fr/adience_align-master/adiencealign/cascade_detection/cascade_detector.py.bak

354 lines
14 KiB
Python
Raw Normal View History

2021-03-07 12:03:19 +05:30
'''
Created on May 7, 2014
@author: eran
'''
import cv2
import pickle
import numpy as np
from shapely.geometry.polygon import Polygon
import math
from adiencealign.common.files import make_path, expand_path
from adiencealign.common.images import pad_image_for_rotation
class CascadeDetector(object):
'''
This is a haar cascade classifier capable of detecting in multiple angles
'''
def __init__(self, cascade_file = './resources/haarcascade_frontalface_default.xml',
min_size = (10, 10),
min_neighbors = 20,
scale_factor = 1.04,
angles = [0],
thr = 0.4,
cascade_type = 'haar'):
'''
cascade_type - is a string defining the type of cascade
'''
print expand_path('.')
self.cascade_file = cascade_file.rsplit('/',1)[1]
self._cascade_classifier = cv2.CascadeClassifier(cascade_file)
self.scale_factor = scale_factor
self.min_neighbors = min_neighbors
self.min_size = min_size
self.cascade_type = cascade_type
self.angles = angles
self.thr = thr
def __str__(self):
return ''.join([str(x) for x in ['cascade_file:',self.cascade_file,
',scale_factor:',self.scale_factor,
',min_neighbors:',self.min_neighbors,
',min_neighbors:',self.min_neighbors,
',cascade_type:',self.cascade_type
]])
def save_configuration(self, target_file):
file_path = target_file.rsplit('/',1)[0]
make_path(file_path)
config = {'min_size':self.min_size, 'min_neighbours':self.min_neighbors, 'scale_factor':self.scale_factor, 'cascade_file':self.cascade_file}
pickle.dump(obj=config, file = open(target_file,'w'), protocol = 2)
@staticmethod
def load_configuration(target_file):
return pickle.load(open(target_file,'r'))
def detectMultiScaleWithScores(self, img, scaleFactor = None, minNeighbors = None, minSize = None, flags = 4):
scaleFactor = self.scale_factor if not scaleFactor else scaleFactor
minNeighbors = self.min_neighbors if not minNeighbors else minNeighbors
minSize = self.min_size if not minSize else minSize
return self._cascade_classifier.detectMultiScale(img,
scaleFactor = scaleFactor,
minNeighbors = minNeighbors,
minSize = minSize,
flags = flags)
def detectWithAngles(self, img, angels = None, resolve = True, thr = None ):
'''
angles - a list of angles to test. If None, default to the value created at the constructor (which defaults to [0])
resolve - a boolean flag, whether or not to cluster the boxes, and resolve cluster by highest score.
thr - the maximum area covered with objects, before we break from the angles loop
returns - a list of CascadeResult() objects
'''
if thr == None:
thr = self.thr
original_size = img.shape[0] * img.shape[0]
if angels == None:
angels = self.angles
results = []
total_area = 0
for angle in angels:
# the diagonal of the image is the diameter of the rotated image, so the big_image needs to bound this circle
# by being that big
big_image, x_shift, y_shift, diag, rot_center = pad_image_for_rotation(img)
# find the rotation and the inverse rotation matrix, to allow translations between old and new coordinates and vice versa
rot_mat = cv2.getRotationMatrix2D(rot_center, angle, scale = 1.0)
