fr/fr_env/lib/python3.8/site-packages/pandas/tests/test_strings.py

3681 lines
132 KiB
Python
Raw Normal View History

2021-03-02 18:34:59 +05:30
from datetime import datetime, timedelta
import re
import numpy as np
import pytest
from pandas._libs import lib
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series, concat, isna, notna
import pandas._testing as tm
import pandas.core.strings as strings
def assert_series_or_index_equal(left, right):
if isinstance(left, Series):
tm.assert_series_equal(left, right)
else: # Index
tm.assert_index_equal(left, right)
_any_string_method = [
("cat", (), {"sep": ","}),
("cat", (Series(list("zyx")),), {"sep": ",", "join": "left"}),
("center", (10,), {}),
("contains", ("a",), {}),
("count", ("a",), {}),
("decode", ("UTF-8",), {}),
("encode", ("UTF-8",), {}),
("endswith", ("a",), {}),
("endswith", ("a",), {"na": True}),
("endswith", ("a",), {"na": False}),
("extract", ("([a-z]*)",), {"expand": False}),
("extract", ("([a-z]*)",), {"expand": True}),
("extractall", ("([a-z]*)",), {}),
("find", ("a",), {}),
("findall", ("a",), {}),
("get", (0,), {}),
# because "index" (and "rindex") fail intentionally
# if the string is not found, search only for empty string
("index", ("",), {}),
("join", (",",), {}),
("ljust", (10,), {}),
("match", ("a",), {}),
("fullmatch", ("a",), {}),
("normalize", ("NFC",), {}),
("pad", (10,), {}),
("partition", (" ",), {"expand": False}),
("partition", (" ",), {"expand": True}),
("repeat", (3,), {}),
("replace", ("a", "z"), {}),
("rfind", ("a",), {}),
("rindex", ("",), {}),
("rjust", (10,), {}),
("rpartition", (" ",), {"expand": False}),
("rpartition", (" ",), {"expand": True}),
("slice", (0, 1), {}),
("slice_replace", (0, 1, "z"), {}),
("split", (" ",), {"expand": False}),
("split", (" ",), {"expand": True}),
("startswith", ("a",), {}),
("startswith", ("a",), {"na": True}),
("startswith", ("a",), {"na": False}),
# translating unicode points of "a" to "d"
("translate", ({97: 100},), {}),
("wrap", (2,), {}),
("zfill", (10,), {}),
] + list(
zip(
[
# methods without positional arguments: zip with empty tuple and empty dict
"capitalize",
"cat",
"get_dummies",
"isalnum",
"isalpha",
"isdecimal",
"isdigit",
"islower",
"isnumeric",
"isspace",
"istitle",
"isupper",
"len",
"lower",
"lstrip",
"partition",
"rpartition",
"rsplit",
"rstrip",
"slice",
"slice_replace",
"split",
"strip",
"swapcase",
"title",
"upper",
"casefold",
],
[()] * 100,
[{}] * 100,
)
)
ids, _, _ = zip(*_any_string_method) # use method name as fixture-id
# test that the above list captures all methods of StringMethods
missing_methods = {
f for f in dir(strings.StringMethods) if not f.startswith("_")
} - set(ids)
assert not missing_methods
@pytest.fixture(params=_any_string_method, ids=ids)
def any_string_method(request):
"""
Fixture for all public methods of `StringMethods`
This fixture returns a tuple of the method name and sample arguments
necessary to call the method.
Returns
-------
method_name : str
The name of the method in `StringMethods`
args : tuple
Sample values for the positional arguments
kwargs : dict
Sample values for the keyword arguments
Examples
--------
>>> def test_something(any_string_method):
... s = Series(['a', 'b', np.nan, 'd'])
...
... method_name, args, kwargs = any_string_method
... method = getattr(s.str, method_name)
... # will not raise
... method(*args, **kwargs)
"""
return request.param
# subset of the full set from pandas/conftest.py
_any_allowed_skipna_inferred_dtype = [
("string", ["a", np.nan, "c"]),
("bytes", [b"a", np.nan, b"c"]),
("empty", [np.nan, np.nan, np.nan]),
("empty", []),
("mixed-integer", ["a", np.nan, 2]),
]
ids, _ = zip(*_any_allowed_skipna_inferred_dtype) # use inferred type as id
@pytest.fixture(params=_any_allowed_skipna_inferred_dtype, ids=ids)
def any_allowed_skipna_inferred_dtype(request):
"""
Fixture for all (inferred) dtypes allowed in StringMethods.__init__
The covered (inferred) types are:
* 'string'
* 'empty'
* 'bytes'
* 'mixed'
* 'mixed-integer'
Returns
-------
inferred_dtype : str
The string for the inferred dtype from _libs.lib.infer_dtype
values : np.ndarray
An array of object dtype that will be inferred to have
`inferred_dtype`
Examples
--------
>>> import pandas._libs.lib as lib
>>>
>>> def test_something(any_allowed_skipna_inferred_dtype):
... inferred_dtype, values = any_allowed_skipna_inferred_dtype
... # will pass
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
...
... # constructor for .str-accessor will also pass
... Series(values).str
"""
inferred_dtype, values = request.param
values = np.array(values, dtype=object) # object dtype to avoid casting
# correctness of inference tested in tests/dtypes/test_inference.py
return inferred_dtype, values
class TestStringMethods:
def test_api(self):
# GH 6106, GH 9322
assert Series.str is strings.StringMethods
assert isinstance(Series([""]).str, strings.StringMethods)
def test_api_mi_raises(self):
# GH 23679
mi = MultiIndex.from_arrays([["a", "b", "c"]])
msg = "Can only use .str accessor with Index, not MultiIndex"
with pytest.raises(AttributeError, match=msg):
mi.str
assert not hasattr(mi, "str")
@pytest.mark.parametrize("dtype", [object, "category"])
def test_api_per_dtype(self, index_or_series, dtype, any_skipna_inferred_dtype):
# one instance of parametrized fixture
box = index_or_series
inferred_dtype, values = any_skipna_inferred_dtype
t = box(values, dtype=dtype) # explicit dtype to avoid casting
types_passing_constructor = [
"string",
"unicode",
"empty",
"bytes",
"mixed",
"mixed-integer",
]
if inferred_dtype in types_passing_constructor:
# GH 6106
assert isinstance(t.str, strings.StringMethods)
else:
# GH 9184, GH 23011, GH 23163
msg = "Can only use .str accessor with string values.*"
with pytest.raises(AttributeError, match=msg):
t.str
assert not hasattr(t, "str")
@pytest.mark.parametrize("dtype", [object, "category"])
def test_api_per_method(
self,
index_or_series,
dtype,
any_allowed_skipna_inferred_dtype,
any_string_method,
request,
):
# this test does not check correctness of the different methods,
# just that the methods work on the specified (inferred) dtypes,
# and raise on all others
box = index_or_series
# one instance of each parametrized fixture
inferred_dtype, values = any_allowed_skipna_inferred_dtype
method_name, args, kwargs = any_string_method
# TODO: get rid of these xfails
reason = None
if box is Index and values.size == 0:
if method_name in ["partition", "rpartition"] and kwargs.get(
"expand", True
):
reason = "Method cannot deal with empty Index"
elif method_name == "split" and kwargs.get("expand", None):
reason = "Split fails on empty Series when expand=True"
elif method_name == "get_dummies":
reason = "Need to fortify get_dummies corner cases"
elif box is Index and inferred_dtype == "empty" and dtype == object:
if method_name == "get_dummies":
reason = "Need to fortify get_dummies corner cases"
if reason is not None:
mark = pytest.mark.xfail(reason=reason)
request.node.add_marker(mark)
t = box(values, dtype=dtype) # explicit dtype to avoid casting
method = getattr(t.str, method_name)
bytes_allowed = method_name in ["decode", "get", "len", "slice"]
# as of v0.23.4, all methods except 'cat' are very lenient with the
# allowed data types, just returning NaN for entries that error.
# This could be changed with an 'errors'-kwarg to the `str`-accessor,
# see discussion in GH 13877
mixed_allowed = method_name not in ["cat"]
allowed_types = (
["string", "unicode", "empty"]
+ ["bytes"] * bytes_allowed
+ ["mixed", "mixed-integer"] * mixed_allowed
)
if inferred_dtype in allowed_types:
# xref GH 23555, GH 23556
method(*args, **kwargs) # works!
else:
# GH 23011, GH 23163
msg = (
f"Cannot use .str.{method_name} with values of "
f"inferred dtype {repr(inferred_dtype)}."
)
with pytest.raises(TypeError, match=msg):
method(*args, **kwargs)
def test_api_for_categorical(self, any_string_method):
# https://github.com/pandas-dev/pandas/issues/10661
s = Series(list("aabb"))
s = s + " " + s
c = s.astype("category")
assert isinstance(c.str, strings.StringMethods)
method_name, args, kwargs = any_string_method
result = getattr(c.str, method_name)(*args, **kwargs)
expected = getattr(s.str, method_name)(*args, **kwargs)
if isinstance(result, DataFrame):
tm.assert_frame_equal(result, expected)
elif isinstance(result, Series):
tm.assert_series_equal(result, expected)
else:
# str.cat(others=None) returns string, for example
assert result == expected
def test_iter(self):
# GH3638
strs = "google", "wikimedia", "wikipedia", "wikitravel"
ds = Series(strs)
with tm.assert_produces_warning(FutureWarning):
for s in ds.str:
# iter must yield a Series
assert isinstance(s, Series)
# indices of each yielded Series should be equal to the index of
# the original Series
tm.assert_index_equal(s.index, ds.index)
for el in s:
# each element of the series is either a basestring/str or nan
assert isinstance(el, str) or isna(el)
# desired behavior is to iterate until everything would be nan on the
# next iter so make sure the last element of the iterator was 'l' in
# this case since 'wikitravel' is the longest string
assert s.dropna().values.item() == "l"
def test_iter_empty(self):
ds = Series([], dtype=object)
i, s = 100, 1
with tm.assert_produces_warning(FutureWarning):
for i, s in enumerate(ds.str):
pass
# nothing to iterate over so nothing defined values should remain
# unchanged
assert i == 100
assert s == 1
def test_iter_single_element(self):
ds = Series(["a"])
with tm.assert_produces_warning(FutureWarning):
for i, s in enumerate(ds.str):
pass
assert not i
tm.assert_series_equal(ds, s)
def test_iter_object_try_string(self):
ds = Series(
[
slice(None, np.random.randint(10), np.random.randint(10, 20))
for _ in range(4)
]
)
i, s = 100, "h"
with tm.assert_produces_warning(FutureWarning):
for i, s in enumerate(ds.str):
pass
assert i == 100
assert s == "h"
@pytest.mark.parametrize("other", [None, Series, Index])
def test_str_cat_name(self, index_or_series, other):
# GH 21053
box = index_or_series
values = ["a", "b"]
if other:
other = other(values)
else:
other = values
result = box(values, name="name").str.cat(other, sep=",")
assert result.name == "name"
def test_str_cat(self, index_or_series):
box = index_or_series
# test_cat above tests "str_cat" from ndarray;
# here testing "str.cat" from Series/Indext to ndarray/list
s = box(["a", "a", "b", "b", "c", np.nan])
# single array
result = s.str.cat()
expected = "aabbc"
assert result == expected
result = s.str.cat(na_rep="-")
expected = "aabbc-"
assert result == expected
result = s.str.cat(sep="_", na_rep="NA")
expected = "a_a_b_b_c_NA"
assert result == expected
t = np.array(["a", np.nan, "b", "d", "foo", np.nan], dtype=object)
expected = box(["aa", "a-", "bb", "bd", "cfoo", "--"])
# Series/Index with array
result = s.str.cat(t, na_rep="-")
assert_series_or_index_equal(result, expected)
# Series/Index with list
result = s.str.cat(list(t), na_rep="-")
assert_series_or_index_equal(result, expected)
# errors for incorrect lengths
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
z = Series(["1", "2", "3"])
with pytest.raises(ValueError, match=rgx):
s.str.cat(z.values)
with pytest.raises(ValueError, match=rgx):
s.str.cat(list(z))
def test_str_cat_raises_intuitive_error(self, index_or_series):
# GH 11334
box = index_or_series
s = box(["a", "b", "c", "d"])
message = "Did you mean to supply a `sep` keyword?"
