forked from 170010011/fr
254 lines
6.9 KiB
Python
254 lines
6.9 KiB
Python
|
#
|
||
|
# The Python Imaging Library
|
||
|
# $Id$
|
||
|
#
|
||
|
# a simple math add-on for the Python Imaging Library
|
||
|
#
|
||
|
# History:
|
||
|
# 1999-02-15 fl Original PIL Plus release
|
||
|
# 2005-05-05 fl Simplified and cleaned up for PIL 1.1.6
|
||
|
# 2005-09-12 fl Fixed int() and float() for Python 2.4.1
|
||
|
#
|
||
|
# Copyright (c) 1999-2005 by Secret Labs AB
|
||
|
# Copyright (c) 2005 by Fredrik Lundh
|
||
|
#
|
||
|
# See the README file for information on usage and redistribution.
|
||
|
#
|
||
|
|
||
|
import builtins
|
||
|
|
||
|
from . import Image, _imagingmath
|
||
|
|
||
|
VERBOSE = 0
|
||
|
|
||
|
|
||
|
def _isconstant(v):
|
||
|
return isinstance(v, (int, float))
|
||
|
|
||
|
|
||
|
class _Operand:
|
||
|
"""Wraps an image operand, providing standard operators"""
|
||
|
|
||
|
def __init__(self, im):
|
||
|
self.im = im
|
||
|
|
||
|
def __fixup(self, im1):
|
||
|
# convert image to suitable mode
|
||
|
if isinstance(im1, _Operand):
|
||
|
# argument was an image.
|
||
|
if im1.im.mode in ("1", "L"):
|
||
|
return im1.im.convert("I")
|
||
|
elif im1.im.mode in ("I", "F"):
|
||
|
return im1.im
|
||
|
else:
|
||
|
raise ValueError(f"unsupported mode: {im1.im.mode}")
|
||
|
else:
|
||
|
# argument was a constant
|
||
|
if _isconstant(im1) and self.im.mode in ("1", "L", "I"):
|
||
|
return Image.new("I", self.im.size, im1)
|
||
|
else:
|
||
|
return Image.new("F", self.im.size, im1)
|
||
|
|
||
|
def apply(self, op, im1, im2=None, mode=None):
|
||
|
im1 = self.__fixup(im1)
|
||
|
if im2 is None:
|
||
|
# unary operation
|
||
|
out = Image.new(mode or im1.mode, im1.size, None)
|
||
|
im1.load()
|
||
|
try:
|
||
|
op = getattr(_imagingmath, op + "_" + im1.mode)
|
||
|
except AttributeError as e:
|
||
|
raise TypeError(f"bad operand type for '{op}'") from e
|
||
|
_imagingmath.unop(op, out.im.id, im1.im.id)
|
||
|
else:
|
||
|
# binary operation
|
||
|
im2 = self.__fixup(im2)
|
||
|
if im1.mode != im2.mode:
|
||
|
# convert both arguments to floating point
|
||
|
if im1.mode != "F":
|
||
|
im1 = im1.convert("F")
|
||
|
if im2.mode != "F":
|
||
|
im2 = im2.convert("F")
|
||
|
if im1.mode != im2.mode:
|
||
|
raise ValueError("mode mismatch")
|
||
|
if im1.size != im2.size:
|
||
|
# crop both arguments to a common size
|
||
|
size = (min(im1.size[0], im2.size[0]), min(im1.size[1], im2.size[1]))
|
||
|
if im1.size != size:
|
||
|
im1 = im1.crop((0, 0) + size)
|
||
|
if im2.size != size:
|
||
|
im2 = im2.crop((0, 0) + size)
|
||
|
out = Image.new(mode or im1.mode, size, None)
|
||
|
else:
|
||
|
out = Image.new(mode or im1.mode, im1.size, None)
|
||
|
im1.load()
|
||
|
im2.load()
|
||
|
try:
|
||
|
op = getattr(_imagingmath, op + "_" + im1.mode)
|
||
|
except AttributeError as e:
|
||
|
raise TypeError(f"bad operand type for '{op}'") from e
|
||
|
_imagingmath.binop(op, out.im.id, im1.im.id, im2.im.id)
|
||
|
return _Operand(out)
|
||
|
|
||
|
# unary operators
|
||
|
def __bool__(self):
|
||
|
# an image is "true" if it contains at least one non-zero pixel
|
||
|
return self.im.getbbox() is not None
|
||
|
|
||
|
def __abs__(self):
|
||
|
return self.apply("abs", self)
|
||
|
|
||
|
def __pos__(self):
|
||
|
return self
|
||
|
|
||
|
def __neg__(self):
|
||
|
return self.apply("neg", self)
|
||
|
|
||
|
# binary operators
|
||
|
def __add__(self, other):
|
||
|
return self.apply("add", self, other)
|
||
|
|
||
|
def __radd__(self, other):
|
||
|
return self.apply("add", other, self)
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
return self.apply("sub", self, other)
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
return self.apply("sub", other, self)
