forked from 170010011/fr
728 lines
27 KiB
Python
728 lines
27 KiB
Python
|
import numpy as np
|
||
|
import operator
|
||
|
from . import (linear_sum_assignment, OptimizeResult)
|
||
|
from .optimize import _check_unknown_options
|
||
|
|
||
|
from scipy._lib._util import check_random_state
|
||
|
import itertools
|
||
|
|
||
|
QUADRATIC_ASSIGNMENT_METHODS = ['faq', '2opt']
|
||
|
|
||
|
def quadratic_assignment(A, B, method="faq", options=None):
|
||
|
r"""
|
||
|
Approximates solution to the quadratic assignment problem and
|
||
|
the graph matching problem.
|
||
|
|
||
|
Quadratic assignment solves problems of the following form:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\
|
||
|
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\
|
||
|
|
||
|
where :math:`\mathcal{P}` is the set of all permutation matrices,
|
||
|
and :math:`A` and :math:`B` are square matrices.
|
||
|
|
||
|
Graph matching tries to *maximize* the same objective function.
|
||
|
This algorithm can be thought of as finding the alignment of the
|
||
|
nodes of two graphs that minimizes the number of induced edge
|
||
|
disagreements, or, in the case of weighted graphs, the sum of squared
|
||
|
edge weight differences.
|
||
|
|
||
|
Note that the quadratic assignment problem is NP-hard. The results given
|
||
|
here are approximations and are not guaranteed to be optimal.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : 2-D array, square
|
||
|
The square matrix :math:`A` in the objective function above.
|
||
|
|
||
|
B : 2-D array, square
|
||
|
The square matrix :math:`B` in the objective function above.
|
||
|
|
||
|
method : str in {'faq', '2opt'} (default: 'faq')
|
||
|
The algorithm used to solve the problem.
|
||
|
:ref:`'faq' <optimize.qap-faq>` (default) and
|
||
|
:ref:`'2opt' <optimize.qap-2opt>` are available.
|
||
|
|
||
|
options : dict, optional
|
||
|
A dictionary of solver options. All solvers support the following:
|
||
|
|
||
|
maximize : bool (default: False)
|
||
|
Maximizes the objective function if ``True``.
|
||
|
|
||
|
partial_match : 2-D array of integers, optional (default: None)
|
||
|
Fixes part of the matching. Also known as a "seed" [2]_.
|
||
|
|
||
|
Each row of `partial_match` specifies a pair of matched nodes:
|
||
|
node ``partial_match[i, 0]`` of `A` is matched to node
|
||
|
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``,
|
||
|
where ``m`` is not greater than the number of nodes, :math:`n`.
|
||
|
|
||
|
rng : int, `RandomState`, `Generator` or None, optional (default: None)
|
||
|
Accepts an integer as a seed for the random generator or a
|
||
|
``RandomState`` or ``Generator`` object. If None (default), uses
|
||
|
global `numpy.random` random state.
|
||
|
|
||
|
For method-specific options, see
|
||
|
:func:`show_options('quadratic_assignment') <show_options>`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : OptimizeResult
|
||
|
`OptimizeResult` containing the following fields.
|
||
|
|
||
|
col_ind : 1-D array
|
||
|
Column indices corresponding to the best permutation found of the
|
||
|
nodes of `B`.
|
||
|
fun : float
|
||
|
The objective value of the solution.
|
||
|
nit : int
|
||
|
The number of iterations performed during optimization.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The default method :ref:`'faq' <optimize.qap-faq>` uses the Fast
|
||
|
Approximate QAP algorithm [1]_; it typically offers the best combination of
|
||
|
speed and accuracy.
|
||
|
Method :ref:`'2opt' <optimize.qap-2opt>` can be computationally expensive,
|
||
|
but may be a useful alternative, or it can be used to refine the solution
|
||
|
returned by another method.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik,
|
||
|
S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and
|
||
|
C.E. Priebe, "Fast approximate quadratic programming for graph
|
||
|
matching," PLOS one, vol. 10, no. 4, p. e0121002, 2015,
|
||
|
:doi:`10.1371/journal.pone.0121002`
|
||
|
|
||
|
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski,
|
||
|
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019):
|
||
|
203-215, :doi:`10.1016/j.patcog.2018.09.014`
|
||
|
|
||
|
.. [3] "2-opt," Wikipedia.