with pytest.raises(ValueError, match=message):
s.str.cat("|")
with pytest.raises(ValueError, match=message):
s.str.cat(" ")
@pytest.mark.parametrize("sep", ["", None])
@pytest.mark.parametrize("dtype_target", ["object", "category"])
@pytest.mark.parametrize("dtype_caller", ["object", "category"])
def test_str_cat_categorical(
self, index_or_series, dtype_caller, dtype_target, sep
):
box = index_or_series
s = Index(["a", "a", "b", "a"], dtype=dtype_caller)
s = s if box == Index else Series(s, index=s)
t = Index(["b", "a", "b", "c"], dtype=dtype_target)
expected = Index(["ab", "aa", "bb", "ac"])
expected = expected if box == Index else Series(expected, index=s)
# Series/Index with unaligned Index -> t.values
result = s.str.cat(t.values, sep=sep)
assert_series_or_index_equal(result, expected)
# Series/Index with Series having matching Index
t = Series(t.values, index=s)
result = s.str.cat(t, sep=sep)
assert_series_or_index_equal(result, expected)
# Series/Index with Series.values
result = s.str.cat(t.values, sep=sep)
assert_series_or_index_equal(result, expected)
# Series/Index with Series having different Index
t = Series(t.values, index=t.values)
expected = Index(["aa", "aa", "aa", "bb", "bb"])
expected = (
expected if box == Index else Series(expected, index=expected.str[:1])
)
result = s.str.cat(t, sep=sep)
assert_series_or_index_equal(result, expected)
# test integer/float dtypes (inferred by constructor) and mixed
@pytest.mark.parametrize(
"data",
[[1, 2, 3], [0.1, 0.2, 0.3], [1, 2, "b"]],
ids=["integers", "floats", "mixed"],
)
# without dtype=object, np.array would cast [1, 2, 'b'] to ['1', '2', 'b']
@pytest.mark.parametrize(
"box",
[Series, Index, list, lambda x: np.array(x, dtype=object)],
ids=["Series", "Index", "list", "np.array"],
)
def test_str_cat_wrong_dtype_raises(self, box, data):
# GH 22722
s = Series(["a", "b", "c"])
t = box(data)
msg = "Concatenation requires list-likes containing only strings.*"
with pytest.raises(TypeError, match=msg):
# need to use outer and na_rep, as otherwise Index would not raise
s.str.cat(t, join="outer", na_rep="-")
def test_str_cat_mixed_inputs(self, index_or_series):
box = index_or_series
s = Index(["a", "b", "c", "d"])
s = s if box == Index else Series(s, index=s)
t = Series(["A", "B", "C", "D"], index=s.values)
d = concat([t, Series(s, index=s)], axis=1)
expected = Index(["aAa", "bBb", "cCc", "dDd"])
expected = expected if box == Index else Series(expected.values, index=s.values)
# Series/Index with DataFrame
result = s.str.cat(d)
assert_series_or_index_equal(result, expected)
# Series/Index with two-dimensional ndarray
result = s.str.cat(d.values)
assert_series_or_index_equal(result, expected)
# Series/Index with list of Series
result = s.str.cat([t, s])
assert_series_or_index_equal(result, expected)
# Series/Index with mixed list of Series/array
result = s.str.cat([t, s.values])
assert_series_or_index_equal(result, expected)
# Series/Index with list of Series; different indexes
t.index = ["b", "c", "d", "a"]
expected = box(["aDa", "bAb", "cBc", "dCd"])
expected = expected if box == Index else Series(expected.values, index=s.values)
result = s.str.cat([t, s])
assert_series_or_index_equal(result, expected)
# Series/Index with mixed list; different index
result = s.str.cat([t, s.values])
assert_series_or_index_equal(result, expected)
# Series/Index with DataFrame; different indexes
d.index = ["b", "c", "d", "a"]
expected = box(["aDd", "bAa", "cBb", "dCc"])
expected = expected if box == Index else Series(expected.values, index=s.values)
result = s.str.cat(d)
assert_series_or_index_equal(result, expected)
# errors for incorrect lengths
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
z = Series(["1", "2", "3"])
e = concat([z, z], axis=1)
# two-dimensional ndarray
with pytest.raises(ValueError, match=rgx):
s.str.cat(e.values)
# list of list-likes
with pytest.raises(ValueError, match=rgx):
s.str.cat([z.values, s.values])
# mixed list of Series/list-like
with pytest.raises(ValueError, match=rgx):
s.str.cat([z.values, s])
# errors for incorrect arguments in list-like
rgx = "others must be Series, Index, DataFrame,.*"
# make sure None/NaN do not crash checks in _get_series_list
u = Series(["a", np.nan, "c", None])
# mix of string and Series
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, "u"])
# DataFrame in list
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, d])
# 2-dim ndarray in list
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, d.values])
# nested lists
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, [u, d]])
# forbidden input type: set
# GH 23009
with pytest.raises(TypeError, match=rgx):
s.str.cat(set(u))
# forbidden input type: set in list
# GH 23009
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, set(u)])
# other forbidden input type, e.g. int
with pytest.raises(TypeError, match=rgx):
s.str.cat(1)
# nested list-likes
with pytest.raises(TypeError, match=rgx):
s.str.cat(iter([t.values, list(s)]))
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"])
def test_str_cat_align_indexed(self, index_or_series, join):
# https://github.com/pandas-dev/pandas/issues/18657
box = index_or_series
s = Series(["a", "b", "c", "d"], index=["a", "b", "c", "d"])
t = Series(["D", "A", "E", "B"], index=["d", "a", "e", "b"])
sa, ta = s.align(t, join=join)
# result after manual alignment of inputs
expected = sa.str.cat(ta, na_rep="-")
if box == Index:
s = Index(s)
sa = Index(sa)
expected = Index(expected)
result = s.str.cat(t, join=join, na_rep="-")
assert_series_or_index_equal(result, expected)
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"])
def test_str_cat_align_mixed_inputs(self, join):
s = Series(["a", "b", "c", "d"])
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1])
d = concat([t, t], axis=1)
expected_outer = Series(["aaa", "bbb", "c--", "ddd", "-ee"])
expected = expected_outer.loc[s.index.join(t.index, how=join)]
# list of Series
result = s.str.cat([t, t], join=join, na_rep="-")
tm.assert_series_equal(result, expected)
# DataFrame
result = s.str.cat(d, join=join, na_rep="-")
tm.assert_series_equal(result, expected)
# mixed list of indexed/unindexed
u = np.array(["A", "B", "C", "D"])
expected_outer = Series(["aaA", "bbB", "c-C", "ddD", "-e-"])
# joint index of rhs [t, u]; u will be forced have index of s
rhs_idx = (
t.index.intersection(s.index) if join == "inner" else t.index.union(s.index)
)
expected = expected_outer.loc[s.index.join(rhs_idx, how=join)]
result = s.str.cat([t, u], join=join, na_rep="-")
tm.assert_series_equal(result, expected)
with pytest.raises(TypeError, match="others must be Series,.*"):
# nested lists are forbidden
s.str.cat([t, list(u)], join=join)
# errors for incorrect lengths
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
z = Series(["1", "2", "3"]).values
# unindexed object of wrong length
with pytest.raises(ValueError, match=rgx):
s.str.cat(z, join=join)
# unindexed object of wrong length in list
with pytest.raises(ValueError, match=rgx):
s.str.cat([t, z], join=join)
def test_str_cat_all_na(self, index_or_series, index_or_series2):
# GH 24044
box = index_or_series
other = index_or_series2
# check that all NaNs in caller / target work
s = Index(["a", "b", "c", "d"])
s = s if box == Index else Series(s, index=s)
t = other([np.nan] * 4, dtype=object)
# add index of s for alignment
t = t if other == Index else Series(t, index=s)
# all-NA target
if box == Series:
expected = Series([np.nan] * 4, index=s.index, dtype=object)
else: # box == Index
expected = Index([np.nan] * 4, dtype=object)
result = s.str.cat(t, join="left")
assert_series_or_index_equal(result, expected)
# all-NA caller (only for Series)
if other == Series:
expected = Series([np.nan] * 4, dtype=object, index=t.index)
result = t.str.cat(s, join="left")
tm.assert_series_equal(result, expected)
def test_str_cat_special_cases(self):
s = Series(["a", "b", "c", "d"])
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1])
# iterator of elements with different types
expected = Series(["aaa", "bbb", "c-c", "ddd", "-e-"])
result = s.str.cat(iter([t, s.values]), join="outer", na_rep="-")
tm.assert_series_equal(result, expected)
# right-align with different indexes in others
expected = Series(["aa-", "d-d"], index=[0, 3])
result = s.str.cat([t.loc[[0]], t.loc[[3]]], join="right", na_rep="-")
tm.assert_series_equal(result, expected)
def test_cat_on_filtered_index(self):
df = DataFrame(
index=MultiIndex.from_product(
[[2011, 2012], [1, 2, 3]], names=["year", "month"]
)
)
df = df.reset_index()
df = df[df.month > 1]
str_year = df.year.astype("str")
str_month = df.month.astype("str")
str_both = str_year.str.cat(str_month, sep=" ")
assert str_both.loc[1] == "2011 2"
str_multiple = str_year.str.cat([str_month, str_month], sep=" ")
assert str_multiple.loc[1] == "2011 2 2"
def test_count(self):
values = np.array(
["foo", "foofoo", np.nan, "foooofooofommmfoo"], dtype=np.object_
)
result = Series(values).str.count("f[o]+")
exp = Series([1, 2, np.nan, 4])
assert isinstance(result, Series)
tm.assert_series_equal(result, exp)
# mixed
mixed = np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
rs = Series(mixed).str.count("a")
xp = Series([1, np.nan, 0, np.nan, np.nan, 0, np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_series_equal(rs, xp)
def test_contains(self):
values = np.array(
["foo", np.nan, "fooommm__foo", "mmm_", "foommm[_]+bar"], dtype=np.object_
)
values = Series(values)
pat = "mmm[_]+"
result = values.str.contains(pat)
expected = Series(
np.array([False, np.nan, True, True, False], dtype=np.object_)
)
tm.assert_series_equal(result, expected)
result = values.str.contains(pat, regex=False)
expected = Series(
np.array([False, np.nan, False, False, True], dtype=np.object_)
)
tm.assert_series_equal(result, expected)
values = Series(np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=object))
result = values.str.contains(pat)
expected = Series(np.array([False, False, True, True]))
assert result.dtype == np.bool_
tm.assert_series_equal(result, expected)
# case insensitive using regex
values = Series(np.array(["Foo", "xYz", "fOOomMm__fOo", "MMM_"], dtype=object))
result = values.str.contains("FOO|mmm", case=False)
expected = Series(np.array([True, False, True, True]))
tm.assert_series_equal(result, expected)
# case insensitive without regex
result = Series(values).str.contains("foo", regex=False, case=False)
expected = Series(np.array([True, False, True, False]))
tm.assert_series_equal(result, expected)
# mixed
mixed = Series(
np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
)
rs = mixed.str.contains("o")
xp = Series(
np.array(
[False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan],
dtype=np.object_,
)
)
tm.assert_series_equal(rs, xp)
rs = mixed.str.contains("o")
xp = Series(
[False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan]
)
assert isinstance(rs, Series)
tm.assert_series_equal(rs, xp)
# unicode
values = Series(
np.array(["foo", np.nan, "fooommm__foo", "mmm_"], dtype=np.object_)
)
pat = "mmm[_]+"
result = values.str.contains(pat)
expected = Series(np.array([False, np.nan, True, True], dtype=np.object_))
tm.assert_series_equal(result, expected)
result = values.str.contains(pat, na=False)
expected = Series(np.array([False, False, True, True]))
tm.assert_series_equal(result, expected)
values = Series(
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=np.object_)
)
result = values.str.contains(pat)
expected = Series(np.array([False, False, True, True]))
assert result.dtype == np.bool_
tm.assert_series_equal(result, expected)
def test_contains_for_object_category(self):
# gh 22158
# na for category
values = Series(["a", "b", "c", "a", np.nan], dtype="category")
result = values.str.contains("a", na=True)
expected = Series([True, False, False, True, True])
tm.assert_series_equal(result, expected)
result = values.str.contains("a", na=False)
expected = Series([True, False, False, True, False])
tm.assert_series_equal(result, expected)
# na for objects
values = Series(["a", "b", "c", "a", np.nan])
result = values.str.contains("a", na=True)
expected = Series([True, False, False, True, True])
tm.assert_series_equal(result, expected)
result = values.str.contains("a", na=False)
expected = Series([True, False, False, True, False])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("dtype", [None, "category"])
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
@pytest.mark.parametrize("na", [True, False])
def test_startswith(self, dtype, null_value, na):
# add category dtype parametrizations for GH-36241
values = Series(
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
dtype=dtype,
)
result = values.str.startswith("foo")
exp = Series([False, np.nan, True, False, False, np.nan, True])
tm.assert_series_equal(result, exp)
result = values.str.startswith("foo", na=na)
exp = Series([False, na, True, False, False, na, True])
tm.assert_series_equal(result, exp)
# mixed
mixed = np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=np.object_,
)
rs = Series(mixed).str.startswith("f")
xp = Series(
[False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan]
)
tm.assert_series_equal(rs, xp)
@pytest.mark.parametrize("dtype", [None, "category"])
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
@pytest.mark.parametrize("na", [True, False])
def test_endswith(self, dtype, null_value, na):
# add category dtype parametrizations for GH-36241
values = Series(
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
dtype=dtype,
)
result = values.str.endswith("foo")
exp = Series([False, np.nan, False, False, True, np.nan, True])
tm.assert_series_equal(result, exp)
result = values.str.endswith("foo", na=na)
exp = Series([False, na, False, False, True, na, True])
tm.assert_series_equal(result, exp)
# mixed
mixed = np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
rs = Series(mixed).str.endswith("f")
xp = Series(
[False, np.nan, False, np.nan, np.nan, False, np.nan, np.nan, np.nan]
)
tm.assert_series_equal(rs, xp)
def test_title(self):
values = Series(["FOO", "BAR", np.nan, "Blah", "blurg"])
result = values.str.title()
exp = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(
["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0]
)
mixed = mixed.str.title()
exp = Series(
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", np.nan, np.nan, np.nan]
)
tm.assert_almost_equal(mixed, exp)
def test_lower_upper(self):
values = Series(["om", np.nan, "nom", "nom"])
result = values.str.upper()
exp = Series(["OM", np.nan, "NOM", "NOM"])
tm.assert_series_equal(result, exp)
result = result.str.lower()
tm.assert_series_equal(result, values)
# mixed
mixed = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
mixed = mixed.str.upper()
rs = Series(mixed).str.lower()
xp = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_series_equal(rs, xp)
def test_capitalize(self):
values = Series(["FOO", "BAR", np.nan, "Blah", "blurg"])
result = values.str.capitalize()
exp = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(
["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0]
)
mixed = mixed.str.capitalize()
exp = Series(
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", np.nan, np.nan, np.nan]
)
tm.assert_almost_equal(mixed, exp)
def test_swapcase(self):
values = Series(["FOO", "BAR", np.nan, "Blah", "blurg"])
result = values.str.swapcase()
exp = Series(["foo", "bar", np.nan, "bLAH", "BLURG"])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(
["FOO", np.nan, "bar", True, datetime.today(), "Blah", None, 1, 2.0]
)
mixed = mixed.str.swapcase()
exp = Series(
["foo", np.nan, "BAR", np.nan, np.nan, "bLAH", np.nan, np.nan, np.nan]
)
tm.assert_almost_equal(mixed, exp)
def test_casemethods(self):
values = ["aaa", "bbb", "CCC", "Dddd", "eEEE"]
s = Series(values)
assert s.str.lower().tolist() == [v.lower() for v in values]
assert s.str.upper().tolist() == [v.upper() for v in values]
assert s.str.title().tolist() == [v.title() for v in values]
assert s.str.capitalize().tolist() == [v.capitalize() for v in values]
assert s.str.swapcase().tolist() == [v.swapcase() for v in values]
def test_replace(self):
values = Series(["fooBAD__barBAD", np.nan])
result = values.str.replace("BAD[_]*", "", regex=True)
exp = Series(["foobar", np.nan])
tm.assert_series_equal(result, exp)
result = values.str.replace("BAD[_]*", "", n=1, regex=True)
exp = Series(["foobarBAD", np.nan])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
)
rs = Series(mixed).str.replace("BAD[_]*", "", regex=True)
xp = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
# flags + unicode
values = Series([b"abcd,\xc3\xa0".decode("utf-8")])
exp = Series([b"abcd, \xc3\xa0".decode("utf-8")])
result = values.str.replace(
r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE, regex=True
)
tm.assert_series_equal(result, exp)
# GH 13438
msg = "repl must be a string or callable"
for klass in (Series, Index):
for repl in (None, 3, {"a": "b"}):
for data in (["a", "b", None], ["a", "b", "c", "ad"]):
values = klass(data)
with pytest.raises(TypeError, match=msg):
values.str.replace("a", repl)
def test_replace_callable(self):
# GH 15055
values = Series(["fooBAD__barBAD", np.nan])
# test with callable
repl = lambda m: m.group(0).swapcase()
result = values.str.replace("[a-z][A-Z]{2}", repl, n=2, regex=True)
exp = Series(["foObaD__baRbaD", np.nan])
tm.assert_series_equal(result, exp)
# test with wrong number of arguments, raising an error
p_err = (
r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
r"(?(3)required )positional arguments?"
