = sli.estimate_rank(L, eps)
|
||
|
|
||
|
depending on the representation. The parameter ``eps`` controls the definition
|
||
|
of the numerical rank.
|
||
|
|
||
|
Finally, the random number generation required for all randomized routines can
|
||
|
be controlled via :func:`scipy.linalg.interpolative.seed`. To reset the seed
|
||
|
values to their original values, use:
|
||
|
|
||
|
>>> sli.seed('default')
|
||
|
|
||
|
To specify the seed values, use:
|
||
|
|
||
|
>>> sli.seed(s)
|
||
|
|
||
|
where ``s`` must be an integer or array of 55 floats. If an integer, the array
|
||
|
of floats is obtained by using ``numpy.random.rand`` with the given integer
|
||
|
seed.
|
||
|
|
||
|
To simply generate some random numbers, type:
|
||
|
|
||
|
>>> sli.rand(n)
|
||
|
|
||
|
where ``n`` is the number of random numbers to generate.
|
||
|
|
||
|
Remarks
|
||
|
-------
|
||
|
|
||
|
The above functions all automatically detect the appropriate interface and work
|
||
|
with both real and complex data types, passing input arguments to the proper
|
||
|
backend routine.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import scipy.linalg._interpolative_backend as backend
|
||
|
import numpy as np
|
||
|
|
||
|
_DTYPE_ERROR = ValueError("invalid input dtype (input must be float64 or complex128)")
|
||
|
_TYPE_ERROR = TypeError("invalid input type (must be array or LinearOperator)")
|
||
|
|
||
|
|
||
|
def _is_real(A):
|
||
|
try:
|
||
|
if A.dtype == np.complex128:
|
||
|
return False
|
||
|
elif A.dtype == np.float64:
|
||
|
return True
|
||
|
else:
|
||
|
raise _DTYPE_ERROR
|
||
|
except AttributeError as e:
|
||
|
raise _TYPE_ERROR from e
|
||
|
|
||
|
|
||
|
def seed(seed=None):
|
||
|
"""
|
||
|
Seed the internal random number generator used in this ID package.
|
||
|
|
||
|
The generator is a lagged Fibonacci method with 55-element internal state.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
seed : int, sequence, 'default', optional
|
||
|
If 'default', the random seed is reset to a default value.
|
||
|
|
||
|
If `seed` is a sequence containing 55 floating-point numbers
|
||
|
in range [0,1], these are used to set the internal state of
|
||
|
the generator.
|
||
|
|
||
|
If the value is an integer, the internal state is obtained
|
||
|
from `numpy.random.RandomState` (MT19937) with the integer
|
||
|
used as the initial seed.
|
||
|
|
||
|
If `seed` is omitted (None), ``numpy.random.rand`` is used to
|
||
|
initialize the generator.
|
||
|
|
||
|
"""
|
||
|
# For details, see :func:`backend.id_srand`, :func:`backend.id_srandi`,
|
||
|
# and :func:`backend.id_srando`.
|
||
|
|
||
|
if isinstance(seed, str) and seed == 'default':
|
||
|
backend.id_srando()
|
||
|
elif hasattr(seed, '__len__'):
|
||
|
state = np.asfortranarray(seed, dtype=float)
|
||
|
if state.shape != (55,):
|
||
|
raise ValueError("invalid input size")
|
||
|
elif state.min() < 0 or state.max() > 1:
|
||
|
raise ValueError("values not in range [0,1]")
|
||
|
backend.id_srandi(state)
|
||
|
elif seed is None:
|
||
|
backend.id_srandi(np.random.rand(55))
|
||
|
else:
|
||
|
rnd = np.random.RandomState(seed)
|
||
|
backend.id_srandi(rnd.rand(55))
|
||
|
|
||
|
|
||
|
def rand(*shape):
|
||
|
"""
|
||
|
Generate standard uniform pseudorandom numbers via a very efficient lagged
|
||
|
Fibonacci method.
|
||
|
|
||
|
This routine is used for all random number generation in this package and
|
||
|
can affect ID and SVD results.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
shape
|
||
|
Shape of output array
|
||
|
|
||
|
"""
|
||
|
# For details, see :func:`backend.id_srand`, and :func:`backend.id_srando`.
|
||
|
return backend.id_srand(np.prod(shape)).reshape(shape)
|
||
|
|
||
|
|
||
|
def interp_decomp(A, eps_or_k, rand=True):
|
||
|
"""
|
||
|
Compute ID of a matrix.