|
||
|
https://en.wikipedia.org/wiki/2-opt
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.optimize import quadratic_assignment
|
||
|
>>> A = np.array([[0, 80, 150, 170], [80, 0, 130, 100],
|
||
|
... [150, 130, 0, 120], [170, 100, 120, 0]])
|
||
|
>>> B = np.array([[0, 5, 2, 7], [0, 0, 3, 8],
|
||
|
... [0, 0, 0, 3], [0, 0, 0, 0]])
|
||
|
>>> res = quadratic_assignment(A, B)
|
||
|
>>> print(res)
|
||
|
col_ind: array([0, 3, 2, 1])
|
||
|
fun: 3260
|
||
|
nit: 9
|
||
|
|
||
|
The see the relationship between the returned ``col_ind`` and ``fun``,
|
||
|
use ``col_ind`` to form the best permutation matrix found, then evaluate
|
||
|
the objective function :math:`f(P) = trace(A^T P B P^T )`.
|
||
|
|
||
|
>>> perm = res['col_ind']
|
||
|
>>> P = np.eye(len(A), dtype=int)[perm]
|
||
|
>>> fun = np.trace(A.T @ P @ B @ P.T)
|
||
|
>>> print(fun)
|
||
|
3260
|
||
|
|
||
|
Alternatively, to avoid constructing the permutation matrix explicitly,
|
||
|
directly permute the rows and columns of the distance matrix.
|
||
|
|
||
|
>>> fun = np.trace(A.T @ B[perm][:, perm])
|
||
|
>>> print(fun)
|
||
|
3260
|
||
|
|
||
|
Although not guaranteed in general, ``quadratic_assignment`` happens to
|
||
|
have found the globally optimal solution.
|
||
|
|
||
|
>>> from itertools import permutations
|
||
|
>>> perm_opt, fun_opt = None, np.inf
|
||
|
>>> for perm in permutations([0, 1, 2, 3]):
|
||
|
... perm = np.array(perm)
|
||
|
... fun = np.trace(A.T @ B[perm][:, perm])
|
||
|
... if fun < fun_opt:
|
||
|
... fun_opt, perm_opt = fun, perm
|
||
|
>>> print(np.array_equal(perm_opt, res['col_ind']))
|
||
|
True
|
||
|
|
||
|
Here is an example for which the default method,
|
||
|
:ref:`'faq' <optimize.qap-faq>`, does not find the global optimum.
|
||
|
|
||
|
>>> A = np.array([[0, 5, 8, 6], [5, 0, 5, 1],
|
||
|
... [8, 5, 0, 2], [6, 1, 2, 0]])
|
||
|
>>> B = np.array([[0, 1, 8, 4], [1, 0, 5, 2],
|
||
|
... [8, 5, 0, 5], [4, 2, 5, 0]])
|
||
|
>>> res = quadratic_assignment(A, B)
|
||
|
>>> print(res)
|
||
|
col_ind: array([1, 0, 3, 2])
|
||
|
fun: 178
|
||
|
nit: 13
|
||
|
|
||
|
If accuracy is important, consider using :ref:`'2opt' <optimize.qap-2opt>`
|
||
|
to refine the solution.
|
||
|
|
||
|
>>> guess = np.array([np.arange(len(A)), res.col_ind]).T
|
||
|
>>> res = quadratic_assignment(A, B, method="2opt",
|
||
|
... options = {'partial_guess': guess})
|
||
|
>>> print(res)
|
||
|
col_ind: array([1, 2, 3, 0])
|
||
|
fun: 176
|
||
|
nit: 17
|
||
|
|
||
|
"""
|
||
|
|
||
|
if options is None:
|
||
|
options = {}
|
||
|
|
||
|
method = method.lower()
|
||
|
methods = {"faq": _quadratic_assignment_faq,
|
||
|
"2opt": _quadratic_assignment_2opt}
|
||
|
if method not in methods:
|
||
|
raise ValueError(f"method {method} must be in {methods}.")