)
repl = lambda: None
with pytest.raises(TypeError, match=p_err):
values.str.replace("a", repl)
repl = lambda m, x: None
with pytest.raises(TypeError, match=p_err):
values.str.replace("a", repl)
repl = lambda m, x, y=None: None
with pytest.raises(TypeError, match=p_err):
values.str.replace("a", repl)
# test regex named groups
values = Series(["Foo Bar Baz", np.nan])
pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)"
repl = lambda m: m.group("middle").swapcase()
result = values.str.replace(pat, repl, regex=True)
exp = Series(["bAR", np.nan])
tm.assert_series_equal(result, exp)
def test_replace_compiled_regex(self):
# GH 15446
values = Series(["fooBAD__barBAD", np.nan])
# test with compiled regex
pat = re.compile(r"BAD[_]*")
result = values.str.replace(pat, "", regex=True)
exp = Series(["foobar", np.nan])
tm.assert_series_equal(result, exp)
result = values.str.replace(pat, "", n=1, regex=True)
exp = Series(["foobarBAD", np.nan])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
)
rs = Series(mixed).str.replace(pat, "", regex=True)
xp = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
# flags + unicode
values = Series([b"abcd,\xc3\xa0".decode("utf-8")])
exp = Series([b"abcd, \xc3\xa0".decode("utf-8")])
pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE)
result = values.str.replace(pat, ", ")
tm.assert_series_equal(result, exp)
# case and flags provided to str.replace will have no effect
# and will produce warnings
values = Series(["fooBAD__barBAD__bad", np.nan])
pat = re.compile(r"BAD[_]*")
with pytest.raises(ValueError, match="case and flags cannot be"):
result = values.str.replace(pat, "", flags=re.IGNORECASE)
with pytest.raises(ValueError, match="case and flags cannot be"):
result = values.str.replace(pat, "", case=False)
with pytest.raises(ValueError, match="case and flags cannot be"):
result = values.str.replace(pat, "", case=True)
# test with callable
values = Series(["fooBAD__barBAD", np.nan])
repl = lambda m: m.group(0).swapcase()
pat = re.compile("[a-z][A-Z]{2}")
result = values.str.replace(pat, repl, n=2)
exp = Series(["foObaD__baRbaD", np.nan])
tm.assert_series_equal(result, exp)
def test_replace_literal(self):
# GH16808 literal replace (regex=False vs regex=True)
values = Series(["f.o", "foo", np.nan])
exp = Series(["bao", "bao", np.nan])
result = values.str.replace("f.", "ba", regex=True)
tm.assert_series_equal(result, exp)
exp = Series(["bao", "foo", np.nan])
result = values.str.replace("f.", "ba", regex=False)
tm.assert_series_equal(result, exp)
# Cannot do a literal replace if given a callable repl or compiled
# pattern
callable_repl = lambda m: m.group(0).swapcase()
compiled_pat = re.compile("[a-z][A-Z]{2}")
msg = "Cannot use a callable replacement when regex=False"
with pytest.raises(ValueError, match=msg):
values.str.replace("abc", callable_repl, regex=False)
msg = "Cannot use a compiled regex as replacement pattern with regex=False"
with pytest.raises(ValueError, match=msg):
values.str.replace(compiled_pat, "", regex=False)
def test_repeat(self):
values = Series(["a", "b", np.nan, "c", np.nan, "d"])
result = values.str.repeat(3)
exp = Series(["aaa", "bbb", np.nan, "ccc", np.nan, "ddd"])
tm.assert_series_equal(result, exp)
result = values.str.repeat([1, 2, 3, 4, 5, 6])
exp = Series(["a", "bb", np.nan, "cccc", np.nan, "dddddd"])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
rs = Series(mixed).str.repeat(3)
xp = Series(
["aaa", np.nan, "bbb", np.nan, np.nan, "foofoofoo", np.nan, np.nan, np.nan]
)
assert isinstance(rs, Series)
tm.assert_series_equal(rs, xp)
def test_repeat_with_null(self):
# GH: 31632
values = Series(["a", None], dtype="string")
result = values.str.repeat([3, 4])
exp = Series(["aaa", None], dtype="string")
tm.assert_series_equal(result, exp)
values = Series(["a", "b"], dtype="string")
result = values.str.repeat([3, None])
exp = Series(["aaa", None], dtype="string")
tm.assert_series_equal(result, exp)
def test_match(self):
# New match behavior introduced in 0.13
values = Series(["fooBAD__barBAD", np.nan, "foo"])
result = values.str.match(".*(BAD[_]+).*(BAD)")
exp = Series([True, np.nan, False])
tm.assert_series_equal(result, exp)
values = Series(["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"])
result = values.str.match(".*BAD[_]+.*BAD")
exp = Series([True, True, np.nan, False])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(
[
"aBAD_BAD",
np.nan,
"BAD_b_BAD",
True,
datetime.today(),
"foo",
None,
1,
2.0,
]
)
rs = Series(mixed).str.match(".*(BAD[_]+).*(BAD)")
xp = Series([True, np.nan, True, np.nan, np.nan, False, np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_series_equal(rs, xp)
# na GH #6609
res = Series(["a", 0, np.nan]).str.match("a", na=False)
exp = Series([True, False, False])
tm.assert_series_equal(exp, res)
res = Series(["a", 0, np.nan]).str.match("a")
exp = Series([True, np.nan, np.nan])
tm.assert_series_equal(exp, res)
values = Series(["ab", "AB", "abc", "ABC"])
result = values.str.match("ab", case=False)
expected = Series([True, True, True, True])
tm.assert_series_equal(result, expected)
def test_fullmatch(self):
# GH 32806
values = Series(["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"])
result = values.str.fullmatch(".*BAD[_]+.*BAD")
exp = Series([True, False, np.nan, False])
tm.assert_series_equal(result, exp)
# Make sure that the new string arrays work
string_values = Series(
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype="string"
)
result = string_values.str.fullmatch(".*BAD[_]+.*BAD")
# Result is nullable boolean with StringDtype
string_exp = Series([True, False, np.nan, False], dtype="boolean")
tm.assert_series_equal(result, string_exp)
values = Series(["ab", "AB", "abc", "ABC"])
result = values.str.fullmatch("ab", case=False)
expected = Series([True, True, False, False])
tm.assert_series_equal(result, expected)
def test_extract_expand_None(self):
values = Series(["fooBAD__barBAD", np.nan, "foo"])
with pytest.raises(ValueError, match="expand must be True or False"):
values.str.extract(".*(BAD[_]+).*(BAD)", expand=None)
def test_extract_expand_unspecified(self):
values = Series(["fooBAD__barBAD", np.nan, "foo"])
result_unspecified = values.str.extract(".*(BAD[_]+).*")
assert isinstance(result_unspecified, DataFrame)
result_true = values.str.extract(".*(BAD[_]+).*", expand=True)
tm.assert_frame_equal(result_unspecified, result_true)
def test_extract_expand_False(self):
# Contains tests like those in test_match and some others.
values = Series(["fooBAD__barBAD", np.nan, "foo"])
er = [np.nan, np.nan] # empty row
result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
exp = DataFrame([["BAD__", "BAD"], er, er])
tm.assert_frame_equal(result, exp)
# mixed
mixed = Series(
[
"aBAD_BAD",
np.nan,
"BAD_b_BAD",
True,
datetime.today(),
"foo",
None,
1,
2.0,
]
)
rs = Series(mixed).str.extract(".*(BAD[_]+).*(BAD)", expand=False)
exp = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er])
tm.assert_frame_equal(rs, exp)
# unicode
values = Series(["fooBAD__barBAD", np.nan, "foo"])
result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
exp = DataFrame([["BAD__", "BAD"], er, er])
tm.assert_frame_equal(result, exp)
# GH9980
# Index only works with one regex group since
# multi-group would expand to a frame
idx = Index(["A1", "A2", "A3", "A4", "B5"])
with pytest.raises(ValueError, match="supported"):
idx.str.extract("([AB])([123])", expand=False)
# these should work for both Series and Index
for klass in [Series, Index]:
# no groups
s_or_idx = klass(["A1", "B2", "C3"])
msg = "pattern contains no capture groups"
with pytest.raises(ValueError, match=msg):
s_or_idx.str.extract("[ABC][123]", expand=False)
# only non-capturing groups
with pytest.raises(ValueError, match=msg):
s_or_idx.str.extract("(?:[AB]).*", expand=False)
# single group renames series/index properly
s_or_idx = klass(["A1", "A2"])
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False)
assert result.name == "uno"
exp = klass(["A", "A"], name="uno")
if klass == Series:
tm.assert_series_equal(result, exp)
else:
tm.assert_index_equal(result, exp)
s = Series(["A1", "B2", "C3"])
# one group, no matches
result = s.str.extract("(_)", expand=False)
exp = Series([np.nan, np.nan, np.nan], dtype=object)
tm.assert_series_equal(result, exp)
# two groups, no matches
result = s.str.extract("(_)(_)", expand=False)
exp = DataFrame(
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=object
)
tm.assert_frame_equal(result, exp)
# one group, some matches
result = s.str.extract("([AB])[123]", expand=False)
exp = Series(["A", "B", np.nan])
tm.assert_series_equal(result, exp)
# two groups, some matches
result = s.str.extract("([AB])([123])", expand=False)
exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]])
tm.assert_frame_equal(result, exp)
# one named group
result = s.str.extract("(?P<letter>[AB])", expand=False)
exp = Series(["A", "B", np.nan], name="letter")
tm.assert_series_equal(result, exp)
# two named groups
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False)
exp = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"]
)
tm.assert_frame_equal(result, exp)
# mix named and unnamed groups
result = s.str.extract("([AB])(?P<number>[123])", expand=False)
exp = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"]
)
tm.assert_frame_equal(result, exp)
# one normal group, one non-capturing group
result = s.str.extract("([AB])(?:[123])", expand=False)
exp = Series(["A", "B", np.nan])
tm.assert_series_equal(result, exp)
# two normal groups, one non-capturing group
result = Series(["A11", "B22", "C33"]).str.extract(
"([AB])([123])(?:[123])", expand=False
)
exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]])
tm.assert_frame_equal(result, exp)
# one optional group followed by one normal group
result = Series(["A1", "B2", "3"]).str.extract(
"(?P<letter>[AB])?(?P<number>[123])", expand=False
)
exp = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"]
)
tm.assert_frame_equal(result, exp)
# one normal group followed by one optional group
result = Series(["A1", "B2", "C"]).str.extract(
"(?P<letter>[ABC])(?P<number>[123])?", expand=False
)
exp = DataFrame(
[["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"]
)
tm.assert_frame_equal(result, exp)
# GH6348
# not passing index to the extractor
def check_index(index):
data = ["A1", "B2", "C"]
index = index[: len(data)]
s = Series(data, index=index)
result = s.str.extract(r"(\d)", expand=False)
exp = Series(["1", "2", np.nan], index=index)
tm.assert_series_equal(result, exp)
result = Series(data, index=index).str.extract(
r"(?P<letter>\D)(?P<number>\d)?", expand=False
)
e_list = [["A", "1"], ["B", "2"], ["C", np.nan]]
exp = DataFrame(e_list, columns=["letter", "number"], index=index)
tm.assert_frame_equal(result, exp)
i_funs = [
tm.makeStringIndex,
tm.makeUnicodeIndex,
tm.makeIntIndex,
tm.makeDateIndex,
tm.makePeriodIndex,
tm.makeRangeIndex,
]
for index in i_funs:
check_index(index())
# single_series_name_is_preserved.
s = Series(["a3", "b3", "c2"], name="bob")
r = s.str.extract(r"(?P<sue>[a-z])", expand=False)
e = Series(["a", "b", "c"], name="sue")
tm.assert_series_equal(r, e)
assert r.name == e.name
def test_extract_expand_True(self):