|
||
|
|
||
|
An ID of a matrix `A` is a factorization defined by a rank `k`, a column
|
||
|
index array `idx`, and interpolation coefficients `proj` such that::
|
||
|
|
||
|
numpy.dot(A[:,idx[:k]], proj) = A[:,idx[k:]]
|
||
|
|
||
|
The original matrix can then be reconstructed as::
|
||
|
|
||
|
numpy.hstack([A[:,idx[:k]],
|
||
|
numpy.dot(A[:,idx[:k]], proj)]
|
||
|
)[:,numpy.argsort(idx)]
|
||
|
|
||
|
or via the routine :func:`reconstruct_matrix_from_id`. This can
|
||
|
equivalently be written as::
|
||
|
|
||
|
numpy.dot(A[:,idx[:k]],
|
||
|
numpy.hstack([numpy.eye(k), proj])
|
||
|
)[:,np.argsort(idx)]
|
||
|
|
||
|
in terms of the skeleton and interpolation matrices::
|
||
|
|
||
|
B = A[:,idx[:k]]
|
||
|
|
||
|
and::
|
||
|
|
||
|
P = numpy.hstack([numpy.eye(k), proj])[:,np.argsort(idx)]
|
||
|
|
||
|
respectively. See also :func:`reconstruct_interp_matrix` and
|
||
|
:func:`reconstruct_skel_matrix`.
|
||
|
|
||
|
The ID can be computed to any relative precision or rank (depending on the
|
||
|
value of `eps_or_k`). If a precision is specified (`eps_or_k < 1`), then
|
||
|
this function has the output signature::
|
||
|
|
||
|
k, idx, proj = interp_decomp(A, eps_or_k)
|
||
|
|
||
|
Otherwise, if a rank is specified (`eps_or_k >= 1`), then the output
|
||
|
signature is::
|
||
|
|
||
|
idx, proj = interp_decomp(A, eps_or_k)
|
||
|
|
||
|
.. This function automatically detects the form of the input parameters
|
||
|
and passes them to the appropriate backend. For details, see
|
||
|
:func:`backend.iddp_id`, :func:`backend.iddp_aid`,
|
||
|
:func:`backend.iddp_rid`, :func:`backend.iddr_id`,
|
||
|
:func:`backend.iddr_aid`, :func:`backend.iddr_rid`,
|
||
|
:func:`backend.idzp_id`, :func:`backend.idzp_aid`,
|
||
|
:func:`backend.idzp_rid`, :func:`backend.idzr_id`,
|
||
|
:func:`backend.idzr_aid`, and :func:`backend.idzr_rid`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator` with `rmatvec`
|
||
|
Matrix to be factored
|
||
|
eps_or_k : float or int
|
||
|
Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of
|
||
|
approximation.
|
||
|
rand : bool, optional
|
||
|
Whether to use random sampling if `A` is of type :class:`numpy.ndarray`
|
||
|
(randomized algorithms are always used if `A` is of type
|
||
|
:class:`scipy.sparse.linalg.LinearOperator`).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
k : int
|
||
|
Rank required to achieve specified relative precision if
|
||
|
`eps_or_k < 1`.
|
||
|
idx : :class:`numpy.ndarray`
|
||
|
Column index array.
|
||
|
proj : :class:`numpy.ndarray`
|
||
|
Interpolation coefficients.