|
||
|
res = methods[method](A, B, **options)
|
||
|
return res
|
||
|
|
||
|
|
||
|
def _calc_score(A, B, perm):
|
||
|
# equivalent to objective function but avoids matmul
|
||
|
return np.sum(A * B[perm][:, perm])
|
||
|
|
||
|
|
||
|
def _common_input_validation(A, B, partial_match):
|
||
|
A = np.atleast_2d(A)
|
||
|
B = np.atleast_2d(B)
|
||
|
|
||
|
if partial_match is None:
|
||
|
partial_match = np.array([[], []]).T
|
||
|
partial_match = np.atleast_2d(partial_match).astype(int)
|
||
|
|
||
|
msg = None
|
||
|
if A.shape[0] != A.shape[1]:
|
||
|
msg = "`A` must be square"
|
||
|
elif B.shape[0] != B.shape[1]:
|
||
|
msg = "`B` must be square"
|
||
|
elif A.ndim != 2 or B.ndim != 2:
|
||
|
msg = "`A` and `B` must have exactly two dimensions"
|
||
|
elif A.shape != B.shape:
|
||
|
msg = "`A` and `B` matrices must be of equal size"
|
||
|
elif partial_match.shape[0] > A.shape[0]:
|
||
|
msg = "`partial_match` can have only as many seeds as there are nodes"
|
||
|
elif partial_match.shape[1] != 2:
|
||
|
msg = "`partial_match` must have two columns"
|
||
|
elif partial_match.ndim != 2:
|
||
|
msg = "`partial_match` must have exactly two dimensions"
|
||
|
elif (partial_match < 0).any():
|
||
|
msg = "`partial_match` must contain only positive indices"
|
||
|
elif (partial_match >= len(A)).any():
|
||
|
msg = "`partial_match` entries must be less than number of nodes"
|
||
|
elif (not len(set(partial_match[:, 0])) == len(partial_match[:, 0]) or
|
||
|
not len(set(partial_match[:, 1])) == len(partial_match[:, 1])):
|
||
|
msg = "`partial_match` column entries must be unique"
|
||
|
|
||
|
if msg is not None:
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
return A, B, partial_match
|
||
|
|
||
|
|
||
|
def _quadratic_assignment_faq(A, B,
|
||
|
maximize=False, partial_match=None, rng=None,
|
||
|
P0="barycenter", shuffle_input=False, maxiter=30,
|
||
|
tol=0.03, **unknown_options
|
||
|
):
|
||
|
r"""
|
||
|
Solve the quadratic assignment problem (approximately).
|
||
|
|
||
|
This function solves the Quadratic Assignment Problem (QAP) and the
|
||
|
Graph Matching Problem (GMP) using the Fast Approximate QAP Algorithm
|
||
|
(FAQ) [1]_.
|
||
|
|
||
|
Quadratic assignment solves problems of the following form:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\
|
||
|
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\
|
||
|
|
||
|
where :math:`\mathcal{P}` is the set of all permutation matrices,
|
||
|
and :math:`A` and :math:`B` are square matrices.
|
||
|
|
||
|
Graph matching tries to *maximize* the same objective function.
|
||
|
This algorithm can be thought of as finding the alignment of the
|
||
|
nodes of two graphs that minimizes the number of induced edge
|
||
|
disagreements, or, in the case of weighted graphs, the sum of squared
|
||
|
edge weight differences.
|
||
|
|
||
|
Note that the quadratic assignment problem is NP-hard. The results given
|
||
|
here are approximations and are not guaranteed to be optimal.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : 2-D array, square
|
||
|
The square matrix :math:`A` in the objective function above.
|
||
|
|
||
|
B : 2-D array, square
|
||
|
The square matrix :math:`B` in the objective function above.
|
||
|
|
||
|
method : str in {'faq', '2opt'} (default: 'faq')
|
||
|
The algorithm used to solve the problem. This is the method-specific
|
||
|
documentation for 'faq'.
|
||
|
:ref:`'2opt' <optimize.qap-2opt>` is also available.
|
||
|
|
||
|
Options
|
||
|
-------
|
||
|
|
||
|
maximize : bool (default: False)
|
||
|
Maximizes the objective function if ``True``.
|
||
|
|
||
|
partial_match : 2-D array of integers, optional (default: None)
|
||
|
Fixes part of the matching. Also known as a "seed" [2]_.
|
||
|
|
||
|
Each row of `partial_match` specifies a pair of matched nodes:
|
||
|
node ``partial_match[i, 0]`` of `A` is matched to node
|
||
|
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``, where
|
||
|
``m`` is not greater than the number of nodes, :math:`n`.