# Contains tests like those in test_match and some others.
values = Series(["fooBAD__barBAD", np.nan, "foo"])
er = [np.nan, np.nan] # empty row
result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
exp = DataFrame([["BAD__", "BAD"], er, er])
tm.assert_frame_equal(result, exp)
# mixed
mixed = Series(
[
"aBAD_BAD",
np.nan,
"BAD_b_BAD",
True,
datetime.today(),
"foo",
None,
1,
2.0,
]
)
rs = Series(mixed).str.extract(".*(BAD[_]+).*(BAD)", expand=True)
exp = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er])
tm.assert_frame_equal(rs, exp)
# these should work for both Series and Index
for klass in [Series, Index]:
# no groups
s_or_idx = klass(["A1", "B2", "C3"])
msg = "pattern contains no capture groups"
with pytest.raises(ValueError, match=msg):
s_or_idx.str.extract("[ABC][123]", expand=True)
# only non-capturing groups
with pytest.raises(ValueError, match=msg):
s_or_idx.str.extract("(?:[AB]).*", expand=True)
# single group renames series/index properly
s_or_idx = klass(["A1", "A2"])
result_df = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True)
assert isinstance(result_df, DataFrame)
result_series = result_df["uno"]
tm.assert_series_equal(result_series, Series(["A", "A"], name="uno"))
def test_extract_series(self):
# extract should give the same result whether or not the
# series has a name.
for series_name in None, "series_name":
s = Series(["A1", "B2", "C3"], name=series_name)
# one group, no matches
result = s.str.extract("(_)", expand=True)
exp = DataFrame([np.nan, np.nan, np.nan], dtype=object)
tm.assert_frame_equal(result, exp)
# two groups, no matches
result = s.str.extract("(_)(_)", expand=True)
exp = DataFrame(
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=object
)
tm.assert_frame_equal(result, exp)
# one group, some matches
result = s.str.extract("([AB])[123]", expand=True)
exp = DataFrame(["A", "B", np.nan])
tm.assert_frame_equal(result, exp)
# two groups, some matches
result = s.str.extract("([AB])([123])", expand=True)
exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]])
tm.assert_frame_equal(result, exp)
# one named group
result = s.str.extract("(?P<letter>[AB])", expand=True)
exp = DataFrame({"letter": ["A", "B", np.nan]})
tm.assert_frame_equal(result, exp)
# two named groups
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True)
e_list = [["A", "1"], ["B", "2"], [np.nan, np.nan]]
exp = DataFrame(e_list, columns=["letter", "number"])
tm.assert_frame_equal(result, exp)
# mix named and unnamed groups
result = s.str.extract("([AB])(?P<number>[123])", expand=True)
exp = DataFrame(e_list, columns=[0, "number"])
tm.assert_frame_equal(result, exp)
# one normal group, one non-capturing group
result = s.str.extract("([AB])(?:[123])", expand=True)
exp = DataFrame(["A", "B", np.nan])
tm.assert_frame_equal(result, exp)
def test_extract_optional_groups(self):
# two normal groups, one non-capturing group
result = Series(["A11", "B22", "C33"]).str.extract(
"([AB])([123])(?:[123])", expand=True
)
exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]])
tm.assert_frame_equal(result, exp)
# one optional group followed by one normal group
result = Series(["A1", "B2", "3"]).str.extract(
"(?P<letter>[AB])?(?P<number>[123])", expand=True
)
e_list = [["A", "1"], ["B", "2"], [np.nan, "3"]]
exp = DataFrame(e_list, columns=["letter", "number"])
tm.assert_frame_equal(result, exp)
# one normal group followed by one optional group
result = Series(["A1", "B2", "C"]).str.extract(
"(?P<letter>[ABC])(?P<number>[123])?", expand=True
)
e_list = [["A", "1"], ["B", "2"], ["C", np.nan]]
exp = DataFrame(e_list, columns=["letter", "number"])
tm.assert_frame_equal(result, exp)
# GH6348
# not passing index to the extractor
def check_index(index):
data = ["A1", "B2", "C"]
index = index[: len(data)]
result = Series(data, index=index).str.extract(r"(\d)", expand=True)
exp = DataFrame(["1", "2", np.nan], index=index)
tm.assert_frame_equal(result, exp)
result = Series(data, index=index).str.extract(
r"(?P<letter>\D)(?P<number>\d)?", expand=True
)
e_list = [["A", "1"], ["B", "2"], ["C", np.nan]]
exp = DataFrame(e_list, columns=["letter", "number"], index=index)
tm.assert_frame_equal(result, exp)
i_funs = [
tm.makeStringIndex,
tm.makeUnicodeIndex,
tm.makeIntIndex,
tm.makeDateIndex,
tm.makePeriodIndex,
tm.makeRangeIndex,
]
for index in i_funs:
check_index(index())
def test_extract_single_group_returns_frame(self):
# GH11386 extract should always return DataFrame, even when
# there is only one group. Prior to v0.18.0, extract returned
# Series when there was only one group in the regex.
s = Series(["a3", "b3", "c2"], name="series_name")
r = s.str.extract(r"(?P<letter>[a-z])", expand=True)
e = DataFrame({"letter": ["a", "b", "c"]})
tm.assert_frame_equal(r, e)
def test_extractall(self):
subject_list = [
"dave@google.com",
"tdhock5@gmail.com",
"maudelaperriere@gmail.com",
"rob@gmail.com some text steve@gmail.com",
"a@b.com some text c@d.com and e@f.com",
np.nan,
"",
]
expected_tuples = [
("dave", "google", "com"),
("tdhock5", "gmail", "com"),
("maudelaperriere", "gmail", "com"),
("rob", "gmail", "com"),
("steve", "gmail", "com"),
("a", "b", "com"),
("c", "d", "com"),
("e", "f", "com"),
]
named_pattern = r"""
(?P<user>[a-z0-9]+)
@
(?P<domain>[a-z]+)
\.
(?P<tld>[a-z]{2,4})
"""
expected_columns = ["user", "domain", "tld"]
S = Series(subject_list)
# extractall should return a DataFrame with one row for each
# match, indexed by the subject from which the match came.
expected_index = MultiIndex.from_tuples(
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)],
names=(None, "match"),
)
expected_df = DataFrame(expected_tuples, expected_index, expected_columns)
computed_df = S.str.extractall(named_pattern, re.VERBOSE)
tm.assert_frame_equal(computed_df, expected_df)
# The index of the input Series should be used to construct
# the index of the output DataFrame:
series_index = MultiIndex.from_tuples(
[
("single", "Dave"),
("single", "Toby"),
("single", "Maude"),
("multiple", "robAndSteve"),
("multiple", "abcdef"),
("none", "missing"),
("none", "empty"),
]
)
Si = Series(subject_list, series_index)
expected_index = MultiIndex.from_tuples(
[
("single", "Dave", 0),
("single", "Toby", 0),
("single", "Maude", 0),
("multiple", "robAndSteve", 0),
("multiple", "robAndSteve", 1),
("multiple", "abcdef", 0),
("multiple", "abcdef", 1),
("multiple", "abcdef", 2),
],
names=(None, None, "match"),
)
expected_df = DataFrame(expected_tuples, expected_index, expected_columns)
computed_df = Si.str.extractall(named_pattern, re.VERBOSE)
tm.assert_frame_equal(computed_df, expected_df)
# MultiIndexed subject with names.
Sn = Series(subject_list, series_index)
Sn.index.names = ("matches", "description")
expected_index.names = ("matches", "description", "match")
expected_df = DataFrame(expected_tuples, expected_index, expected_columns)
computed_df = Sn.str.extractall(named_pattern, re.VERBOSE)
tm.assert_frame_equal(computed_df, expected_df)
# optional groups.
subject_list = ["", "A1", "32"]
named_pattern = "(?P<letter>[AB])?(?P<number>[123])"
computed_df = Series(subject_list).str.extractall(named_pattern)
expected_index = MultiIndex.from_tuples(
[(1, 0), (2, 0), (2, 1)], names=(None, "match")
)
expected_df = DataFrame(
[("A", "1"), (np.nan, "3"), (np.nan, "2")],
expected_index,
columns=["letter", "number"],
)
tm.assert_frame_equal(computed_df, expected_df)
# only one of two groups has a name.
pattern = "([AB])?(?P<number>[123])"
computed_df = Series(subject_list).str.extractall(pattern)
expected_df = DataFrame(
[("A", "1"), (np.nan, "3"), (np.nan, "2")],
expected_index,
columns=[0, "number"],
)
tm.assert_frame_equal(computed_df, expected_df)
def test_extractall_single_group(self):
# extractall(one named group) returns DataFrame with one named
# column.
s = Series(["a3", "b3", "d4c2"], name="series_name")
r = s.str.extractall(r"(?P<letter>[a-z])")
i = MultiIndex.from_tuples(
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
)
e = DataFrame({"letter": ["a", "b", "d", "c"]}, i)
tm.assert_frame_equal(r, e)
# extractall(one un-named group) returns DataFrame with one
# un-named column.
r = s.str.extractall(r"([a-z])")
e = DataFrame(["a", "b", "d", "c"], i)
tm.assert_frame_equal(r, e)
def test_extractall_single_group_with_quantifier(self):
# extractall(one un-named group with quantifier) returns
# DataFrame with one un-named column (GH13382).
s = Series(["ab3", "abc3", "d4cd2"], name="series_name")
r = s.str.extractall(r"([a-z]+)")
i = MultiIndex.from_tuples(
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
)
e = DataFrame(["ab", "abc", "d", "cd"], i)
tm.assert_frame_equal(r, e)
@pytest.mark.parametrize(
"data, names",
[
([], (None,)),
([], ("i1",)),
([], (None, "i2")),
([], ("i1", "i2")),
(["a3", "b3", "d4c2"], (None,)),
(["a3", "b3", "d4c2"], ("i1", "i2")),
(["a3", "b3", "d4c2"], (None, "i2")),
(["a3", "b3", "d4c2"], ("i1", "i2")),
],
)
def test_extractall_no_matches(self, data, names):
# GH19075 extractall with no matches should return a valid MultiIndex
n = len(data)
if len(names) == 1:
i = Index(range(n), name=names[0])
else:
a = (tuple([i] * (n - 1)) for i in range(n))
i = MultiIndex.from_tuples(a, names=names)
s = Series(data, name="series_name", index=i, dtype="object")
ei = MultiIndex.from_tuples([], names=(names + ("match",)))
# one un-named group.
r = s.str.extractall("(z)")
e = DataFrame(columns=[0], index=ei)
tm.assert_frame_equal(r, e)
# two un-named groups.
r = s.str.extractall("(z)(z)")
e = DataFrame(columns=[0, 1], index=ei)
tm.assert_frame_equal(r, e)
# one named group.
r = s.str.extractall("(?P<first>z)")
e = DataFrame(columns=["first"], index=ei)
tm.assert_frame_equal(r, e)
# two named groups.
r = s.str.extractall("(?P<first>z)(?P<second>z)")
e = DataFrame(columns=["first", "second"], index=ei)
tm.assert_frame_equal(r, e)
# one named, one un-named.
r = s.str.extractall("(z)(?P<second>z)")
e = DataFrame(columns=[0, "second"], index=ei)
tm.assert_frame_equal(r, e)
def test_extractall_stringindex(self):
s = Series(["a1a2", "b1", "c1"], name="xxx")
res = s.str.extractall(r"[ab](?P<digit>\d)")
exp_idx = MultiIndex.from_tuples(
[(0, 0), (0, 1), (1, 0)], names=[None, "match"]
)
exp = DataFrame({"digit": ["1", "2", "1"]}, index=exp_idx)
tm.assert_frame_equal(res, exp)
# index should return the same result as the default index without name
# thus index.name doesn't affect to the result
for idx in [
Index(["a1a2", "b1", "c1"]),
Index(["a1a2", "b1", "c1"], name="xxx"),
]:
res = idx.str.extractall(r"[ab](?P<digit>\d)")
tm.assert_frame_equal(res, exp)
s = Series(
["a1a2", "b1", "c1"],
name="s_name",
index=Index(["XX", "yy", "zz"], name="idx_name"),
)
res = s.str.extractall(r"[ab](?P<digit>\d)")
exp_idx = MultiIndex.from_tuples(
[("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"]
)
exp = DataFrame({"digit": ["1", "2", "1"]}, index=exp_idx)
tm.assert_frame_equal(res, exp)
def test_extractall_errors(self):
# Does not make sense to use extractall with a regex that has
# no capture groups. (it returns DataFrame with one column for
# each capture group)
s = Series(["a3", "b3", "d4c2"], name="series_name")
with pytest.raises(ValueError, match="no capture groups"):
s.str.extractall(r"[a-z]")
def test_extract_index_one_two_groups(self):
s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name")
r = s.index.str.extract(r"([A-Z])", expand=True)
e = DataFrame(["A", "B", "D"])
tm.assert_frame_equal(r, e)
# Prior to v0.18.0, index.str.extract(regex with one group)
# returned Index. With more than one group, extract raised an
# error (GH9980). Now extract always returns DataFrame.
r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True)
e_list = [("A", "3"), ("B", "3"), ("D", "4")]
e = DataFrame(e_list, columns=["letter", "digit"])
tm.assert_frame_equal(r, e)
def test_extractall_same_as_extract(self):
s = Series(["a3", "b3", "c2"], name="series_name")
pattern_two_noname = r"([a-z])([0-9])"
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
has_multi_index = s.str.extractall(pattern_two_noname)
no_multi_index = has_multi_index.xs(0, level="match")
tm.assert_frame_equal(extract_two_noname, no_multi_index)
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
extract_two_named = s.str.extract(pattern_two_named, expand=True)
has_multi_index = s.str.extractall(pattern_two_named)
no_multi_index = has_multi_index.xs(0, level="match")
tm.assert_frame_equal(extract_two_named, no_multi_index)
pattern_one_named = r"(?P<group_name>[a-z])"
extract_one_named = s.str.extract(pattern_one_named, expand=True)
has_multi_index = s.str.extractall(pattern_one_named)
no_multi_index = has_multi_index.xs(0, level="match")
tm.assert_frame_equal(extract_one_named, no_multi_index)
pattern_one_noname = r"([a-z])"
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
has_multi_index = s.str.extractall(pattern_one_noname)
no_multi_index = has_multi_index.xs(0, level="match")
tm.assert_frame_equal(extract_one_noname, no_multi_index)
def test_extractall_same_as_extract_subject_index(self):
