forked from 170010011/fr
186 lines
4.4 KiB
Python
186 lines
4.4 KiB
Python
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def ascent():
|
||
|
"""
|
||
|
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for
|
||
|
easy use in demos
|
||
|
|
||
|
The image is derived from accent-to-the-top.jpg at
|
||
|
http://www.public-domain-image.com/people-public-domain-images-pictures/
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ascent : ndarray
|
||
|
convenient image to use for testing and demonstration
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pywt.data
|
||
|
>>> ascent = pywt.data.ascent()
|
||
|
>>> ascent.shape == (512, 512)
|
||
|
True
|
||
|
>>> ascent.max()
|
||
|
255
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.gray()
|
||
|
>>> plt.imshow(ascent) # doctest: +ELLIPSIS
|
||
|
<matplotlib.image.AxesImage object at ...>
|
||
|
>>> plt.show() # doctest: +SKIP
|
||
|
|
||
|
"""
|
||
|
fname = os.path.join(os.path.dirname(__file__), 'ascent.npz')
|
||
|
ascent = np.load(fname)['data']
|
||
|
return ascent
|
||
|
|
||
|
|
||
|
def aero():
|
||
|
"""
|
||
|
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for
|
||
|
easy use in demos
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
aero : ndarray
|
||
|
convenient image to use for testing and demonstration
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pywt.data
|
||
|
>>> aero = pywt.data.ascent()
|
||
|
>>> aero.shape == (512, 512)
|
||
|
True
|
||
|
>>> aero.max()
|
||
|
255
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.gray()
|
||
|
>>> plt.imshow(aero) # doctest: +ELLIPSIS
|
||
|
<matplotlib.image.AxesImage object at ...>
|
||
|
>>> plt.show() # doctest: +SKIP
|
||
|
|
||
|
"""
|
||
|
fname = os.path.join(os.path.dirname(__file__), 'aero.npz')
|
||
|
aero = np.load(fname)['data']
|
||
|
return aero
|
||
|
|
||
|
|
||
|
def camera():
|
||
|
"""
|
||
|
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for
|
||
|
easy use in demos
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
camera : ndarray
|
||
|
convenient image to use for testing and demonstration
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pywt.data
|
||
|
>>> camera = pywt.data.ascent()
|
||
|
>>> camera.shape == (512, 512)
|
||
|
True
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.gray()
|
||
|
>>> plt.imshow(camera) # doctest: +ELLIPSIS
|
||
|
<matplotlib.image.AxesImage object at ...>
|
||
|
>>> plt.show() # doctest: +SKIP
|
||
|
|
||
|
"""
|
||
|
fname = os.path.join(os.path.dirname(__file__), 'camera.npz')
|
||
|
camera = np.load(fname)['data']
|
||
|
return camera
|
||
|
|
||
|
|
||
|
def ecg():
|
||
|
"""
|
||
|
Get 1024 points of an ECG timeseries.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ecg : ndarray
|
||
|
convenient timeseries to use for testing and demonstration
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pywt.data
|
||
|
>>> ecg = pywt.data.ecg()
|
||
|
>>> ecg.shape == (1024,)
|
||
|
True
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.plot(ecg) # doctest: +ELLIPSIS
|
||
|
[<matplotlib.lines.Line2D object at ...>]
|
||
|
>>> plt.show() # doctest: +SKIP
|
||
|
"""
|
||
|
fname = os.path.join(os.path.dirname(__file__), 'ecg.npy')
|
||
|
ecg = np.load(fname)
|
||
|
return ecg
|
||
|
|
||
|
|
||
|
def nino():
|
||
|
"""
|
||
|
This data contains the averaged monthly sea surface temperature in degrees
|
||
|
Celcius of the Pacific Ocean, between 0-10 degrees South and 90-80 degrees West, from 1950 to 2016.
|
||
|
This dataset is in the public domain and was obtained from NOAA.
|
||
|
National Oceanic and Atmospheric Administration's National Weather Service
|
||
|
ERSSTv4 dataset, nino 3, http://www.cpc.ncep.noaa.gov/data/indices/
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
time : ndarray
|
||
|
convenient timeseries to use for testing and demonstration
|
||
|
sst : ndarray
|
||
|
convenient timeseries to use for testing and demonstration
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pywt.data
|
||
|
>>> time, sst = pywt.data.nino()
|
||
|
>>> sst.shape == (264,)
|
||
|
True
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> plt.plot(time,sst) # doctest: +ELLIPSIS
|
||
|
[<matplotlib.lines.Line2D object at ...>]
|
||
|
>>> plt.show() # doctest: +SKIP
|
||
|
"""
|
||
|
fname = os.path.join(os.path.dirname(__file__), 'sst_nino3.npz')
|
||
|
sst_csv = np.load(fname)['sst_csv']
|
||
|
# sst_csv = pd.read_csv("http://www.cpc.ncep.noaa.gov/data/indices/ersst4.nino.mth.81-10.ascii", sep=' ', skipinitialspace=True)
|
||
|
# take only full years
|
||
|
n = int(np.floor(sst_csv.shape[0]/12.)*12.)
|
||
|
# Building the mean of three mounth
|
||
|
# the 4. column is nino 3
|
||
|
sst = np.mean(np.reshape(np.array(sst_csv)[:n, 4], (n//3, -1)), axis=1)
|
||
|
sst = (sst - np.mean(sst)) / np.std(sst, ddof=1)
|
||
|
|
||
|
dt = 0.25
|
||
|
time = np.arange(len(sst)) * dt + 1950.0 # construct time array
|
||
|
return time, sst
|