|
||
|
|
||
|
rng : int, `RandomState`, `Generator` or None, optional (default: None)
|
||
|
Accepts an integer as a seed for the random generator or a
|
||
|
``RandomState`` or ``Generator`` object. If None (default), uses
|
||
|
global `numpy.random` random state.
|
||
|
|
||
|
P0 : 2-D array, "barycenter", or "randomized" (default: "barycenter")
|
||
|
Initial position. Must be a doubly-stochastic matrix [3]_.
|
||
|
|
||
|
If the initial position is an array, it must be a doubly stochastic
|
||
|
matrix of size :math:`m' \times m'` where :math:`m' = n - m`.
|
||
|
|
||
|
If ``"barycenter"`` (default), the initial position is the barycenter
|
||
|
of the Birkhoff polytope (the space of doubly stochastic matrices).
|
||
|
This is a :math:`m' \times m'` matrix with all entries equal to
|
||
|
:math:`1 / m'`.
|
||
|
|
||
|
If ``"randomized"`` the initial search position is
|
||
|
:math:`P_0 = (J + K) / 2`, where :math:`J` is the barycenter and
|
||
|
:math:`K` is a random doubly stochastic matrix.
|
||
|
|
||
|
shuffle_input : bool (default: False)
|
||
|
Set to `True` to resolve degenerate gradients randomly. For
|
||
|
non-degenerate gradients this option has no effect.
|
||
|
|
||
|
maxiter : int, positive (default: 30)
|
||
|
Integer specifying the max number of Frank-Wolfe iterations performed.
|
||
|
|
||
|
tol : float (default: 0.03)
|
||
|
Tolerance for termination. Frank-Wolfe iteration terminates when
|
||
|
:math:`\frac{||P_{i}-P_{i+1}||_F}{\sqrt{m')}} \leq tol`,
|
||
|
where :math:`i` is the iteration number.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : OptimizeResult
|
||
|
`OptimizeResult` containing the following fields.
|
||
|
|
||
|
col_ind : 1-D array
|
||
|
Column indices corresponding to the best permutation found of the
|
||
|
nodes of `B`.
|
||
|
fun : float
|
||
|
The objective value of the solution.
|
||
|
nit : int
|
||
|
The number of Frank-Wolfe iterations performed.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The algorithm may be sensitive to the initial permutation matrix (or
|
||
|
search "position") due to the possibility of several local minima
|
||
|
within the feasible region. A barycenter initialization is more likely to
|
||
|
result in a better solution than a single random initialization. However,
|
||
|
calling ``quadratic_assignment`` several times with different random
|
||
|
initializations may result in a better optimum at the cost of longer
|
||
|
total execution time.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
As mentioned above, a barycenter initialization often results in a better
|
||
|
solution than a single random initialization.
|
||
|
|
||
|
>>> np.random.seed(0)
|
||
|
>>> n = 15
|
||
|
>>> A = np.random.rand(n, n)
|
||
|
>>> B = np.random.rand(n, n)
|
||
|
>>> res = quadratic_assignment(A, B) # FAQ is default method
|
||
|
>>> print(res.fun)
|
||
|
46.871483385480545
|
||
|
|
||
|
>>> options = {"P0": "randomized"} # use randomized initialization
|
||
|
>>> res = quadratic_assignment(A, B, options=options)
|
||
|
>>> print(res.fun)
|
||
|
47.224831071310625 # may vary
|
||
|
|
||
|
However, consider running from several randomized initializations and
|
||
|
keeping the best result.
|
||
|
|
||
|
>>> res = min([quadratic_assignment(A, B, options=options)
|
||
|
... for i in range(30)], key=lambda x: x.fun)
|
||
|
>>> print(res.fun)
|
||
|
46.671852533681516 # may vary
|
||
|
|
||
|
The '2-opt' method can be used to further refine the results.
|
||
|
|
||
|
>>> options = {"partial_guess": np.array([np.arange(n), res.col_ind]).T}
|
||
|
>>> res = quadratic_assignment(A, B, method="2opt", options=options)
|
||
|
>>> print(res.fun)
|
||
|
46.47160735721583 # may vary
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L.J. Podrazik,
|
||
|
S.G. Kratzer, E.T. Harley, D.E. Fishkind, R.J. Vogelstein, and
|
||
|
C.E. Priebe, "Fast approximate quadratic programming for graph
|
||
|
matching," PLOS one, vol. 10, no. 4, p. e0121002, 2015,
|
||
|
:doi:`10.1371/journal.pone.0121002`
|
||
|
|
||
|
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski,
|
||
|
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019):
|
||
|
203-215, :doi:`10.1016/j.patcog.2018.09.014`
|
||
|
|
||
|
.. [3] "Doubly stochastic Matrix," Wikipedia.