|
||
|
"""
|
||
|
from scipy.sparse.linalg import LinearOperator
|
||
|
|
||
|
real = _is_real(A)
|
||
|
|
||
|
if isinstance(A, np.ndarray):
|
||
|
if eps_or_k < 1:
|
||
|
eps = eps_or_k
|
||
|
if rand:
|
||
|
if real:
|
||
|
k, idx, proj = backend.iddp_aid(eps, A)
|
||
|
else:
|
||
|
k, idx, proj = backend.idzp_aid(eps, A)
|
||
|
else:
|
||
|
if real:
|
||
|
k, idx, proj = backend.iddp_id(eps, A)
|
||
|
else:
|
||
|
k, idx, proj = backend.idzp_id(eps, A)
|
||
|
return k, idx - 1, proj
|
||
|
else:
|
||
|
k = int(eps_or_k)
|
||
|
if rand:
|
||
|
if real:
|
||
|
idx, proj = backend.iddr_aid(A, k)
|
||
|
else:
|
||
|
idx, proj = backend.idzr_aid(A, k)
|
||
|
else:
|
||
|
if real:
|
||
|
idx, proj = backend.iddr_id(A, k)
|
||
|
else:
|
||
|
idx, proj = backend.idzr_id(A, k)
|
||
|
return idx - 1, proj
|
||
|
elif isinstance(A, LinearOperator):
|
||
|
m, n = A.shape
|
||
|
matveca = A.rmatvec
|
||
|
if eps_or_k < 1:
|
||
|
eps = eps_or_k
|
||
|
if real:
|
||
|
k, idx, proj = backend.iddp_rid(eps, m, n, matveca)
|
||
|
else:
|
||
|
k, idx, proj = backend.idzp_rid(eps, m, n, matveca)
|
||
|
return k, idx - 1, proj
|
||
|
else:
|
||
|
k = int(eps_or_k)
|
||
|
if real:
|
||
|
idx, proj = backend.iddr_rid(m, n, matveca, k)
|
||
|
else:
|
||
|
idx, proj = backend.idzr_rid(m, n, matveca, k)
|
||
|
return idx - 1, proj
|
||
|
else:
|
||
|
raise _TYPE_ERROR
|
||
|
|
||
|
|
||
|
def reconstruct_matrix_from_id(B, idx, proj):
|
||
|
"""
|
||
|
Reconstruct matrix from its ID.
|
||
|
|
||
|
A matrix `A` with skeleton matrix `B` and ID indices and coefficients `idx`
|
||
|
and `proj`, respectively, can be reconstructed as::
|
||
|
|
||
|
numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]
|
||
|
|
||
|
See also :func:`reconstruct_interp_matrix` and
|
||
|
:func:`reconstruct_skel_matrix`.
|
||
|
|
||
|
.. This function automatically detects the matrix data type and calls the
|
||
|
appropriate backend. For details, see :func:`backend.idd_reconid` and
|
||
|
:func:`backend.idz_reconid`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
B : :class:`numpy.ndarray`
|
||
|
Skeleton matrix.
|
||
|
idx : :class:`numpy.ndarray`
|
||
|
Column index array.
|
||
|
proj : :class:`numpy.ndarray`
|
||
|
Interpolation coefficients.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`numpy.ndarray`
|
||
|
Reconstructed matrix.
|
||
|
"""
|
||
|
if _is_real(B):
|
||
|
return backend.idd_reconid(B, idx + 1, proj)
|
||
|
else:
|
||
|
return backend.idz_reconid(B, idx + 1, proj)
|
||
|
|
||
|
|
||
|
def reconstruct_interp_matrix(idx, proj):
|
||
|
"""
|
||
|
Reconstruct interpolation matrix from ID.
|
||
|
|
||
|
The interpolation matrix can be reconstructed from the ID indices and
|
||
|
coefficients `idx` and `proj`, respectively, as::
|
||
|
|
||
|
P = numpy.hstack([numpy.eye(proj.shape[0]), proj])[:,numpy.argsort(idx)]
|
||
|
|
||
|
The original matrix can then be reconstructed from its skeleton matrix `B`
|
||
|
via::
|
||
|
|
||
|
numpy.dot(B, P)
|
||
|
|
||
|
See also :func:`reconstruct_matrix_from_id` and
|
||
|
:func:`reconstruct_skel_matrix`.
|
||
|
|
||
|
.. This function automatically detects the matrix data type and calls the
|
||
|
appropriate backend. For details, see :func:`backend.idd_reconint` and
|
||
|
:func:`backend.idz_reconint`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
idx : :class:`numpy.ndarray`
|
||
|
Column index array.
|
||
|
proj : :class:`numpy.ndarray`
|
||
|
Interpolation coefficients.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`numpy.ndarray`
|
||
|
Interpolation matrix.