# same as above tests, but s has an MultiIndex.
i = MultiIndex.from_tuples(
[("A", "first"), ("B", "second"), ("C", "third")],
names=("capital", "ordinal"),
)
s = Series(["a3", "b3", "c2"], i, name="series_name")
pattern_two_noname = r"([a-z])([0-9])"
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
has_match_index = s.str.extractall(pattern_two_noname)
no_match_index = has_match_index.xs(0, level="match")
tm.assert_frame_equal(extract_two_noname, no_match_index)
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
extract_two_named = s.str.extract(pattern_two_named, expand=True)
has_match_index = s.str.extractall(pattern_two_named)
no_match_index = has_match_index.xs(0, level="match")
tm.assert_frame_equal(extract_two_named, no_match_index)
pattern_one_named = r"(?P<group_name>[a-z])"
extract_one_named = s.str.extract(pattern_one_named, expand=True)
has_match_index = s.str.extractall(pattern_one_named)
no_match_index = has_match_index.xs(0, level="match")
tm.assert_frame_equal(extract_one_named, no_match_index)
pattern_one_noname = r"([a-z])"
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
has_match_index = s.str.extractall(pattern_one_noname)
no_match_index = has_match_index.xs(0, level="match")
tm.assert_frame_equal(extract_one_noname, no_match_index)
def test_empty_str_methods(self):
empty_str = empty = Series(dtype=object)
empty_int = Series(dtype="int64")
empty_bool = Series(dtype=bool)
empty_bytes = Series(dtype=object)
# GH7241
# (extract) on empty series
tm.assert_series_equal(empty_str, empty.str.cat(empty))
assert "" == empty.str.cat()
tm.assert_series_equal(empty_str, empty.str.title())
tm.assert_series_equal(empty_int, empty.str.count("a"))
tm.assert_series_equal(empty_bool, empty.str.contains("a"))
tm.assert_series_equal(empty_bool, empty.str.startswith("a"))
tm.assert_series_equal(empty_bool, empty.str.endswith("a"))
tm.assert_series_equal(empty_str, empty.str.lower())
tm.assert_series_equal(empty_str, empty.str.upper())
tm.assert_series_equal(empty_str, empty.str.replace("a", "b"))
tm.assert_series_equal(empty_str, empty.str.repeat(3))
tm.assert_series_equal(empty_bool, empty.str.match("^a"))
tm.assert_frame_equal(
DataFrame(columns=[0], dtype=str), empty.str.extract("()", expand=True)
)
tm.assert_frame_equal(
DataFrame(columns=[0, 1], dtype=str), empty.str.extract("()()", expand=True)
)
tm.assert_series_equal(empty_str, empty.str.extract("()", expand=False))
tm.assert_frame_equal(
DataFrame(columns=[0, 1], dtype=str),
empty.str.extract("()()", expand=False),
)
tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies())
tm.assert_series_equal(empty_str, empty_str.str.join(""))
tm.assert_series_equal(empty_int, empty.str.len())
tm.assert_series_equal(empty_str, empty_str.str.findall("a"))
tm.assert_series_equal(empty_int, empty.str.find("a"))
tm.assert_series_equal(empty_int, empty.str.rfind("a"))
tm.assert_series_equal(empty_str, empty.str.pad(42))
tm.assert_series_equal(empty_str, empty.str.center(42))
tm.assert_series_equal(empty_str, empty.str.split("a"))
tm.assert_series_equal(empty_str, empty.str.rsplit("a"))
tm.assert_series_equal(empty_str, empty.str.partition("a", expand=False))
tm.assert_series_equal(empty_str, empty.str.rpartition("a", expand=False))
tm.assert_series_equal(empty_str, empty.str.slice(stop=1))
tm.assert_series_equal(empty_str, empty.str.slice(step=1))
tm.assert_series_equal(empty_str, empty.str.strip())
tm.assert_series_equal(empty_str, empty.str.lstrip())
tm.assert_series_equal(empty_str, empty.str.rstrip())
tm.assert_series_equal(empty_str, empty.str.wrap(42))
tm.assert_series_equal(empty_str, empty.str.get(0))
tm.assert_series_equal(empty_str, empty_bytes.str.decode("ascii"))
tm.assert_series_equal(empty_bytes, empty.str.encode("ascii"))
# ismethods should always return boolean (GH 29624)
tm.assert_series_equal(empty_bool, empty.str.isalnum())
tm.assert_series_equal(empty_bool, empty.str.isalpha())
tm.assert_series_equal(empty_bool, empty.str.isdigit())
tm.assert_series_equal(empty_bool, empty.str.isspace())
tm.assert_series_equal(empty_bool, empty.str.islower())
tm.assert_series_equal(empty_bool, empty.str.isupper())
tm.assert_series_equal(empty_bool, empty.str.istitle())
tm.assert_series_equal(empty_bool, empty.str.isnumeric())
tm.assert_series_equal(empty_bool, empty.str.isdecimal())
tm.assert_series_equal(empty_str, empty.str.capitalize())
tm.assert_series_equal(empty_str, empty.str.swapcase())
tm.assert_series_equal(empty_str, empty.str.normalize("NFC"))
table = str.maketrans("a", "b")
tm.assert_series_equal(empty_str, empty.str.translate(table))
def test_empty_str_methods_to_frame(self):
empty = Series(dtype=str)
empty_df = DataFrame()
tm.assert_frame_equal(empty_df, empty.str.partition("a"))
tm.assert_frame_equal(empty_df, empty.str.rpartition("a"))
def test_ismethods(self):
values = ["A", "b", "Xy", "4", "3A", "", "TT", "55", "-", " "]
str_s = Series(values)
alnum_e = [True, True, True, True, True, False, True, True, False, False]
alpha_e = [True, True, True, False, False, False, True, False, False, False]
digit_e = [False, False, False, True, False, False, False, True, False, False]
# TODO: unused
num_e = [ # noqa
False,
False,
False,
True,
False,
False,
False,
True,
False,
False,
]
space_e = [False, False, False, False, False, False, False, False, False, True]
lower_e = [False, True, False, False, False, False, False, False, False, False]
upper_e = [True, False, False, False, True, False, True, False, False, False]
title_e = [True, False, True, False, True, False, False, False, False, False]
tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e))
tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e))
tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e))
tm.assert_series_equal(str_s.str.isspace(), Series(space_e))
tm.assert_series_equal(str_s.str.islower(), Series(lower_e))
tm.assert_series_equal(str_s.str.isupper(), Series(upper_e))
tm.assert_series_equal(str_s.str.istitle(), Series(title_e))
assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values]
assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values]
assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values]
assert str_s.str.isspace().tolist() == [v.isspace() for v in values]
assert str_s.str.islower().tolist() == [v.islower() for v in values]
assert str_s.str.isupper().tolist() == [v.isupper() for v in values]
assert str_s.str.istitle().tolist() == [v.istitle() for v in values]
def test_isnumeric(self):
# 0x00bc: ¼ VULGAR FRACTION ONE QUARTER
# 0x2605: ★ not number
# 0x1378: ፸ ETHIOPIC NUMBER SEVENTY
# 0xFF13: Em 3
values = ["A", "3", "¼", "", "", "", "four"]
s = Series(values)
numeric_e = [False, True, True, False, True, True, False]
decimal_e = [False, True, False, False, False, True, False]
tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e))
tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e))
unicodes = ["A", "3", "¼", "", "", "", "four"]
assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes]
assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes]
values = ["A", np.nan, "¼", "", np.nan, "", "four"]
s = Series(values)
numeric_e = [False, np.nan, True, False, np.nan, True, False]
decimal_e = [False, np.nan, False, False, np.nan, True, False]
tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e))
tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e))
def test_get_dummies(self):
s = Series(["a|b", "a|c", np.nan])
result = s.str.get_dummies("|")
expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list("abc"))
tm.assert_frame_equal(result, expected)
s = Series(["a;b", "a", 7])
result = s.str.get_dummies(";")
expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list("7ab"))
tm.assert_frame_equal(result, expected)
# GH9980, GH8028
idx = Index(["a|b", "a|c", "b|c"])
result = idx.str.get_dummies("|")
expected = MultiIndex.from_tuples(
[(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=("a", "b", "c")
)
tm.assert_index_equal(result, expected)
def test_get_dummies_with_name_dummy(self):
# GH 12180
# Dummies named 'name' should work as expected
s = Series(["a", "b,name", "b"])
result = s.str.get_dummies(",")
expected = DataFrame(
[[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=["a", "b", "name"]
)
tm.assert_frame_equal(result, expected)
idx = Index(["a|b", "name|c", "b|name"])
result = idx.str.get_dummies("|")
expected = MultiIndex.from_tuples(
[(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=("a", "b", "c", "name")
)
tm.assert_index_equal(result, expected)
def test_join(self):
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
result = values.str.split("_").str.join("_")
tm.assert_series_equal(values, result)
# mixed
mixed = Series(
[
"a_b",
np.nan,
"asdf_cas_asdf",
True,
datetime.today(),
"foo",
None,
1,
2.0,
]
)
rs = Series(mixed).str.split("_").str.join("_")
xp = Series(
[
"a_b",
np.nan,
"asdf_cas_asdf",
np.nan,
np.nan,
"foo",
np.nan,
np.nan,
np.nan,
]
)
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
def test_len(self):
values = Series(["foo", "fooo", "fooooo", np.nan, "fooooooo"])
result = values.str.len()
exp = values.map(lambda x: len(x) if notna(x) else np.nan)
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(
[
"a_b",
np.nan,
"asdf_cas_asdf",
True,
datetime.today(),
"foo",
None,
1,
2.0,
]
)
rs = Series(mixed).str.len()
xp = Series([3, np.nan, 13, np.nan, np.nan, 3, np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
def test_findall(self):
values = Series(["fooBAD__barBAD", np.nan, "foo", "BAD"])
result = values.str.findall("BAD[_]*")
exp = Series([["BAD__", "BAD"], np.nan, [], ["BAD"]])
tm.assert_almost_equal(result, exp)
# mixed
mixed = Series(
[
"fooBAD__barBAD",
np.nan,
"foo",
True,
datetime.today(),
"BAD",
None,
1,
2.0,
]
)
rs = Series(mixed).str.findall("BAD[_]*")
xp = Series(
[
["BAD__", "BAD"],
np.nan,
[],
np.nan,
np.nan,
["BAD"],
np.nan,
np.nan,
np.nan,
]
)
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
def test_find(self):
values = Series(["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF", "XXXX"])
result = values.str.find("EF")
tm.assert_series_equal(result, Series([4, 3, 1, 0, -1]))
expected = np.array([v.find("EF") for v in values.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.rfind("EF")
tm.assert_series_equal(result, Series([4, 5, 7, 4, -1]))
expected = np.array([v.rfind("EF") for v in values.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.find("EF", 3)
tm.assert_series_equal(result, Series([4, 3, 7, 4, -1]))
expected = np.array([v.find("EF", 3) for v in values.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.rfind("EF", 3)
tm.assert_series_equal(result, Series([4, 5, 7, 4, -1]))
expected = np.array([v.rfind("EF", 3) for v in values.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.find("EF", 3, 6)
tm.assert_series_equal(result, Series([4, 3, -1, 4, -1]))
expected = np.array([v.find("EF", 3, 6) for v in values.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.rfind("EF", 3, 6)
tm.assert_series_equal(result, Series([4, 3, -1, 4, -1]))
expected = np.array(
[v.rfind("EF", 3, 6) for v in values.values], dtype=np.int64
)
tm.assert_numpy_array_equal(result.values, expected)
with pytest.raises(TypeError, match="expected a string object, not int"):
result = values.str.find(0)
with pytest.raises(TypeError, match="expected a string object, not int"):
result = values.str.rfind(0)
def test_find_nan(self):
values = Series(["ABCDEFG", np.nan, "DEFGHIJEF", np.nan, "XXXX"])
result = values.str.find("EF")
tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1]))
result = values.str.rfind("EF")
tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1]))
result = values.str.find("EF", 3)
tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1]))
result = values.str.rfind("EF", 3)
tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1]))
result = values.str.find("EF", 3, 6)
tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1]))
result = values.str.rfind("EF", 3, 6)
tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1]))