|
||
|
https://en.wikipedia.org/wiki/Doubly_stochastic_matrix
|
||
|
"""
|
||
|
|
||
|
_check_unknown_options(unknown_options)
|
||
|
|
||
|
maxiter = operator.index(maxiter)
|
||
|
|
||
|
# ValueError check
|
||
|
A, B, partial_match = _common_input_validation(A, B, partial_match)
|
||
|
|
||
|
msg = None
|
||
|
if isinstance(P0, str) and P0 not in {'barycenter', 'randomized'}:
|
||
|
msg = "Invalid 'P0' parameter string"
|
||
|
elif maxiter <= 0:
|
||
|
msg = "'maxiter' must be a positive integer"
|
||
|
elif tol <= 0:
|
||
|
msg = "'tol' must be a positive float"
|
||
|
if msg is not None:
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
rng = check_random_state(rng)
|
||
|
n = len(A) # number of vertices in graphs
|
||
|
n_seeds = len(partial_match) # number of seeds
|
||
|
n_unseed = n - n_seeds
|
||
|
|
||
|
# [1] Algorithm 1 Line 1 - choose initialization
|
||
|
if not isinstance(P0, str):
|
||
|
P0 = np.atleast_2d(P0)
|
||
|
if P0.shape != (n_unseed, n_unseed):
|
||
|
msg = "`P0` matrix must have shape m' x m', where m'=n-m"
|
||
|
elif ((P0 < 0).any() or not np.allclose(np.sum(P0, axis=0), 1)
|
||
|
or not np.allclose(np.sum(P0, axis=1), 1)):
|
||
|
msg = "`P0` matrix must be doubly stochastic"
|
||
|
if msg is not None:
|
||
|
raise ValueError(msg)
|
||
|
elif P0 == 'barycenter':
|
||
|
P0 = np.ones((n_unseed, n_unseed)) / n_unseed
|
||
|
elif P0 == 'randomized':
|
||
|
J = np.ones((n_unseed, n_unseed)) / n_unseed
|
||
|
# generate a nxn matrix where each entry is a random number [0, 1]
|
||
|
# would use rand, but Generators don't have it
|
||
|
# would use random, but old mtrand.RandomStates don't have it
|
||
|
K = _doubly_stochastic(rng.uniform(size=(n_unseed, n_unseed)))
|
||
|
P0 = (J + K) / 2
|
||
|
|
||
|
# check trivial cases
|
||
|
if n == 0 or n_seeds == n:
|
||
|
score = _calc_score(A, B, partial_match[:, 1])
|
||
|
res = {"col_ind": partial_match[:, 1], "fun": score, "nit": 0}
|
||
|
return OptimizeResult(res)
|
||
|
|
||
|
obj_func_scalar = 1
|
||
|
if maximize:
|
||
|
obj_func_scalar = -1
|
||
|
|
||
|
nonseed_B = np.setdiff1d(range(n), partial_match[:, 1])
|
||
|
if shuffle_input:
|
||
|
nonseed_B = rng.permutation(nonseed_B)
|
||
|
|
||
|
nonseed_A = np.setdiff1d(range(n), partial_match[:, 0])
|
||
|
perm_A = np.concatenate([partial_match[:, 0], nonseed_A])
|
||
|
perm_B = np.concatenate([partial_match[:, 1], nonseed_B])