|
||
|
"""
|
||
|
if _is_real(proj):
|
||
|
return backend.idd_reconint(idx + 1, proj)
|
||
|
else:
|
||
|
return backend.idz_reconint(idx + 1, proj)
|
||
|
|
||
|
|
||
|
def reconstruct_skel_matrix(A, k, idx):
|
||
|
"""
|
||
|
Reconstruct skeleton matrix from ID.
|
||
|
|
||
|
The skeleton matrix can be reconstructed from the original matrix `A` and its
|
||
|
ID rank and indices `k` and `idx`, respectively, as::
|
||
|
|
||
|
B = A[:,idx[:k]]
|
||
|
|
||
|
The original matrix can then be reconstructed via::
|
||
|
|
||
|
numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]
|
||
|
|
||
|
See also :func:`reconstruct_matrix_from_id` and
|
||
|
:func:`reconstruct_interp_matrix`.
|
||
|
|
||
|
.. This function automatically detects the matrix data type and calls the
|
||
|
appropriate backend. For details, see :func:`backend.idd_copycols` and
|
||
|
:func:`backend.idz_copycols`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : :class:`numpy.ndarray`
|
||
|
Original matrix.
|
||
|
k : int
|
||
|
Rank of ID.
|
||
|
idx : :class:`numpy.ndarray`
|
||
|
Column index array.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
:class:`numpy.ndarray`
|
||
|
Skeleton matrix.
|
||
|
"""
|
||
|
if _is_real(A):
|
||
|
return backend.idd_copycols(A, k, idx + 1)
|
||
|
else:
|
||
|
return backend.idz_copycols(A, k, idx + 1)
|
||
|
|
||
|
|
||
|
def id_to_svd(B, idx, proj):
|
||
|
"""
|
||
|
Convert ID to SVD.
|
||
|
|
||
|
The SVD reconstruction of a matrix with skeleton matrix `B` and ID indices and
|
||
|
coefficients `idx` and `proj`, respectively, is::
|
||
|
|
||
|
U, S, V = id_to_svd(B, idx, proj)
|
||
|
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
|
||
|
|
||
|
See also :func:`svd`.
|
||
|
|
||
|
.. This function automatically detects the matrix data type and calls the
|
||
|
appropriate backend. For details, see :func:`backend.idd_id2svd` and
|
||
|
:func:`backend.idz_id2svd`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
B : :class:`numpy.ndarray`
|
||
|
Skeleton matrix.
|
||
|
idx : :class:`numpy.ndarray`
|
||
|
Column index array.
|
||
|
proj : :class:`numpy.ndarray`
|
||
|
Interpolation coefficients.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
U : :class:`numpy.ndarray`
|
||
|
Left singular vectors.
|
||
|
S : :class:`numpy.ndarray`
|
||
|
Singular values.
|
||
|
V : :class:`numpy.ndarray`
|
||
|
Right singular vectors.
|
||
|
"""
|
||
|
if _is_real(B):
|
||
|
U, V, S = backend.idd_id2svd(B, idx + 1, proj)
|
||
|
else:
|
||
|
U, V, S = backend.idz_id2svd(B, idx + 1, proj)
|
||
|
return U, S, V
|
||
|
|
||
|
|
||
|
def estimate_spectral_norm(A, its=20):
|
||
|
"""
|
||
|
Estimate spectral norm of a matrix by the randomized power method.
|
||
|
|
||
|
.. This function automatically detects the matrix data type and calls the
|
||
|
appropriate backend. For details, see :func:`backend.idd_snorm` and
|
||
|
:func:`backend.idz_snorm`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : :class:`scipy.sparse.linalg.LinearOperator`
|
||
|
Matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the
|
||
|
`matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
|
||
|
its : int, optional
|
||
|
Number of power method iterations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
float
|
||
|
Spectral norm estimate.
|
||
|
"""
|
||
|
from scipy.sparse.linalg import aslinearoperator
|
||
|
A = aslinearoperator(A)
|
||
|
m, n = A.shape
|
||
|
matvec = lambda x: A. matvec(x)
|
||
|
matveca = lambda x: A.rmatvec(x)
|
||
|
if _is_real(A):
|
||
|
return backend.idd_snorm(m, n, matveca, matvec, its=its)
|
||
|
else:
|
||
|
return backend.idz_snorm(m, n, matveca, matvec, its=its)
|
||
|
|
||
|
|
||
|
def estimate_spectral_norm_diff(A, B, its=20):
|
||
|
"""
|
||
|
Estimate spectral norm of the difference of two matrices by the randomized
|
||
|
power method.