def test_index(self):
def _check(result, expected):
if isinstance(result, Series):
tm.assert_series_equal(result, expected)
else:
tm.assert_index_equal(result, expected)
for klass in [Series, Index]:
s = klass(["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF"])
result = s.str.index("EF")
_check(result, klass([4, 3, 1, 0]))
expected = np.array([v.index("EF") for v in s.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = s.str.rindex("EF")
_check(result, klass([4, 5, 7, 4]))
expected = np.array([v.rindex("EF") for v in s.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = s.str.index("EF", 3)
_check(result, klass([4, 3, 7, 4]))
expected = np.array([v.index("EF", 3) for v in s.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = s.str.rindex("EF", 3)
_check(result, klass([4, 5, 7, 4]))
expected = np.array([v.rindex("EF", 3) for v in s.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = s.str.index("E", 4, 8)
_check(result, klass([4, 5, 7, 4]))
expected = np.array([v.index("E", 4, 8) for v in s.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
result = s.str.rindex("E", 0, 5)
_check(result, klass([4, 3, 1, 4]))
expected = np.array([v.rindex("E", 0, 5) for v in s.values], dtype=np.int64)
tm.assert_numpy_array_equal(result.values, expected)
with pytest.raises(ValueError, match="substring not found"):
result = s.str.index("DE")
msg = "expected a string object, not int"
with pytest.raises(TypeError, match=msg):
result = s.str.index(0)
with pytest.raises(TypeError, match=msg):
result = s.str.rindex(0)
# test with nan
s = Series(["abcb", "ab", "bcbe", np.nan])
result = s.str.index("b")
tm.assert_series_equal(result, Series([1, 1, 0, np.nan]))
result = s.str.rindex("b")
tm.assert_series_equal(result, Series([3, 1, 2, np.nan]))
def test_pad(self):
values = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"])
result = values.str.pad(5, side="left")
exp = Series([" a", " b", np.nan, " c", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
result = values.str.pad(5, side="right")
exp = Series(["a ", "b ", np.nan, "c ", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
result = values.str.pad(5, side="both")
exp = Series([" a ", " b ", np.nan, " c ", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
# mixed
mixed = Series(["a", np.nan, "b", True, datetime.today(), "ee", None, 1, 2.0])
rs = Series(mixed).str.pad(5, side="left")
xp = Series(
[" a", np.nan, " b", np.nan, np.nan, " ee", np.nan, np.nan, np.nan]
)
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
mixed = Series(["a", np.nan, "b", True, datetime.today(), "ee", None, 1, 2.0])
rs = Series(mixed).str.pad(5, side="right")
xp = Series(
["a ", np.nan, "b ", np.nan, np.nan, "ee ", np.nan, np.nan, np.nan]
)
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
mixed = Series(["a", np.nan, "b", True, datetime.today(), "ee", None, 1, 2.0])
rs = Series(mixed).str.pad(5, side="both")
xp = Series(
[" a ", np.nan, " b ", np.nan, np.nan, " ee ", np.nan, np.nan, np.nan]
)
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
def test_pad_fillchar(self):
values = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"])
result = values.str.pad(5, side="left", fillchar="X")
exp = Series(["XXXXa", "XXXXb", np.nan, "XXXXc", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
result = values.str.pad(5, side="right", fillchar="X")
exp = Series(["aXXXX", "bXXXX", np.nan, "cXXXX", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
result = values.str.pad(5, side="both", fillchar="X")
exp = Series(["XXaXX", "XXbXX", np.nan, "XXcXX", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
msg = "fillchar must be a character, not str"
with pytest.raises(TypeError, match=msg):
result = values.str.pad(5, fillchar="XY")
msg = "fillchar must be a character, not int"
with pytest.raises(TypeError, match=msg):
result = values.str.pad(5, fillchar=5)
@pytest.mark.parametrize("f", ["center", "ljust", "rjust", "zfill", "pad"])
def test_pad_width(self, f):
# see gh-13598
s = Series(["1", "22", "a", "bb"])
msg = "width must be of integer type, not*"
with pytest.raises(TypeError, match=msg):
getattr(s.str, f)("f")
def test_translate(self):
def _check(result, expected):
if isinstance(result, Series):
tm.assert_series_equal(result, expected)
else:
tm.assert_index_equal(result, expected)
for klass in [Series, Index]:
s = klass(["abcdefg", "abcc", "cdddfg", "cdefggg"])
table = str.maketrans("abc", "cde")
result = s.str.translate(table)
expected = klass(["cdedefg", "cdee", "edddfg", "edefggg"])
_check(result, expected)
# Series with non-string values
s = Series(["a", "b", "c", 1.2])
expected = Series(["c", "d", "e", np.nan])
result = s.str.translate(table)
tm.assert_series_equal(result, expected)
def test_center_ljust_rjust(self):
values = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"])
result = values.str.center(5)
exp = Series([" a ", " b ", np.nan, " c ", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
result = values.str.ljust(5)
exp = Series(["a ", "b ", np.nan, "c ", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
result = values.str.rjust(5)
exp = Series([" a", " b", np.nan, " c", np.nan, "eeeeee"])
tm.assert_almost_equal(result, exp)
# mixed
mixed = Series(
["a", np.nan, "b", True, datetime.today(), "c", "eee", None, 1, 2.0]
)
rs = Series(mixed).str.center(5)
xp = Series(
[
" a ",
np.nan,
" b ",
np.nan,
np.nan,
" c ",
" eee ",
np.nan,
np.nan,
np.nan,
]
)
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
rs = Series(mixed).str.ljust(5)
xp = Series(
[
"a ",
np.nan,
"b ",
np.nan,
np.nan,
"c ",
"eee ",
np.nan,
np.nan,
np.nan,
]
)
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
rs = Series(mixed).str.rjust(5)
xp = Series(
[
" a",
np.nan,
" b",
np.nan,
np.nan,
" c",
" eee",
np.nan,
np.nan,
np.nan,
]
)
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
def test_center_ljust_rjust_fillchar(self):
values = Series(["a", "bb", "cccc", "ddddd", "eeeeee"])
result = values.str.center(5, fillchar="X")
expected = Series(["XXaXX", "XXbbX", "Xcccc", "ddddd", "eeeeee"])
tm.assert_series_equal(result, expected)
expected = np.array([v.center(5, "X") for v in values.values], dtype=np.object_)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.ljust(5, fillchar="X")
expected = Series(["aXXXX", "bbXXX", "ccccX", "ddddd", "eeeeee"])
tm.assert_series_equal(result, expected)
expected = np.array([v.ljust(5, "X") for v in values.values], dtype=np.object_)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.rjust(5, fillchar="X")
expected = Series(["XXXXa", "XXXbb", "Xcccc", "ddddd", "eeeeee"])
tm.assert_series_equal(result, expected)
expected = np.array([v.rjust(5, "X") for v in values.values], dtype=np.object_)
tm.assert_numpy_array_equal(result.values, expected)
# If fillchar is not a charatter, normal str raises TypeError
# 'aaa'.ljust(5, 'XY')
# TypeError: must be char, not str
template = "fillchar must be a character, not {dtype}"
with pytest.raises(TypeError, match=template.format(dtype="str")):
values.str.center(5, fillchar="XY")
with pytest.raises(TypeError, match=template.format(dtype="str")):
values.str.ljust(5, fillchar="XY")
with pytest.raises(TypeError, match=template.format(dtype="str")):
values.str.rjust(5, fillchar="XY")
with pytest.raises(TypeError, match=template.format(dtype="int")):
values.str.center(5, fillchar=1)
with pytest.raises(TypeError, match=template.format(dtype="int")):
values.str.ljust(5, fillchar=1)
with pytest.raises(TypeError, match=template.format(dtype="int")):
values.str.rjust(5, fillchar=1)
def test_zfill(self):
values = Series(["1", "22", "aaa", "333", "45678"])
result = values.str.zfill(5)
expected = Series(["00001", "00022", "00aaa", "00333", "45678"])
tm.assert_series_equal(result, expected)
expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.zfill(3)
expected = Series(["001", "022", "aaa", "333", "45678"])
tm.assert_series_equal(result, expected)
expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_)
tm.assert_numpy_array_equal(result.values, expected)
values = Series(["1", np.nan, "aaa", np.nan, "45678"])
result = values.str.zfill(5)
expected = Series(["00001", np.nan, "00aaa", np.nan, "45678"])
tm.assert_series_equal(result, expected)
def test_split(self):
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
result = values.str.split("_")
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
tm.assert_series_equal(result, exp)
# more than one char
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"])
result = values.str.split("__")
tm.assert_series_equal(result, exp)
result = values.str.split("__", expand=False)
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
result = mixed.str.split("_")
exp = Series(
[
["a", "b", "c"],
np.nan,
["d", "e", "f"],
np.nan,
np.nan,
np.nan,
np.nan,
np.nan,
]
)
assert isinstance(result, Series)
tm.assert_almost_equal(result, exp)
result = mixed.str.split("_", expand=False)
assert isinstance(result, Series)
tm.assert_almost_equal(result, exp)
# regex split
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"])
result = values.str.split("[,_]")
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
tm.assert_series_equal(result, exp)
@pytest.mark.parametrize("dtype", [object, "string"])
@pytest.mark.parametrize("method", ["split", "rsplit"])
def test_split_n(self, dtype, method):
s = Series(["a b", pd.NA, "b c"], dtype=dtype)
expected = Series([["a", "b"], pd.NA, ["b", "c"]])
result = getattr(s.str, method)(" ", n=None)
tm.assert_series_equal(result, expected)
result = getattr(s.str, method)(" ", n=0)
tm.assert_series_equal(result, expected)
def test_rsplit(self):
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
result = values.str.rsplit("_")
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
tm.assert_series_equal(result, exp)
# more than one char
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"])
result = values.str.rsplit("__")
tm.assert_series_equal(result, exp)
result = values.str.rsplit("__", expand=False)
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
result = mixed.str.rsplit("_")
exp = Series(
[
["a", "b", "c"],
np.nan,
["d", "e", "f"],
np.nan,
np.nan,
np.nan,
np.nan,
np.nan,
]
)
assert isinstance(result, Series)
tm.assert_almost_equal(result, exp)
result = mixed.str.rsplit("_", expand=False)
assert isinstance(result, Series)
tm.assert_almost_equal(result, exp)
# regex split is not supported by rsplit
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"])
result = values.str.rsplit("[,_]")
exp = Series([["a,b_c"], ["c_d,e"], np.nan, ["f,g,h"]])
tm.assert_series_equal(result, exp)
# setting max number of splits, make sure it's from reverse
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
result = values.str.rsplit("_", n=1)
exp = Series([["a_b", "c"], ["c_d", "e"], np.nan, ["f_g", "h"]])
tm.assert_series_equal(result, exp)
def test_split_blank_string(self):
# expand blank split GH 20067
values = Series([""], name="test")
result = values.str.split(expand=True)
exp = DataFrame([[]]) # NOTE: this is NOT an empty DataFrame
tm.assert_frame_equal(result, exp)
values = Series(["a b c", "a b", "", " "], name="test")
result = values.str.split(expand=True)
exp = DataFrame(
[
["a", "b", "c"],
["a", "b", np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
]
)
tm.assert_frame_equal(result, exp)
def test_split_noargs(self):
# #1859
s = Series(["Wes McKinney", "Travis Oliphant"])
result = s.str.split()
expected = ["Travis", "Oliphant"]
assert result[1] == expected
result = s.str.rsplit()
assert result[1] == expected
def test_split_maxsplit(self):
# re.split 0, str.split -1
s = Series(["bd asdf jfg", "kjasdflqw asdfnfk"])
result = s.str.split(n=-1)
xp = s.str.split()
tm.assert_series_equal(result, xp)
result = s.str.split(n=0)
tm.assert_series_equal(result, xp)
xp = s.str.split("asdf")
result = s.str.split("asdf", n=0)
tm.assert_series_equal(result, xp)
result = s.str.split("asdf", n=-1)
tm.assert_series_equal(result, xp)
def test_split_no_pat_with_nonzero_n(self):
s = Series(["split once", "split once too!"])