|
||
|
|
||
|
# definitions according to Seeded Graph Matching [2].
|
||
|
A11, A12, A21, A22 = _split_matrix(A[perm_A][:, perm_A], n_seeds)
|
||
|
B11, B12, B21, B22 = _split_matrix(B[perm_B][:, perm_B], n_seeds)
|
||
|
const_sum = A21 @ B21.T + A12.T @ B12
|
||
|
|
||
|
P = P0
|
||
|
# [1] Algorithm 1 Line 2 - loop while stopping criteria not met
|
||
|
for n_iter in range(1, maxiter+1):
|
||
|
# [1] Algorithm 1 Line 3 - compute the gradient of f(P) = -tr(APB^tP^t)
|
||
|
grad_fp = (const_sum + A22 @ P @ B22.T + A22.T @ P @ B22)
|
||
|
# [1] Algorithm 1 Line 4 - get direction Q by solving Eq. 8
|
||
|
_, cols = linear_sum_assignment(grad_fp, maximize=maximize)
|
||
|
Q = np.eye(n_unseed)[cols]
|
||
|
|
||
|
# [1] Algorithm 1 Line 5 - compute the step size
|
||
|
# Noting that e.g. trace(Ax) = trace(A)*x, expand and re-collect
|
||
|
# terms as ax**2 + bx + c. c does not affect location of minimum
|
||
|
# and can be ignored. Also, note that trace(A@B) = (A.T*B).sum();
|
||
|
# apply where possible for efficiency.
|
||
|
R = P - Q
|
||
|
b21 = ((R.T @ A21) * B21).sum()
|
||
|
b12 = ((R.T @ A12.T) * B12.T).sum()
|
||
|
AR22 = A22.T @ R
|
||
|
BR22 = B22 @ R.T
|
||
|
b22a = (AR22 * B22.T[cols]).sum()
|
||
|
b22b = (A22 * BR22[cols]).sum()
|
||
|
a = (AR22.T * BR22).sum()
|
||
|
b = b21 + b12 + b22a + b22b
|
||
|
# critical point of ax^2 + bx + c is at x = -d/(2*e)
|
||
|
# if a * obj_func_scalar > 0, it is a minimum
|
||
|
# if minimum is not in [0, 1], only endpoints need to be considered
|
||
|
if a*obj_func_scalar > 0 and 0 <= -b/(2*a) <= 1:
|
||
|
alpha = -b/(2*a)
|
||
|
else:
|
||
|
alpha = np.argmin([0, (b + a)*obj_func_scalar])
|
||
|
|
||
|
# [1] Algorithm 1 Line 6 - Update P
|
||
|
P_i1 = alpha * P + (1 - alpha) * Q
|
||
|
if np.linalg.norm(P - P_i1) / np.sqrt(n_unseed) < tol:
|
||
|
P = P_i1
|
||
|
break
|
||
|
P = P_i1
|
||
|
# [1] Algorithm 1 Line 7 - end main loop
|
||
|
|
||
|
# [1] Algorithm 1 Line 8 - project onto the set of permutation matrices
|
||
|
_, col = linear_sum_assignment(P, maximize=True)
|
||
|
perm = np.concatenate((np.arange(n_seeds), col + n_seeds))
|
||
|
|
||
|
unshuffled_perm = np.zeros(n, dtype=int)
|
||
|
unshuffled_perm[perm_A] = perm_B[perm]
|
||
|
|
||
|
score = _calc_score(A, B, unshuffled_perm)
|
||
|
res = {"col_ind": unshuffled_perm, "fun": score, "nit": n_iter}
|
||
|
return OptimizeResult(res)
|
||
|
|
||
|
|
||
|
def _split_matrix(X, n):
|
||
|
# definitions according to Seeded Graph Matching [2].
|
||
|
upper, lower = X[:n], X[n:]
|
||
|
return upper[:, :n], upper[:, n:], lower[:, :n], lower[:, n:]
|
||
|
|
||
|
|
||
|
def _doubly_stochastic(P, tol=1e-3):
|
||
|
# Adapted from @btaba implementation
|
||
|
# https://github.com/btaba/sinkhorn_knopp
|
||
|
# of Sinkhorn-Knopp algorithm
|
||
|
# https://projecteuclid.org/euclid.pjm/1102992505
|
||
|
|
||
|
max_iter = 1000
|
||
|
c = 1 / P.sum(axis=0)
|
||
|
r = 1 / (P @ c)
|
||
|
P_eps = P
|
||
|
|
||
|
for it in range(max_iter):
|
||
|
if ((np.abs(P_eps.sum(axis=1) - 1) < tol).all() and
|
||
|
(np.abs(P_eps.sum(axis=0) - 1) < tol).all()):
|
||
|
# All column/row sums ~= 1 within threshold
|
||
|
break
|
||
|
|
||
|
c = 1 / (r @ P)
|
||
|
r = 1 / (P @ c)
|
||
|
P_eps = r[:, None] * P * c
|
||
|
|
||
|
return P_eps
|
||
|
|
||
|
|
||
|
def _quadratic_assignment_2opt(A, B, maximize=False, rng=None,
|
||
|
partial_match=None,
|
||
|
partial_guess=None,
|
||
|
**unknown_options):
|
||
|
r"""
|
||
|
Solve the quadratic assignment problem (approximately).