|
||
|
|
||
|
.. This function automatically detects the matrix data type and calls the
|
||
|
appropriate backend. For details, see :func:`backend.idd_diffsnorm` and
|
||
|
:func:`backend.idz_diffsnorm`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : :class:`scipy.sparse.linalg.LinearOperator`
|
||
|
First matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the
|
||
|
`matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
|
||
|
B : :class:`scipy.sparse.linalg.LinearOperator`
|
||
|
Second matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with
|
||
|
the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
|
||
|
its : int, optional
|
||
|
Number of power method iterations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
float
|
||
|
Spectral norm estimate of matrix difference.
|
||
|
"""
|
||
|
from scipy.sparse.linalg import aslinearoperator
|
||
|
A = aslinearoperator(A)
|
||
|
B = aslinearoperator(B)
|
||
|
m, n = A.shape
|
||
|
matvec1 = lambda x: A. matvec(x)
|
||
|
matveca1 = lambda x: A.rmatvec(x)
|
||
|
matvec2 = lambda x: B. matvec(x)
|
||
|
matveca2 = lambda x: B.rmatvec(x)
|
||
|
if _is_real(A):
|
||
|
return backend.idd_diffsnorm(
|
||
|
m, n, matveca1, matveca2, matvec1, matvec2, its=its)
|
||
|
else:
|
||
|
return backend.idz_diffsnorm(
|
||
|
m, n, matveca1, matveca2, matvec1, matvec2, its=its)
|
||
|
|
||
|
|
||
|
def svd(A, eps_or_k, rand=True):
|
||
|
"""
|
||
|
Compute SVD of a matrix via an ID.
|
||
|
|
||
|
An SVD of a matrix `A` is a factorization::
|
||
|
|
||
|
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
|
||
|
|
||
|
where `U` and `V` have orthonormal columns and `S` is nonnegative.
|
||
|
|
||
|
The SVD can be computed to any relative precision or rank (depending on the
|
||
|
value of `eps_or_k`).
|
||
|
|
||
|
See also :func:`interp_decomp` and :func:`id_to_svd`.
|
||
|
|
||
|
.. This function automatically detects the form of the input parameters and
|
||
|
passes them to the appropriate backend. For details, see
|
||
|
:func:`backend.iddp_svd`, :func:`backend.iddp_asvd`,
|
||
|
:func:`backend.iddp_rsvd`, :func:`backend.iddr_svd`,
|
||
|
:func:`backend.iddr_asvd`, :func:`backend.iddr_rsvd`,
|
||
|
:func:`backend.idzp_svd`, :func:`backend.idzp_asvd`,
|
||
|
:func:`backend.idzp_rsvd`, :func:`backend.idzr_svd`,
|
||
|
:func:`backend.idzr_asvd`, and :func:`backend.idzr_rsvd`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator`
|
||
|
Matrix to be factored, given as either a :class:`numpy.ndarray` or a
|
||
|
:class:`scipy.sparse.linalg.LinearOperator` with the `matvec` and
|
||
|
`rmatvec` methods (to apply the matrix and its adjoint).
|
||
|
eps_or_k : float or int
|
||
|
Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of
|
||
|
approximation.
|
||
|
rand : bool, optional
|
||
|
Whether to use random sampling if `A` is of type :class:`numpy.ndarray`
|
||
|
(randomized algorithms are always used if `A` is of type
|
||
|
:class:`scipy.sparse.linalg.LinearOperator`).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
U : :class:`numpy.ndarray`
|
||
|
Left singular vectors.
|
||
|
S : :class:`numpy.ndarray`
|
||
|
Singular values.
|
||
|
V : :class:`numpy.ndarray`
|
||
|
Right singular vectors.