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
return self.apply("mul", self, other)
|
||
|
|
||
|
def __rmul__(self, other):
|
||
|
return self.apply("mul", other, self)
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
return self.apply("div", self, other)
|
||
|
|
||
|
def __rtruediv__(self, other):
|
||
|
return self.apply("div", other, self)
|
||
|
|
||
|
def __mod__(self, other):
|
||
|
return self.apply("mod", self, other)
|
||
|
|
||
|
def __rmod__(self, other):
|
||
|
return self.apply("mod", other, self)
|
||
|
|
||
|
def __pow__(self, other):
|
||
|
return self.apply("pow", self, other)
|
||
|
|
||
|
def __rpow__(self, other):
|
||
|
return self.apply("pow", other, self)
|
||
|
|
||
|
# bitwise
|
||
|
def __invert__(self):
|
||
|
return self.apply("invert", self)
|
||
|
|
||
|
def __and__(self, other):
|
||
|
return self.apply("and", self, other)
|
||
|
|
||
|
def __rand__(self, other):
|
||
|
return self.apply("and", other, self)
|
||
|
|
||
|
def __or__(self, other):
|
||
|
return self.apply("or", self, other)
|
||
|
|
||
|
def __ror__(self, other):
|
||
|
return self.apply("or", other, self)
|
||
|
|
||
|
def __xor__(self, other):
|
||
|
return self.apply("xor", self, other)
|
||
|
|
||
|
def __rxor__(self, other):
|
||
|
return self.apply("xor", other, self)
|
||
|
|
||
|
def __lshift__(self, other):
|
||
|
return self.apply("lshift", self, other)
|
||
|
|
||
|
def __rshift__(self, other):
|
||
|
return self.apply("rshift", self, other)
|
||
|
|
||
|
# logical
|
||
|
def __eq__(self, other):
|
||
|
return self.apply("eq", self, other)
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return self.apply("ne", self, other)
|
||
|
|
||
|
def __lt__(self, other):
|
||
|
return self.apply("lt", self, other)
|
||
|
|
||
|
def __le__(self, other):
|
||
|
return self.apply("le", self, other)
|
||
|
|
||
|
def __gt__(self, other):
|
||
|
return self.apply("gt", self, other)
|
||
|
|
||
|
def __ge__(self, other):
|
||
|
return self.apply("ge", self, other)
|
||
|
|
||
|
|
||
|
# conversions
|
||
|
def imagemath_int(self):
|
||
|
return _Operand(self.im.convert("I"))
|
||
|
|
||
|
|
||
|
def imagemath_float(self):
|
||
|
return _Operand(self.im.convert("F"))
|
||
|
|
||
|
|
||
|
# logical
|
||
|
def imagemath_equal(self, other):
|
||
|
return self.apply("eq", self, other, mode="I")
|
||
|
|
||
|
|
||
|
def imagemath_notequal(self, other):
|
||
|
return self.apply("ne", self, other, mode="I")
|
||
|
|
||
|
|
||
|
def imagemath_min(self, other):
|
||
|
return self.apply("min", self, other)
|
||
|
|
||
|
|
||
|
def imagemath_max(self, other):
|
||
|
return self.apply("max", self, other)
|
||
|
|
||
|
|
||
|
def imagemath_convert(self, mode):
|
||
|
return _Operand(self.im.convert(mode))
|
||
|
|
||
|
|
||
|
ops = {}
|
||
|
for k, v in list(globals().items()):
|
||
|
if k[:10] == "imagemath_":
|
||
|
ops[k[10:]] = v
|
||
|
|
||
|
|
||
|
def eval(expression, _dict={}, **kw):
|
||
|
"""
|
||
|
Evaluates an image expression.
|
||
|
|
||
|
:param expression: A string containing a Python-style expression.
|
||
|
:param options: Values to add to the evaluation context. You
|
||
|
can either use a dictionary, or one or more keyword
|
||
|
arguments.
|
||
|
:return: The evaluated expression. This is usually an image object, but can
|
||
|
also be an integer, a floating point value, or a pixel tuple,
|
||
|
depending on the expression.
|
||
|
"""
|
||
|
|
||
|
# build execution namespace
|
||
|
args = ops.copy()
|
||
|
args.update(_dict)
|
||
|
args.update(kw)
|
||
|
for k, v in list(args.items()):
|
||
|
if hasattr(v, "im"):
|
||
|
args[k] = _Operand(v)
|
||
|
|
||
|
out = builtins.eval(expression, args)
|
||
|
try:
|
||
|
return out.im
|
||
|
except AttributeError:
|
||
|
return out
|