result = s.str.split(n=1)
expected = Series({0: ["split", "once"], 1: ["split", "once too!"]})
tm.assert_series_equal(expected, result, check_index_type=False)
def test_split_to_dataframe(self):
s = Series(["nosplit", "alsonosplit"])
result = s.str.split("_", expand=True)
exp = DataFrame({0: Series(["nosplit", "alsonosplit"])})
tm.assert_frame_equal(result, exp)
s = Series(["some_equal_splits", "with_no_nans"])
result = s.str.split("_", expand=True)
exp = DataFrame(
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]}
)
tm.assert_frame_equal(result, exp)
s = Series(["some_unequal_splits", "one_of_these_things_is_not"])
result = s.str.split("_", expand=True)
exp = DataFrame(
{
0: ["some", "one"],
1: ["unequal", "of"],
2: ["splits", "these"],
3: [np.nan, "things"],
4: [np.nan, "is"],
5: [np.nan, "not"],
}
)
tm.assert_frame_equal(result, exp)
s = Series(["some_splits", "with_index"], index=["preserve", "me"])
result = s.str.split("_", expand=True)
exp = DataFrame(
{0: ["some", "with"], 1: ["splits", "index"]}, index=["preserve", "me"]
)
tm.assert_frame_equal(result, exp)
with pytest.raises(ValueError, match="expand must be"):
s.str.split("_", expand="not_a_boolean")
def test_split_to_multiindex_expand(self):
# https://github.com/pandas-dev/pandas/issues/23677
idx = Index(["nosplit", "alsonosplit", np.nan])
result = idx.str.split("_", expand=True)
exp = idx
tm.assert_index_equal(result, exp)
assert result.nlevels == 1
idx = Index(["some_equal_splits", "with_no_nans", np.nan, None])
result = idx.str.split("_", expand=True)
exp = MultiIndex.from_tuples(
[
("some", "equal", "splits"),
("with", "no", "nans"),
[np.nan, np.nan, np.nan],
[None, None, None],
]
)
tm.assert_index_equal(result, exp)
assert result.nlevels == 3
idx = Index(["some_unequal_splits", "one_of_these_things_is_not", np.nan, None])
result = idx.str.split("_", expand=True)
exp = MultiIndex.from_tuples(
[
("some", "unequal", "splits", np.nan, np.nan, np.nan),
("one", "of", "these", "things", "is", "not"),
(np.nan, np.nan, np.nan, np.nan, np.nan, np.nan),
(None, None, None, None, None, None),
]
)
tm.assert_index_equal(result, exp)
assert result.nlevels == 6
with pytest.raises(ValueError, match="expand must be"):
idx.str.split("_", expand="not_a_boolean")
def test_rsplit_to_dataframe_expand(self):
s = Series(["nosplit", "alsonosplit"])
result = s.str.rsplit("_", expand=True)
exp = DataFrame({0: Series(["nosplit", "alsonosplit"])})
tm.assert_frame_equal(result, exp)
s = Series(["some_equal_splits", "with_no_nans"])
result = s.str.rsplit("_", expand=True)
exp = DataFrame(
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]}
)
tm.assert_frame_equal(result, exp)
result = s.str.rsplit("_", expand=True, n=2)
exp = DataFrame(
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]}
)
tm.assert_frame_equal(result, exp)
result = s.str.rsplit("_", expand=True, n=1)
exp = DataFrame({0: ["some_equal", "with_no"], 1: ["splits", "nans"]})
tm.assert_frame_equal(result, exp)
s = Series(["some_splits", "with_index"], index=["preserve", "me"])
result = s.str.rsplit("_", expand=True)
exp = DataFrame(
{0: ["some", "with"], 1: ["splits", "index"]}, index=["preserve", "me"]
)
tm.assert_frame_equal(result, exp)
def test_rsplit_to_multiindex_expand(self):
idx = Index(["nosplit", "alsonosplit"])
result = idx.str.rsplit("_", expand=True)
exp = idx
tm.assert_index_equal(result, exp)
assert result.nlevels == 1
idx = Index(["some_equal_splits", "with_no_nans"])
result = idx.str.rsplit("_", expand=True)
exp = MultiIndex.from_tuples(
[("some", "equal", "splits"), ("with", "no", "nans")]
)
tm.assert_index_equal(result, exp)
assert result.nlevels == 3
idx = Index(["some_equal_splits", "with_no_nans"])
result = idx.str.rsplit("_", expand=True, n=1)
exp = MultiIndex.from_tuples([("some_equal", "splits"), ("with_no", "nans")])
tm.assert_index_equal(result, exp)
assert result.nlevels == 2
def test_split_nan_expand(self):
# gh-18450
s = Series(["foo,bar,baz", np.nan])
result = s.str.split(",", expand=True)
exp = DataFrame([["foo", "bar", "baz"], [np.nan, np.nan, np.nan]])
tm.assert_frame_equal(result, exp)
# check that these are actually np.nan and not None
# TODO see GH 18463
# tm.assert_frame_equal does not differentiate
assert all(np.isnan(x) for x in result.iloc[1])
def test_split_with_name(self):
# GH 12617
# should preserve name
s = Series(["a,b", "c,d"], name="xxx")
res = s.str.split(",")
exp = Series([["a", "b"], ["c", "d"]], name="xxx")
tm.assert_series_equal(res, exp)
res = s.str.split(",", expand=True)
exp = DataFrame([["a", "b"], ["c", "d"]])
tm.assert_frame_equal(res, exp)
idx = Index(["a,b", "c,d"], name="xxx")
res = idx.str.split(",")
exp = Index([["a", "b"], ["c", "d"]], name="xxx")
assert res.nlevels == 1
tm.assert_index_equal(res, exp)
res = idx.str.split(",", expand=True)
exp = MultiIndex.from_tuples([("a", "b"), ("c", "d")])
assert res.nlevels == 2
tm.assert_index_equal(res, exp)
def test_partition_series(self):
# https://github.com/pandas-dev/pandas/issues/23558
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None])
result = values.str.partition("_", expand=False)
exp = Series(
[("a", "_", "b_c"), ("c", "_", "d_e"), np.nan, ("f", "_", "g_h"), None]
)
tm.assert_series_equal(result, exp)
result = values.str.rpartition("_", expand=False)
exp = Series(
[("a_b", "_", "c"), ("c_d", "_", "e"), np.nan, ("f_g", "_", "h"), None]
)
tm.assert_series_equal(result, exp)
# more than one char
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h", None])
result = values.str.partition("__", expand=False)
exp = Series(
[
("a", "__", "b__c"),
("c", "__", "d__e"),
np.nan,
("f", "__", "g__h"),
None,
]
)
tm.assert_series_equal(result, exp)
result = values.str.rpartition("__", expand=False)
exp = Series(
[
("a__b", "__", "c"),
("c__d", "__", "e"),
np.nan,
("f__g", "__", "h"),
None,
]
)
tm.assert_series_equal(result, exp)
# None
values = Series(["a b c", "c d e", np.nan, "f g h", None])
result = values.str.partition(expand=False)
exp = Series(
[("a", " ", "b c"), ("c", " ", "d e"), np.nan, ("f", " ", "g h"), None]
)
tm.assert_series_equal(result, exp)
result = values.str.rpartition(expand=False)
exp = Series(
[("a b", " ", "c"), ("c d", " ", "e"), np.nan, ("f g", " ", "h"), None]
)
tm.assert_series_equal(result, exp)
# Not split
values = Series(["abc", "cde", np.nan, "fgh", None])
result = values.str.partition("_", expand=False)
exp = Series([("abc", "", ""), ("cde", "", ""), np.nan, ("fgh", "", ""), None])
tm.assert_series_equal(result, exp)
result = values.str.rpartition("_", expand=False)
exp = Series([("", "", "abc"), ("", "", "cde"), np.nan, ("", "", "fgh"), None])
tm.assert_series_equal(result, exp)
# unicode
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
result = values.str.partition("_", expand=False)
exp = Series([("a", "_", "b_c"), ("c", "_", "d_e"), np.nan, ("f", "_", "g_h")])
tm.assert_series_equal(result, exp)
result = values.str.rpartition("_", expand=False)
exp = Series([("a_b", "_", "c"), ("c_d", "_", "e"), np.nan, ("f_g", "_", "h")])
tm.assert_series_equal(result, exp)
# compare to standard lib
values = Series(["A_B_C", "B_C_D", "E_F_G", "EFGHEF"])
result = values.str.partition("_", expand=False).tolist()
assert result == [v.partition("_") for v in values]
result = values.str.rpartition("_", expand=False).tolist()
assert result == [v.rpartition("_") for v in values]
def test_partition_index(self):
# https://github.com/pandas-dev/pandas/issues/23558
values = Index(["a_b_c", "c_d_e", "f_g_h", np.nan, None])
result = values.str.partition("_", expand=False)
exp = Index(
np.array(
[("a", "_", "b_c"), ("c", "_", "d_e"), ("f", "_", "g_h"), np.nan, None],
dtype=object,
)
)
tm.assert_index_equal(result, exp)
assert result.nlevels == 1
result = values.str.rpartition("_", expand=False)
exp = Index(
np.array(
[("a_b", "_", "c"), ("c_d", "_", "e"), ("f_g", "_", "h"), np.nan, None],
dtype=object,
)
)
tm.assert_index_equal(result, exp)
assert result.nlevels == 1
result = values.str.partition("_")
exp = Index(
[
("a", "_", "b_c"),
("c", "_", "d_e"),
("f", "_", "g_h"),
(np.nan, np.nan, np.nan),
(None, None, None),
]
)
tm.assert_index_equal(result, exp)
assert isinstance(result, MultiIndex)
assert result.nlevels == 3
result = values.str.rpartition("_")
exp = Index(
[
("a_b", "_", "c"),
("c_d", "_", "e"),
("f_g", "_", "h"),
(np.nan, np.nan, np.nan),
(None, None, None),
]
)
tm.assert_index_equal(result, exp)
assert isinstance(result, MultiIndex)
assert result.nlevels == 3
def test_partition_to_dataframe(self):
# https://github.com/pandas-dev/pandas/issues/23558
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None])
result = values.str.partition("_")
exp = DataFrame(
{
0: ["a", "c", np.nan, "f", None],
1: ["_", "_", np.nan, "_", None],
2: ["b_c", "d_e", np.nan, "g_h", None],
}
)
tm.assert_frame_equal(result, exp)
result = values.str.rpartition("_")
exp = DataFrame(
{
0: ["a_b", "c_d", np.nan, "f_g", None],
1: ["_", "_", np.nan, "_", None],
2: ["c", "e", np.nan, "h", None],
}
)
tm.assert_frame_equal(result, exp)
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None])
result = values.str.partition("_", expand=True)
exp = DataFrame(
{
0: ["a", "c", np.nan, "f", None],
1: ["_", "_", np.nan, "_", None],
2: ["b_c", "d_e", np.nan, "g_h", None],
}
)
tm.assert_frame_equal(result, exp)
result = values.str.rpartition("_", expand=True)
exp = DataFrame(
{
0: ["a_b", "c_d", np.nan, "f_g", None],
1: ["_", "_", np.nan, "_", None],
2: ["c", "e", np.nan, "h", None],
}
)
tm.assert_frame_equal(result, exp)
def test_partition_with_name(self):
# GH 12617
s = Series(["a,b", "c,d"], name="xxx")
res = s.str.partition(",")
exp = DataFrame({0: ["a", "c"], 1: [",", ","], 2: ["b", "d"]})
tm.assert_frame_equal(res, exp)
# should preserve name
res = s.str.partition(",", expand=False)
exp = Series([("a", ",", "b"), ("c", ",", "d")], name="xxx")
tm.assert_series_equal(res, exp)
idx = Index(["a,b", "c,d"], name="xxx")
res = idx.str.partition(",")
exp = MultiIndex.from_tuples([("a", ",", "b"), ("c", ",", "d")])
assert res.nlevels == 3
tm.assert_index_equal(res, exp)
# should preserve name
res = idx.str.partition(",", expand=False)
exp = Index(np.array([("a", ",", "b"), ("c", ",", "d")]), name="xxx")
assert res.nlevels == 1
tm.assert_index_equal(res, exp)
def test_partition_sep_kwarg(self):
# GH 22676; depr kwarg "pat" in favor of "sep"
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
expected = values.str.partition(sep="_")
result = values.str.partition("_")
tm.assert_frame_equal(result, expected)
expected = values.str.rpartition(sep="_")
result = values.str.rpartition("_")
tm.assert_frame_equal(result, expected)
def test_pipe_failures(self):
# #2119
s = Series(["A|B|C"])
result = s.str.split("|")
exp = Series([["A", "B", "C"]])
tm.assert_series_equal(result, exp)
result = s.str.replace("|", " ", regex=False)
exp = Series(["A B C"])
tm.assert_series_equal(result, exp)
@pytest.mark.parametrize(
"start, stop, step, expected",
[
(2, 5, None, Series(["foo", "bar", np.nan, "baz"])),
(0, 3, -1, Series(["", "", np.nan, ""])),
(None, None, -1, Series(["owtoofaa", "owtrabaa", np.nan, "xuqzabaa"])),
(3, 10, 2, Series(["oto", "ato", np.nan, "aqx"])),
(3, 0, -1, Series(["ofa", "aba", np.nan, "aba"])),
],
)
def test_slice(self, start, stop, step, expected):
values = Series(["aafootwo", "aabartwo", np.nan, "aabazqux"])
result = values.str.slice(start, stop, step)
tm.assert_series_equal(result, expected)
# mixed
mixed = Series(
["aafootwo", np.nan, "aabartwo", True, datetime.today(), None, 1, 2.0]
)
rs = Series(mixed).str.slice(2, 5)
xp = Series(["foo", np.nan, "bar", np.nan, np.nan, np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
rs = Series(mixed).str.slice(2, 5, -1)
xp = Series(["oof", np.nan, "rab", np.nan, np.nan, np.nan, np.nan, np.nan])
def test_slice_replace(self):
values = Series(["short", "a bit longer", "evenlongerthanthat", "", np.nan])
exp = Series(["shrt", "a it longer", "evnlongerthanthat", "", np.nan])
result = values.str.slice_replace(2, 3)
tm.assert_series_equal(result, exp)
exp = Series(["shzrt", "a zit longer", "evznlongerthanthat", "z", np.nan])
result = values.str.slice_replace(2, 3, "z")
tm.assert_series_equal(result, exp)
exp = Series(["shzort", "a zbit longer", "evzenlongerthanthat", "z", np.nan])
result = values.str.slice_replace(2, 2, "z")
tm.assert_series_equal(result, exp)
exp = Series(["shzort", "a zbit longer", "evzenlongerthanthat", "z", np.nan])
result = values.str.slice_replace(2, 1, "z")
tm.assert_series_equal(result, exp)
exp = Series(["shorz", "a bit longez", "evenlongerthanthaz", "z", np.nan])
result = values.str.slice_replace(-1, None, "z")
tm.assert_series_equal(result, exp)
exp = Series(["zrt", "zer", "zat", "z", np.nan])
result = values.str.slice_replace(None, -2, "z")
tm.assert_series_equal(result, exp)
exp = Series(["shortz", "a bit znger", "evenlozerthanthat", "z", np.nan])
result = values.str.slice_replace(6, 8, "z")
tm.assert_series_equal(result, exp)
exp = Series(["zrt", "a zit longer", "evenlongzerthanthat", "z", np.nan])
result = values.str.slice_replace(-10, 3, "z")
tm.assert_series_equal(result, exp)
def test_strip_lstrip_rstrip(self):
values = Series([" aa ", " bb \n", np.nan, "cc "])
result = values.str.strip()
exp = Series(["aa", "bb", np.nan, "cc"])
tm.assert_series_equal(result, exp)
result = values.str.lstrip()
exp = Series(["aa ", "bb \n", np.nan, "cc "])
tm.assert_series_equal(result, exp)
result = values.str.rstrip()
exp = Series([" aa", " bb", np.nan, "cc"])
tm.assert_series_equal(result, exp)
def test_strip_lstrip_rstrip_mixed(self):
# mixed
mixed = Series(
[" aa ", np.nan, " bb \t\n", True, datetime.today(), None, 1, 2.0]
)
rs = Series(mixed).str.strip()