|
||
|
|
||
|
This function solves the Quadratic Assignment Problem (QAP) and the
|
||
|
Graph Matching Problem (GMP) using the 2-opt algorithm [1]_.
|
||
|
|
||
|
Quadratic assignment solves problems of the following form:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\min_P & \ {\ \text{trace}(A^T P B P^T)}\\
|
||
|
\mbox{s.t. } & {P \ \epsilon \ \mathcal{P}}\\
|
||
|
|
||
|
where :math:`\mathcal{P}` is the set of all permutation matrices,
|
||
|
and :math:`A` and :math:`B` are square matrices.
|
||
|
|
||
|
Graph matching tries to *maximize* the same objective function.
|
||
|
This algorithm can be thought of as finding the alignment of the
|
||
|
nodes of two graphs that minimizes the number of induced edge
|
||
|
disagreements, or, in the case of weighted graphs, the sum of squared
|
||
|
edge weight differences.
|
||
|
|
||
|
Note that the quadratic assignment problem is NP-hard. The results given
|
||
|
here are approximations and are not guaranteed to be optimal.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : 2-D array, square
|
||
|
The square matrix :math:`A` in the objective function above.
|
||
|
|
||
|
B : 2-D array, square
|
||
|
The square matrix :math:`B` in the objective function above.
|
||
|
|
||
|
method : str in {'faq', '2opt'} (default: 'faq')
|
||
|
The algorithm used to solve the problem. This is the method-specific
|
||
|
documentation for '2opt'.
|
||
|
:ref:`'faq' <optimize.qap-faq>` is also available.
|
||
|
|
||
|
Options
|
||
|
-------
|
||
|
|
||
|
maximize : bool (default: False)
|
||
|
Maximizes the objective function if ``True``.
|
||
|
|
||
|
rng : int, `RandomState`, `Generator` or None, optional (default: None)
|
||
|
Accepts an integer as a seed for the random generator or a
|
||
|
``RandomState`` or ``Generator`` object. If None (default), uses
|
||
|
global `numpy.random` random state.
|
||
|
|
||
|
partial_match : 2-D array of integers, optional (default: None)
|
||
|
Fixes part of the matching. Also known as a "seed" [2]_.
|
||
|
|
||
|
Each row of `partial_match` specifies a pair of matched nodes: node
|
||
|
``partial_match[i, 0]`` of `A` is matched to node
|
||
|
``partial_match[i, 1]`` of `B`. The array has shape ``(m, 2)``,
|
||
|
where ``m`` is not greater than the number of nodes, :math:`n`.
|
||
|
|
||
|
partial_guess : 2-D array of integers, optional (default: None)
|
||
|
A guess for the matching between the two matrices. Unlike
|
||
|
`partial_match`, `partial_guess` does not fix the indices; they are
|
||
|
still free to be optimized.
|
||
|
|
||
|
Each row of `partial_guess` specifies a pair of matched nodes: node
|
||
|
``partial_guess[i, 0]`` of `A` is matched to node
|
||
|
``partial_guess[i, 1]`` of `B`. The array has shape ``(m, 2)``,
|
||
|
where ``m`` is not greater than the number of nodes, :math:`n`.
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : OptimizeResult
|
||
|
`OptimizeResult` containing the following fields.
|
||
|
|
||
|
col_ind : 1-D array
|
||
|
Column indices corresponding to the best permutation found of the
|
||
|
nodes of `B`.
|
||
|
fun : float
|
||
|
The objective value of the solution.
|
||
|
nit : int
|
||
|
The number of iterations performed during optimization.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is a greedy algorithm that works similarly to bubble sort: beginning
|
||
|
with an initial permutation, it iteratively swaps pairs of indices to
|
||
|
improve the objective function until no such improvements are possible.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] "2-opt," Wikipedia.