|
||
|
"""
|
||
|
from scipy.sparse.linalg import LinearOperator
|
||
|
|
||
|
real = _is_real(A)
|
||
|
|
||
|
if isinstance(A, np.ndarray):
|
||
|
if eps_or_k < 1:
|
||
|
eps = eps_or_k
|
||
|
if rand:
|
||
|
if real:
|
||
|
U, V, S = backend.iddp_asvd(eps, A)
|
||
|
else:
|
||
|
U, V, S = backend.idzp_asvd(eps, A)
|
||
|
else:
|
||
|
if real:
|
||
|
U, V, S = backend.iddp_svd(eps, A)
|
||
|
else:
|
||
|
U, V, S = backend.idzp_svd(eps, A)
|
||
|
else:
|
||
|
k = int(eps_or_k)
|
||
|
if k > min(A.shape):
|
||
|
raise ValueError("Approximation rank %s exceeds min(A.shape) = "
|
||
|
" %s " % (k, min(A.shape)))
|
||
|
if rand:
|
||
|
if real:
|
||
|
U, V, S = backend.iddr_asvd(A, k)
|
||
|
else:
|
||
|
U, V, S = backend.idzr_asvd(A, k)
|
||
|
else:
|
||
|
if real:
|
||
|
U, V, S = backend.iddr_svd(A, k)
|
||
|
else:
|
||
|
U, V, S = backend.idzr_svd(A, k)
|
||
|
elif isinstance(A, LinearOperator):
|
||
|
m, n = A.shape
|
||
|
matvec = lambda x: A.matvec(x)
|
||
|
matveca = lambda x: A.rmatvec(x)
|
||
|
if eps_or_k < 1:
|
||
|
eps = eps_or_k
|
||
|
if real:
|
||
|
U, V, S = backend.iddp_rsvd(eps, m, n, matveca, matvec)
|
||
|
else:
|
||
|
U, V, S = backend.idzp_rsvd(eps, m, n, matveca, matvec)
|
||
|
else:
|
||
|
k = int(eps_or_k)
|
||
|
if real:
|
||
|
U, V, S = backend.iddr_rsvd(m, n, matveca, matvec, k)
|
||
|
else:
|
||
|
U, V, S = backend.idzr_rsvd(m, n, matveca, matvec, k)
|
||
|
else:
|
||
|
raise _TYPE_ERROR
|
||
|
return U, S, V
|
||
|
|
||
|
|
||
|
def estimate_rank(A, eps):
|
||
|
"""
|
||
|
Estimate matrix rank to a specified relative precision using randomized
|
||
|
methods.
|
||
|
|
||
|
The matrix `A` can be given as either a :class:`numpy.ndarray` or a
|
||
|
:class:`scipy.sparse.linalg.LinearOperator`, with different algorithms used
|
||
|
for each case. If `A` is of type :class:`numpy.ndarray`, then the output
|
||
|
rank is typically about 8 higher than the actual numerical rank.
|
||
|
|
||
|
.. This function automatically detects the form of the input parameters and
|
||
|
passes them to the appropriate backend. For details,
|
||
|
see :func:`backend.idd_estrank`, :func:`backend.idd_findrank`,
|
||
|
:func:`backend.idz_estrank`, and :func:`backend.idz_findrank`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator`
|
||
|
Matrix whose rank is to be estimated, given as either a
|
||
|
:class:`numpy.ndarray` or a :class:`scipy.sparse.linalg.LinearOperator`
|
||
|
with the `rmatvec` method (to apply the matrix adjoint).
|
||
|
eps : float
|
||
|
Relative error for numerical rank definition.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
Estimated matrix rank.
|
||
|
"""
|
||
|
from scipy.sparse.linalg import LinearOperator
|
||
|
|
||
|
real = _is_real(A)
|
||
|
|
||
|
if isinstance(A, np.ndarray):
|
||
|
if real:
|
||
|
rank = backend.idd_estrank(eps, A)
|
||
|
else:
|
||
|
rank = backend.idz_estrank(eps, A)
|
||
|
if rank == 0:
|
||
|
# special return value for nearly full rank
|
||
|
rank = min(A.shape)
|
||
|
return rank
|
||
|
elif isinstance(A, LinearOperator):
|
||
|
m, n = A.shape
|
||
|
matveca = A.rmatvec
|
||
|
if real:
|
||
|
return backend.idd_findrank(eps, m, n, matveca)
|
||
|
else:
|
||
|
return backend.idz_findrank(eps, m, n, matveca)
|
||
|
else:
|
||
|
raise _TYPE_ERROR
|