inv_rot_mat = cv2.invertAffineTransform(rot_mat)
# rotate the image by the desired angle
rot_image = cv2.warpAffine(big_image, rot_mat, (big_image.shape[1],big_image.shape[0]), flags=cv2.INTER_CUBIC)
faces = self.detectMultiScaleWithScores(rot_image, scaleFactor = 1.03, minNeighbors = 20, minSize = (15,15), flags = 4)
for face in faces:
xp = face[0]
dx = face[2]
yp = face[1]
dy = face[3]
score = 1
dots = np.matrix([[xp,xp+dx,xp+dx,xp], [yp,yp,yp+dy,yp+dy], [1, 1, 1, 1]])
# these are the original coordinates in the "big_image"
# print dots
originals_in_big = inv_rot_mat * dots
# print originals_in_big
shifter = np.matrix([[x_shift]*4, [y_shift]*4])
# print shifter
# these are the original coordinate in the original image
originals = originals_in_big - shifter
# print originals
points = np.array(originals.transpose())
x = points[0,0]
y = points[0,1]
box_with_score = ([x,y,dx,dy], score)
cascade_result = CascadeResult.from_polygon_points(points, score, self.cascade_type)
# print cascade_result
results.append(cascade_result)
#################
# test and see, if we found enough objects, break out and don't waste our time
total_area += cascade_result.area
if resolve:
return resolve_angles(results, width = img.shape[1], height = img.shape[0])
else:
return results
class BoxInImage(object):
def __init__(self, originals, dx, dy, score = None, angle = 0):
self.originals = originals
self.dx = dx
self.dy = dy
self.score = score
self.angle = angle
def __str__(self):
return ",".join([str(x) for x in [self.originals, self.dx, self.dy, self.score, self.angle]])
def resolve_angles(list_of_results, width, height, thr = 0.3):
'''
we want to cluster the boxes into clusters, and then choose the best box in each cluster by score
* thr - decides what the maximum distance is for a box to join a cluster, in the sense of how much of it's area is covered by the best box in the cluster
note, that two squares, centered, with 45 degrees rotation, will overlap on 77% of their area (thr == 0.22)
'''
clusters = []
for box in list_of_results:
# total_polygon = Polygon([(0,0), (width,0), (width,height), (0,height)])
# if box.polygon.intersection(total_polygon).area < box.area:
# # this means the box is outside the image somehow
# continue
area = box.area
closest_cluster = None
dist_to_closest_cluster = 1.0
for n,cluster in enumerate(clusters):
dist = 1.0
for cluster_box in cluster:
local_dist = 1.0 - box.overlap(cluster_box)/area
dist = min(dist, local_dist)
if dist < dist_to_closest_cluster:
dist_to_closest_cluster = dist
closest_cluster = n
if closest_cluster == None or dist_to_closest_cluster > thr:
# no good cluster was found, open a new cluster
clusters.append([box])
else:
clusters[n].append(box)
centroids = []
for cluster in clusters:
centroids.append(sorted(cluster,key=lambda x: x.score)[-1])
return centroids
def resolve_boxes(dict_of_list_of_cascade_results, min_overlap = 0.7):
'''
Say you tried two different cascades to detect faces.
enter a dictionary (the key is a string describing a cascade type) of detected objects
This function returns a unified results list, where it resolves overlapping boxes, and chooses one of them.