|
||
|
https://en.wikipedia.org/wiki/2-opt
|
||
|
|
||
|
.. [2] D. Fishkind, S. Adali, H. Patsolic, L. Meng, D. Singh, V. Lyzinski,
|
||
|
C. Priebe, "Seeded graph matching", Pattern Recognit. 87 (2019):
|
||
|
203-215, https://doi.org/10.1016/j.patcog.2018.09.014
|
||
|
"""
|
||
|
|
||
|
_check_unknown_options(unknown_options)
|
||
|
rng = check_random_state(rng)
|
||
|
A, B, partial_match = _common_input_validation(A, B, partial_match)
|
||
|
|
||
|
N = len(A)
|
||
|
# check trivial cases
|
||
|
if N == 0 or partial_match.shape[0] == N:
|
||
|
score = _calc_score(A, B, partial_match[:, 1])
|
||
|
res = {"col_ind": partial_match[:, 1], "fun": score, "nit": 0}
|
||
|
return OptimizeResult(res)
|
||
|
|
||
|
if partial_guess is None:
|
||
|
partial_guess = np.array([[], []]).T
|
||
|
partial_guess = np.atleast_2d(partial_guess).astype(int)
|
||
|
|
||
|
msg = None
|
||
|
if partial_guess.shape[0] > A.shape[0]:
|
||
|
msg = ("`partial_guess` can have only as "
|
||
|
"many entries as there are nodes")
|
||
|
elif partial_guess.shape[1] != 2:
|
||
|
msg = "`partial_guess` must have two columns"
|
||
|
elif partial_guess.ndim != 2:
|
||
|
msg = "`partial_guess` must have exactly two dimensions"
|
||
|
elif (partial_guess < 0).any():
|
||
|
msg = "`partial_guess` must contain only positive indices"
|
||
|
elif (partial_guess >= len(A)).any():
|
||
|
msg = "`partial_guess` entries must be less than number of nodes"
|
||
|
elif (not len(set(partial_guess[:, 0])) == len(partial_guess[:, 0]) or
|
||
|
not len(set(partial_guess[:, 1])) == len(partial_guess[:, 1])):
|
||
|
msg = "`partial_guess` column entries must be unique"
|
||
|
if msg is not None:
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
fixed_rows = None
|
||
|
if partial_match.size or partial_guess.size:
|
||
|
# use partial_match and partial_guess for initial permutation,
|
||
|
# but randomly permute the rest.
|
||
|
guess_rows = np.zeros(N, dtype=bool)
|
||
|
guess_cols = np.zeros(N, dtype=bool)
|
||
|
fixed_rows = np.zeros(N, dtype=bool)
|
||
|
fixed_cols = np.zeros(N, dtype=bool)
|
||
|
perm = np.zeros(N, dtype=int)
|
||
|
|
||
|
rg, cg = partial_guess.T
|
||
|
guess_rows[rg] = True
|
||
|
guess_cols[cg] = True
|
||
|
perm[guess_rows] = cg
|
||
|
|
||
|
# match overrides guess
|
||
|
rf, cf = partial_match.T
|
||
|
fixed_rows[rf] = True
|
||
|
fixed_cols[cf] = True
|
||
|
perm[fixed_rows] = cf
|
||
|
|
||
|
random_rows = ~fixed_rows & ~guess_rows
|
||
|
random_cols = ~fixed_cols & ~guess_cols
|
||
|
perm[random_rows] = rng.permutation(np.arange(N)[random_cols])
|
||
|
else:
|
||
|
perm = rng.permutation(np.arange(N))
|
||
|
|
||
|
best_score = _calc_score(A, B, perm)
|
||
|
|
||
|
i_free = np.arange(N)
|
||
|
if fixed_rows is not None:
|
||
|
i_free = i_free[~fixed_rows]
|
||
|
|
||
|
better = operator.gt if maximize else operator.lt
|
||
|
n_iter = 0
|
||
|
done = False
|
||
|
while not done:
|
||
|
# equivalent to nested for loops i in range(N), j in range(i, N)
|
||
|
for i, j in itertools.combinations_with_replacement(i_free, 2):
|
||
|
n_iter += 1
|
||
|
perm[i], perm[j] = perm[j], perm[i]
|
||
|
score = _calc_score(A, B, perm)
|
||
|
if better(score, best_score):
|
||
|
best_score = score
|
||
|
break
|
||
|
# faster to swap back than to create a new list every time
|
||
|
perm[i], perm[j] = perm[j], perm[i]
|
||
|
else: # no swaps made
|
||
|
done = True
|
||
|
|
||
|
res = {"col_ind": perm, "fun": best_score, "nit": n_iter}
|
||
|
return OptimizeResult(res)
|