forked from 170010011/fr
153 lines
5.9 KiB
Python
153 lines
5.9 KiB
Python
|
'''
|
||
|
Created on May 7, 2014
|
||
|
|
||
|
@author: eran
|
||
|
'''
|
||
|
from adiencealign.common.images import extract_box
|
||
|
import glob
|
||
|
import os
|
||
|
import time
|
||
|
from adiencealign.cascade_detection.cascade_detector import CascadeDetector,\
|
||
|
resolve_boxes, CascadeResult
|
||
|
import cv2
|
||
|
import csv
|
||
|
'''
|
||
|
Created on Dec 18, 2013
|
||
|
|
||
|
@author: eran
|
||
|
'''
|
||
|
'''
|
||
|
Created on Nov 26, 2013
|
||
|
|
||
|
@author: eran
|
||
|
'''
|
||
|
|
||
|
class CascadeFaceFinder(object):
|
||
|
|
||
|
def __init__(self,
|
||
|
min_size = 32,
|
||
|
drawn_target_res = 360*360,
|
||
|
hangles = [0, -22, 22],
|
||
|
langles = [0,-45,-22,22,45],
|
||
|
haar_file = 'haarcascade_frontalface_default.xml',
|
||
|
lbp_file = 'lbpcascade_frontalface.xml'):
|
||
|
'''
|
||
|
finder = CascadeFaceFinder(min_size = 32, drawn_target_res = 360*360, hangles = [0], langles = [0,-45,-22,22,45], parts_threshold = 0)
|
||
|
|
||
|
finder.get_faces_in_folder(input_folder, output_dir, drawn_folder, is_small_drawn)
|
||
|
|
||
|
or
|
||
|
|
||
|
finder.get_faces_in_photo(full_file, output_dir, drawn_folder, is_small_drawn)
|
||
|
'''
|
||
|
self.min_size = (min_size,min_size)
|
||
|
self.drawn_target_res = drawn_target_res
|
||
|
self._hangles = hangles
|
||
|
self._langles = langles
|
||
|
self.recalc_detectors(haar_file, lbp_file)
|
||
|
|
||
|
# self.funnel = FaceFunnel()
|
||
|
|
||
|
@property
|
||
|
def hangles(self):
|
||
|
return self._hangles
|
||
|
|
||
|
@hangles.setter
|
||
|
def hangles(self,hangles):
|
||
|
self._hangles = hangles
|
||
|
self.recalc_detectors()
|
||
|
|
||
|
@property
|
||
|
def langles(self):
|
||
|
return self._langles
|
||
|
|
||
|
@langles.setter
|
||
|
def langles(self,langles):
|
||
|
self._langles = langles
|
||
|
self.recalc_detectors()
|
||
|
|
||
|
def recalc_detectors(self, haar_file, lbp_file):
|
||
|
self.haar_dtct = CascadeDetector(cascade_file = haar_file,
|
||
|
min_size = self.min_size,
|
||
|
min_neighbors = 20,
|
||
|
scale_factor = 1.03,
|
||
|
cascade_type = 'haar',
|
||
|
thr = 0.4,
|
||
|
angles = self.hangles)
|
||
|
|
||
|
self.lbp_dtct = CascadeDetector(cascade_file = lbp_file,
|
||
|
min_size = self.min_size,
|
||
|
min_neighbors = 15,
|
||
|
scale_factor = 1.04,
|
||
|
cascade_type = 'lbp',
|
||
|
thr = 0.4,
|
||
|
angles = self.langles)
|
||
|
|
||
|
|
||
|
def get_faces_list_in_photo(self, img):
|
||
|
if self.hangles:
|
||
|
haar_faces = self.haar_dtct.detectWithAngles(img, resolve = True)
|
||
|
else:
|
||
|
haar_faces = []
|
||
|
lbp_faces = self.lbp_dtct.detectWithAngles(img, resolve = True)
|
||
|
faces = resolve_boxes({'haar':haar_faces, 'lbp':lbp_faces}, min_overlap = 0.6)
|
||
|
|
||
|
return faces
|
||
|
|
||
|
def create_faces_file(self, fname, is_overwrite = False, target_file = None):
|
||
|
'''
|
||
|
Runs facial detection on fname (say a.jpg, or a.png), and creates a results file (a.faces.txt)
|
||
|
|
||
|
target_file - override, and specify a specific target file
|
||
|
is_overwrite - allow overwriting an existing results file
|
||
|
'''
|
||
|
faces = self.get_faces_list_in_photo(cv2.imread(fname))
|
||
|
results_file = fname.rsplit('.',1)[0] + '.faces.txt' if target_file is None else target_file
|
||
|
|
||
|
if os.path.exists(results_file) and not is_overwrite:
|
||
|
print "Warning, faces result file", results_file, "exists"
|
||
|
else:
|
||
|
with open(results_file,'w') as csvfile:
|
||
|
csv_writer = csv.writer(csvfile, delimiter=',')
|
||
|
header = ['x', 'y','dx','dy', 'score', 'angle', 'type']
|
||
|
csv_writer.writerow(header)
|
||
|
for face in faces:
|
||
|
csv_writer.writerow([str(i) for i in [int(face.x), int(face.y), int(face.dx), int(face.dy), face.score, face.angle, face.cascade_type]])
|
||
|
return results_file
|
||
|
|
||
|
def get_sub_images_from_file(self,original_image_file, faces_file):
|
||
|
'''
|
||
|
extracts all the face sub-images from an image file, based on the results in a faces file
|
||
|
|
||
|
returns - the list of face images (numpy arrays)
|
||
|
'''
|
||
|
img = cv2.imread(original_image_file)
|
||
|
faces_reader = csv.reader(open(faces_file))
|
||
|
faces_reader.next() # discard the headings
|
||
|
padded_face_images = []
|
||
|
for line in faces_reader:
|
||
|
x, y, dx, dy, score, angle, cascade_type = line
|
||
|
[x,y,dx,dy,score, angle] = [int(float(i)) for i in [x,y,dx,dy,score, angle]]
|
||
|
face = CascadeResult(([x,y,dx,dy], score), cascade_type, angle)
|
||
|
padded_face, bounding_box_in_padded_face, _, _ = extract_box(img, face, padding_factor = 0.25)
|
||
|
padded_face_images.append(padded_face)
|
||
|
return padded_face_images
|
||
|
|
||
|
def create_sub_images_from_file(self, original_image_file, faces_file, target_folder = None, img_type = 'png'):
|
||
|
'''
|
||
|
reads a faces file, created by "self.create_faces_file" and extracts padded faces from the original image
|
||
|
The faces will be created in the same folder as the faces file, unless specified otherwise by "target_folder"
|
||
|
|
||
|
returns - the list of face files (strings)
|
||
|
'''
|
||
|
target_folder = os.path.split(faces_file)[0] if target_folder is None else target_folder
|
||
|
padded_face_images = self.get_sub_images_from_file(original_image_file, faces_file)
|
||
|
|
||
|
base_image_name = os.path.split(faces_file)[1].split('.')[0]
|
||
|
face_files = []
|
||
|
for n_face, face_img in enumerate(padded_face_images):
|
||
|
face_file = os.path.join(target_folder, base_image_name + '_face_%d.%s' %(n_face, img_type))
|
||
|
cv2.imwrite( face_file , face_img )
|
||
|
face_files.append(face_file)
|
||
|
return face_files
|
||
|
|