xp = Series(["aa", np.nan, "bb", np.nan, np.nan, np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
rs = Series(mixed).str.lstrip()
xp = Series(["aa ", np.nan, "bb \t\n", np.nan, np.nan, np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
rs = Series(mixed).str.rstrip()
xp = Series([" aa", np.nan, " bb", np.nan, np.nan, np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
def test_strip_lstrip_rstrip_args(self):
values = Series(["xxABCxx", "xx BNSD", "LDFJH xx"])
rs = values.str.strip("x")
xp = Series(["ABC", " BNSD", "LDFJH "])
tm.assert_series_equal(rs, xp)
rs = values.str.lstrip("x")
xp = Series(["ABCxx", " BNSD", "LDFJH xx"])
tm.assert_series_equal(rs, xp)
rs = values.str.rstrip("x")
xp = Series(["xxABC", "xx BNSD", "LDFJH "])
tm.assert_series_equal(rs, xp)
def test_wrap(self):
# test values are: two words less than width, two words equal to width,
# two words greater than width, one word less than width, one word
# equal to width, one word greater than width, multiple tokens with
# trailing whitespace equal to width
values = Series(
[
"hello world",
"hello world!",
"hello world!!",
"abcdefabcde",
"abcdefabcdef",
"abcdefabcdefa",
"ab ab ab ab ",
"ab ab ab ab a",
"\t",
]
)
# expected values
xp = Series(
[
"hello world",
"hello world!",
"hello\nworld!!",
"abcdefabcde",
"abcdefabcdef",
"abcdefabcdef\na",
"ab ab ab ab",
"ab ab ab ab\na",
"",
]
)
rs = values.str.wrap(12, break_long_words=True)
tm.assert_series_equal(rs, xp)
# test with pre and post whitespace (non-unicode), NaN, and non-ascii
# Unicode
values = Series([" pre ", np.nan, "\xac\u20ac\U00008000 abadcafe"])
xp = Series([" pre", np.nan, "\xac\u20ac\U00008000 ab\nadcafe"])
rs = values.str.wrap(6)
tm.assert_series_equal(rs, xp)
def test_get(self):
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
result = values.str.split("_").str.get(1)
expected = Series(["b", "d", np.nan, "g"])
tm.assert_series_equal(result, expected)
# mixed
mixed = Series(["a_b_c", np.nan, "c_d_e", True, datetime.today(), None, 1, 2.0])
rs = Series(mixed).str.split("_").str.get(1)
xp = Series(["b", np.nan, "d", np.nan, np.nan, np.nan, np.nan, np.nan])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
# bounds testing
values = Series(["1_2_3_4_5", "6_7_8_9_10", "11_12"])
# positive index
result = values.str.split("_").str.get(2)
expected = Series(["3", "8", np.nan])
tm.assert_series_equal(result, expected)
# negative index
result = values.str.split("_").str.get(-3)
expected = Series(["3", "8", np.nan])
tm.assert_series_equal(result, expected)
def test_get_complex(self):
# GH 20671, getting value not in dict raising `KeyError`
values = Series([(1, 2, 3), [1, 2, 3], {1, 2, 3}, {1: "a", 2: "b", 3: "c"}])
result = values.str.get(1)
expected = Series([2, 2, np.nan, "a"])
tm.assert_series_equal(result, expected)
result = values.str.get(-1)
expected = Series([3, 3, np.nan, np.nan])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("to_type", [tuple, list, np.array])
def test_get_complex_nested(self, to_type):
values = Series([to_type([to_type([1, 2])])])
result = values.str.get(0)
expected = Series([to_type([1, 2])])
tm.assert_series_equal(result, expected)
result = values.str.get(1)
expected = Series([np.nan])
tm.assert_series_equal(result, expected)
def test_contains_moar(self):
# PR #1179
s = Series(["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"])
result = s.str.contains("a")
expected = Series(
[False, False, False, True, True, False, np.nan, False, False, True]
)
tm.assert_series_equal(result, expected)
result = s.str.contains("a", case=False)
expected = Series(
[True, False, False, True, True, False, np.nan, True, False, True]
)
tm.assert_series_equal(result, expected)
result = s.str.contains("Aa")
expected = Series(
[False, False, False, True, False, False, np.nan, False, False, False]
)
tm.assert_series_equal(result, expected)
result = s.str.contains("ba")
expected = Series(
[False, False, False, True, False, False, np.nan, False, False, False]
)
tm.assert_series_equal(result, expected)
result = s.str.contains("ba", case=False)
expected = Series(
[False, False, False, True, True, False, np.nan, True, False, False]
)
tm.assert_series_equal(result, expected)
def test_contains_nan(self):
# PR #14171
s = Series([np.nan, np.nan, np.nan], dtype=np.object_)
result = s.str.contains("foo", na=False)
expected = Series([False, False, False], dtype=np.bool_)
tm.assert_series_equal(result, expected)
result = s.str.contains("foo", na=True)
expected = Series([True, True, True], dtype=np.bool_)
tm.assert_series_equal(result, expected)
result = s.str.contains("foo", na="foo")
expected = Series(["foo", "foo", "foo"], dtype=np.object_)
tm.assert_series_equal(result, expected)
result = s.str.contains("foo")
expected = Series([np.nan, np.nan, np.nan], dtype=np.object_)
tm.assert_series_equal(result, expected)
def test_replace_moar(self):
# PR #1179
s = Series(["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"])
result = s.str.replace("A", "YYY")
expected = Series(
["YYY", "B", "C", "YYYaba", "Baca", "", np.nan, "CYYYBYYY", "dog", "cat"]
)
tm.assert_series_equal(result, expected)
result = s.str.replace("A", "YYY", case=False)
expected = Series(
[
"YYY",
"B",
"C",
"YYYYYYbYYY",
"BYYYcYYY",
"",
np.nan,
"CYYYBYYY",
"dog",
"cYYYt",
]
)
tm.assert_series_equal(result, expected)
result = s.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)
expected = Series(
[
"A",
"B",
"C",
"XX-XX ba",
"XX-XX ca",
"",
np.nan,
"XX-XX BA",
"XX-XX ",
"XX-XX t",
]
)
tm.assert_series_equal(result, expected)
def test_string_slice_get_syntax(self):
s = Series(
[
"YYY",
"B",
"C",
"YYYYYYbYYY",
"BYYYcYYY",
np.nan,
"CYYYBYYY",
"dog",
"cYYYt",
]
)
result = s.str[0]
expected = s.str.get(0)
tm.assert_series_equal(result, expected)
result = s.str[:3]
expected = s.str.slice(stop=3)
tm.assert_series_equal(result, expected)
result = s.str[2::-1]
expected = s.str.slice(start=2, step=-1)
tm.assert_series_equal(result, expected)
def test_string_slice_out_of_bounds(self):
s = Series([(1, 2), (1,), (3, 4, 5)])
result = s.str[1]
expected = Series([2, np.nan, 4])
tm.assert_series_equal(result, expected)
s = Series(["foo", "b", "ba"])
result = s.str[1]
expected = Series(["o", np.nan, "a"])
tm.assert_series_equal(result, expected)
def test_match_findall_flags(self):
data = {
"Dave": "dave@google.com",
"Steve": "steve@gmail.com",
"Rob": "rob@gmail.com",
"Wes": np.nan,
}
data = Series(data)
pat = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
result = data.str.extract(pat, flags=re.IGNORECASE, expand=True)
assert result.iloc[0].tolist() == ["dave", "google", "com"]
result = data.str.match(pat, flags=re.IGNORECASE)
assert result[0]
result = data.str.fullmatch(pat, flags=re.IGNORECASE)
assert result[0]
result = data.str.findall(pat, flags=re.IGNORECASE)
assert result[0][0] == ("dave", "google", "com")
result = data.str.count(pat, flags=re.IGNORECASE)
assert result[0] == 1
with tm.assert_produces_warning(UserWarning):
result = data.str.contains(pat, flags=re.IGNORECASE)
assert result[0]
def test_encode_decode(self):
base = Series(["a", "b", "a\xe4"])
series = base.str.encode("utf-8")
f = lambda x: x.decode("utf-8")
result = series.str.decode("utf-8")
exp = series.map(f)
tm.assert_series_equal(result, exp)
def test_encode_decode_errors(self):
encodeBase = Series(["a", "b", "a\x9d"])
msg = (
r"'charmap' codec can't encode character '\\x9d' in position 1: "
"character maps to <undefined>"
)
with pytest.raises(UnicodeEncodeError, match=msg):
encodeBase.str.encode("cp1252")
f = lambda x: x.encode("cp1252", "ignore")
result = encodeBase.str.encode("cp1252", "ignore")
exp = encodeBase.map(f)
tm.assert_series_equal(result, exp)
decodeBase = Series([b"a", b"b", b"a\x9d"])
msg = (
"'charmap' codec can't decode byte 0x9d in position 1: "
"character maps to <undefined>"
)
with pytest.raises(UnicodeDecodeError, match=msg):
decodeBase.str.decode("cp1252")
f = lambda x: x.decode("cp1252", "ignore")
result = decodeBase.str.decode("cp1252", "ignore")
exp = decodeBase.map(f)
tm.assert_series_equal(result, exp)
def test_normalize(self):
values = ["ABC", "", "", np.nan, "アイエ"]
s = Series(values, index=["a", "b", "c", "d", "e"])
normed = ["ABC", "ABC", "123", np.nan, "アイエ"]
expected = Series(normed, index=["a", "b", "c", "d", "e"])
result = s.str.normalize("NFKC")
tm.assert_series_equal(result, expected)
expected = Series(
["ABC", "", "", np.nan, "アイエ"], index=["a", "b", "c", "d", "e"]
)
result = s.str.normalize("NFC")
tm.assert_series_equal(result, expected)
with pytest.raises(ValueError, match="invalid normalization form"):
s.str.normalize("xxx")
s = Index(["", "", "アイエ"])
expected = Index(["ABC", "123", "アイエ"])
result = s.str.normalize("NFKC")
tm.assert_index_equal(result, expected)
def test_index_str_accessor_visibility(self):
from pandas.core.strings import StringMethods
cases = [
(["a", "b"], "string"),
(["a", "b", 1], "mixed-integer"),
(["a", "b", 1.3], "mixed"),
(["a", "b", 1.3, 1], "mixed-integer"),
(["aa", datetime(2011, 1, 1)], "mixed"),
]
for values, tp in cases:
idx = Index(values)
assert isinstance(Series(values).str, StringMethods)
assert isinstance(idx.str, StringMethods)
assert idx.inferred_type == tp
for values, tp in cases:
idx = Index(values)
assert isinstance(Series(values).str, StringMethods)
assert isinstance(idx.str, StringMethods)
assert idx.inferred_type == tp
cases = [
([1, np.nan], "floating"),
([datetime(2011, 1, 1)], "datetime64"),
([timedelta(1)], "timedelta64"),
]
for values, tp in cases:
idx = Index(values)
message = "Can only use .str accessor with string values"
with pytest.raises(AttributeError, match=message):
Series(values).str
with pytest.raises(AttributeError, match=message):
idx.str
assert idx.inferred_type == tp
# MultiIndex has mixed dtype, but not allow to use accessor
idx = MultiIndex.from_tuples([("a", "b"), ("a", "b")])
assert idx.inferred_type == "mixed"
message = "Can only use .str accessor with Index, not MultiIndex"
with pytest.raises(AttributeError, match=message):
idx.str
def test_str_accessor_no_new_attributes(self):
# https://github.com/pandas-dev/pandas/issues/10673
s = Series(list("aabbcde"))
with pytest.raises(AttributeError, match="You cannot add any new attribute"):
s.str.xlabel = "a"
def test_method_on_bytes(self):
lhs = Series(np.array(list("abc"), "S1").astype(object))
rhs = Series(np.array(list("def"), "S1").astype(object))
with pytest.raises(TypeError, match="Cannot use .str.cat with values of.*"):
lhs.str.cat(rhs)
def test_casefold(self):
# GH25405
expected = Series(["ss", np.nan, "case", "ssd"])
s = Series(["ß", np.nan, "case", "ßd"])
result = s.str.casefold()
tm.assert_series_equal(result, expected)
def test_string_array(any_string_method):
method_name, args, kwargs = any_string_method
if method_name == "decode":
pytest.skip("decode requires bytes.")
data = ["a", "bb", np.nan, "ccc"]
a = Series(data, dtype=object)
b = Series(data, dtype="string")
expected = getattr(a.str, method_name)(*args, **kwargs)
result = getattr(b.str, method_name)(*args, **kwargs)
if isinstance(expected, Series):
if expected.dtype == "object" and lib.is_string_array(
expected.dropna().values,
):
assert result.dtype == "string"
result = result.astype(object)
elif expected.dtype == "object" and lib.is_bool_array(
expected.values, skipna=True
):
assert result.dtype == "boolean"
result = result.astype(object)
elif expected.dtype == "bool":
assert result.dtype == "boolean"
result = result.astype("bool")
elif expected.dtype == "float" and expected.isna().any():
assert result.dtype == "Int64"
result = result.astype("float")
elif isinstance(expected, DataFrame):
columns = expected.select_dtypes(include="object").columns
assert all(result[columns].dtypes == "string")
result[columns] = result[columns].astype(object)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"method,expected",
[
("count", [2, None]),
("find", [0, None]),
("index", [0, None]),
("rindex", [2, None]),
],
)
def test_string_array_numeric_integer_array(method, expected):
s = Series(["aba", None], dtype="string")
result = getattr(s.str, method)("a")
expected = Series(expected, dtype="Int64")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method,expected",
[
("isdigit", [False, None, True]),
("isalpha", [True, None, False]),
("isalnum", [True, None, True]),
("isdigit", [False, None, True]),
],
)
def test_string_array_boolean_array(method, expected):
s = Series(["a", None, "1"], dtype="string")
result = getattr(s.str, method)()
expected = Series(expected, dtype="boolean")
tm.assert_series_equal(result, expected)
def test_string_array_extract():
# https://github.com/pandas-dev/pandas/issues/30969
# Only expand=False & multiple groups was failing
a = Series(["a1", "b2", "cc"], dtype="string")
b = Series(["a1", "b2", "cc"], dtype="object")
pat = r"(\w)(\d)"
result = a.str.extract(pat, expand=False)
expected = b.str.extract(pat, expand=False)
assert all(result.dtypes == "string")
result = result.astype(object)
tm.assert_equal(result, expected)
@pytest.mark.parametrize("klass", [tuple, list, np.array, pd.Series, pd.Index])
def test_cat_different_classes(klass):
# https://github.com/pandas-dev/pandas/issues/33425
s = Series(["a", "b", "c"])
result = s.str.cat(klass(["x", "y", "z"]))
expected = Series(["ax", "by", "cz"])
tm.assert_series_equal(result, expected)
def test_str_get_stringarray_multiple_nans():
s = Series(pd.array(["a", "ab", pd.NA, "abc"]))
result = s.str.get(2)
expected = Series(pd.array([pd.NA, pd.NA, pd.NA, "c"]))
tm.assert_series_equal(result, expected)
def test_str_accessor_in_apply_func():
# https://github.com/pandas-dev/pandas/issues/38979
df = DataFrame(zip("abc", "def"))
expected = Series(["A/D", "B/E", "C/F"])
result = df.apply(lambda f: "/".join(f.str.upper()), axis=1)
tm.assert_series_equal(result, expected)