The bigger boxes are selected instead of smaller ones, whether they contain them, or enough of them, determined by min_overlap
'''
final_faces = []
for cascade_str, faces in dict_of_list_of_cascade_results.iteritems():
# go through each cascade type
for face in faces:
if type(face) == CascadeResult:
new_res = face
else:
new_res = CascadeResult(face,cascade_type = cascade_str)
to_add = True
for old_index,old_res in enumerate(final_faces):
ratio = new_res.area / old_res.area
if ratio >1.0:
# new_box is bigger
if new_res.overlap(old_res)/old_res.area > min_overlap:
# the new box contains the old one, we want to replace it:
final_faces[old_index] = new_res
to_add = False
break
if ratio <=1.0:
# the new_box is smaller
if new_res.overlap(old_res)/new_res.area > min_overlap:
# the old box contains the new one, we therefore dont need to add the new box:
to_add = False
break
if to_add:
# if there was no hit, this is a new face, we can add it
final_faces.append(new_res)
return final_faces
def most_centered_box( cascade_results, ( rows, cols ) ):
best_err = 1e10
for i, cascade in enumerate( cascade_results ):
err = ( cascade.x + cascade.dx / 2 - cols / 2 ) ** 2 + ( cascade.y + cascade.dy / 2 - rows / 2 ) ** 2
if err < best_err:
index = i
return cascade_results[ index ]
class CascadeResult(object):
def __init__(self, box_with_score, cascade_type = None, angle = 0):
self.x = box_with_score[0][0]
self.y = box_with_score[0][1]
self.dx = box_with_score[0][2]
self.dy = box_with_score[0][3]
self.score = box_with_score[1]
self.cascade_type = cascade_type
self.angle = angle
@staticmethod
def from_polygon_points(points, score, cascade_type = None):
'''
an alternative generator, allows giving the polygon points instead of [x,y,dx,dy]
'''
x = points[0,0]
y = points[0,1]
top = points[1,] - points[0,]
left = points[3,] - points[0,]
dx = math.sqrt(sum([i*i for i in top]))
dy = math.sqrt(sum([i*i for i in left]))
angle = math.atan(float(top[1])/top[0]) * 180 / math.pi if top[0] != 0 else (970 if top[1] >0 else -90)
return CascadeResult(([x,y,dx,dy],score), cascade_type, angle)
def __str__(self):
return ''.join([str(x) for x in ['center:',self.center,
',\nx:',self.x,
',\ny:',self.y,
',\ndx:',self.dx,
',\ndy:',self.dy,
',\nscore:',self.score,
',\nangle:',self.angle,
',\ncascade_type:',self.cascade_type,
',\npoints_int:\n',self.points_int
]])
@property
def points(self):
x = self.x
y = self.y
dx = self.dx
dy = self.dy
a = self.angle/180.0*math.pi
dots = np.matrix([[x,y,1],[x+dx,y,1],[x+dx,y+dy,1],[x,y+dy,1]])
dots = dots.transpose()
rot_mat = cv2.getRotationMatrix2D((dots[0,0],dots[1,0]), -self.angle, scale = 1.0)
points = rot_mat * dots
points = points.transpose()
return points
@property
def center(self):
return tuple(int(x) for x in (self.points.sum(0)/4.0).tolist()[0])
@property
def points_int(self):
return self.points.astype(int)
@property
def score_with_type(self):
if self.cascade_type:
return self.cascade_type + ' ' + str(self.score)
else:
return str(self.score)
@property
def filename_encode(self):
return '_'.join([str(x) for x in ['loct'] + self.cvformat_result[0] + ['ang', int(self.angle),self.cascade_type, self.score]])
@property
def cvformat_coords(self):
if self.angle == 0:
return [int(x) for x in [self.x, self.y, self.dx, self.dy]]
else:
raise Exception('cannot return [x,y,dx,dy] for a box with angle, use cvformat_result() instead')
@property
def cvformat_result(self):
return ([int(x) for x in [self.x, self.y, self.dx, self.dy]], self.score, self.angle)
# @property
# def rot_matrix(self):
# return array([[cos(math.radians(self.angle)), -sin(math.radians(self.angle))],
# [sin(math.radians(self.angle)), cos(math.radians(self.angle))]])
@property
def top_left(self):
return tuple(self.points[0,].tolist()[0])
@property
def top_right(self):
return tuple(self.points[1,].tolist()[0])
@property
def bottom_right(self):
return tuple(self.points[2,].tolist()[0])
@property
def bottom_left(self):
return tuple(self.points[3,].tolist()[0])
@property
def polygon(self):
return Polygon([self.top_left, self.top_right, self.bottom_right, self.bottom_left])
def overlap(self, otherRect):
return float(self.polygon.intersection(otherRect.polygon).area)
@property
def area(self):
return float(self.polygon.area)
def __gt__(self,b):
return self.area>b.area
def __ge__(self,b):
return self.area>=b.area
def __lt__(self,b):
return self.area<b.area
def __le__(self,b):
return self.area<=b.area